JPS63110954A - Superconducting rotor - Google Patents

Superconducting rotor

Info

Publication number
JPS63110954A
JPS63110954A JP61255803A JP25580386A JPS63110954A JP S63110954 A JPS63110954 A JP S63110954A JP 61255803 A JP61255803 A JP 61255803A JP 25580386 A JP25580386 A JP 25580386A JP S63110954 A JPS63110954 A JP S63110954A
Authority
JP
Japan
Prior art keywords
cylinder
rotor
inner cylinder
superconducting
hinges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61255803A
Other languages
Japanese (ja)
Inventor
Masayuki Ichimonji
正幸 一文字
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61255803A priority Critical patent/JPS63110954A/en
Publication of JPS63110954A publication Critical patent/JPS63110954A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To facilitate work at the time of assembling, by setting a link mechanism absorbing thermal transformation in the axial direction of an inner cylinder. CONSTITUTION:So far as a superconducting rotor is concerned, an external cylinder 3 is connected to a pair of joint shafts 2 forming the side surface of the rotor and the shafts, and the outer periphery of the rotor is formed. In the internal section of the external cylinder 3, an internal cylinder 6 which is set concentrically with the cylinder 3 having a radiation shield and superconducting field windings dipped in the liquid helium of a refrigerant and fitted on the inner periphery is set. In this case, on the same circumferences with the center of respective rotor cores on the end sections of the internal cylinder 6 and the end surfaces of the joint shafts 2, hinges 7a, 7b are arranged relatively and equally, and connecting members 8a, 8b connected rotatably to a ring 9 are connected rotatably to the hinges 7a, 7b respectively. Then, a flexible support is not needed, and the external cylinder 3 and the joint shafts 2 can be directly connected to each other.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、超電導回転子に係り、特に内筒と外筒との結
合手段に改良を加えた超電導回転子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a superconducting rotor, and particularly to a superconducting rotor in which a means for connecting an inner cylinder and an outer cylinder is improved.

(従来の技術) 従来の超電導回転子について第6図を参照して説明する
。1,2は超電導回転子の側面及び軸を形成する一対の
継ぎシャフトである。この継ぎシャフト1,2間には外
筒3が接続され、この外筒3は回転子の外周を形成する
。またこの外筒3の内部には、この外筒3と同心であり
、その外周にラジェーションシールド4を有し、かつそ
の内周に極低温を保持するように冷媒である液体ヘリウ
ムに浸漬された超電導界磁巻線5を装着した内筒6が設
けられる。なおこの内筒6の一端は前記継ぎシャフト1
に接続され、他端は軸方向断面がU字状であるフレキシ
ブルサポート10を介して継ぎシャフト2と外筒3との
間に接続されている。すなわち外筒3の端部及びフレキ
シブルサポート10の外周部及び継ぎシャフト2の外周
側の3部材が通しボルトで締結する3重構造になってい
る。
(Prior Art) A conventional superconducting rotor will be described with reference to FIG. 6. Reference numerals 1 and 2 are a pair of joint shafts forming the side surfaces and shaft of the superconducting rotor. An outer cylinder 3 is connected between the joint shafts 1 and 2, and this outer cylinder 3 forms the outer periphery of the rotor. Moreover, inside this outer cylinder 3, it is concentric with this outer cylinder 3, has a radiation shield 4 on its outer periphery, and is immersed in liquid helium, which is a refrigerant, so as to maintain an extremely low temperature on its inner periphery. An inner cylinder 6 is provided with a superconducting field winding 5 mounted thereon. Note that one end of this inner cylinder 6 is connected to the joint shaft 1.
The other end is connected between the joint shaft 2 and the outer cylinder 3 via a flexible support 10 whose axial cross section is U-shaped. That is, it has a triple structure in which three members, the end of the outer cylinder 3, the outer circumference of the flexible support 10, and the outer circumference of the joint shaft 2, are fastened with through bolts.

以上のように超電導回転子は外筒3と内筒6からなる二
重円筒構造を有し外筒3内を真空にし、外部からの熱の
流入から極低温の内筒6を保護し、かつ内筒6はその両
端で外筒3を接続して位置を維持するとともに相互にト
ルクを伝達する。また、内筒6の熱収縮に対しては前記
フレキシブルサポートにより軸方向にのみ吸収できる+
を造になっている。
As described above, the superconducting rotor has a double cylindrical structure consisting of an outer cylinder 3 and an inner cylinder 6, makes the inside of the outer cylinder 3 a vacuum, protects the extremely low temperature inner cylinder 6 from heat inflow from the outside, and The inner cylinder 6 connects the outer cylinder 3 at both ends to maintain the position and mutually transmit torque. In addition, the flexible support can absorb thermal contraction of the inner cylinder 6 only in the axial direction.
It is made of

(発明が解決しようとする問題点) このように、内筒6の軸方向の熱変形を許しかつその他
の方向の変位を拘束する機構としては、前記フレキシブ
ルサポートが従来より使用されているが、複雑な形状の
加工、内筒6の内部における組み立て作業や外筒3.フ
レキシブルサポート10、継ぎシャフト2の3部材を通
しボルトで締結する三重構造等、fM造上の問題があっ
た。また回転子の大型化により、内筒6の重量および熱
変形量の増大に伴って、内筒6の荷重に耐えるためには
フレキシブルサポート10の板厚を大きく取る必要があ
るのに反して、軸方向の熱変形吸収のためには板厚を小
さくせねばならず、板厚の選定が難しく、フレキシブル
サポート10の適用規模に限界を生じる。
(Problems to be Solved by the Invention) As described above, the flexible support has been conventionally used as a mechanism for allowing thermal deformation of the inner cylinder 6 in the axial direction and restraining displacement in other directions. Machining of complex shapes, assembly work inside the inner cylinder 6 and outer cylinder 3. There were problems with the fM construction, such as the triple structure in which the three members, the flexible support 10 and the joint shaft 2, were passed through and fastened with bolts. Furthermore, due to the increase in the size of the rotor, the weight and amount of thermal deformation of the inner cylinder 6 increases, and in order to withstand the load of the inner cylinder 6, it is necessary to increase the thickness of the flexible support 10. In order to absorb thermal deformation in the axial direction, the plate thickness must be reduced, and selection of the plate thickness is difficult, which limits the scale of application of the flexible support 10.

本発明は内筒の軸方向の熱変形を吸収する機能を有する
とともに、複雑な加工を不要とし、製造組立時の作業を
容易にし、かつ大容量機にも適用可能な超電導回転子を
提供することを目的とする。
The present invention provides a superconducting rotor that has the function of absorbing thermal deformation in the axial direction of the inner cylinder, does not require complicated machining, facilitates work during manufacturing and assembly, and is applicable to large-capacity machines. The purpose is to

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明においては、前述の目的を達成するために、第1
図に示すようなリンク機構を利用する。
(Means for Solving the Problems) In the present invention, in order to achieve the above-mentioned object, the first
Use a link mechanism as shown in the figure.

すなわち、内筒6の端部と継ぎシャフト2の端面とを円
周上に等配したヒンジ7a、 7bと、このヒンジに回
転可能に連結された連結部材8a、8bによって結合す
る。
That is, the end of the inner cylinder 6 and the end surface of the connecting shaft 2 are connected by hinges 7a, 7b equally spaced on the circumference and connecting members 8a, 8b rotatably connected to the hinges.

(作 用) このような構造にすると、内筒は外筒の内側に同芯に保
持されたまま、軸方向に大きく伸縮することができる。
(Function) With this structure, the inner cylinder can expand and contract significantly in the axial direction while being held concentrically inside the outer cylinder.

(実施例) 以下、本発明の一実施例について第1図乃至第3図を参
照して説明する。第1図は1本発明による超電導回転子
の概略構造を表わす断面図である。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a sectional view showing a schematic structure of a superconducting rotor according to the present invention.

内筒6の端部および継ぎシャフト2の端面にそれぞれ回
転子中心を中心とする同一円周上に相対してヒンジ7a
、7bを等配し、リング9に回転可能に連結した連結部
材8a、8bを前記ヒンジ7a、 7bにそれぞれ回転
可能に結合する。なお、第1図において、超電導回転子
の図示しない部分は第6図に示す従来構造と同一なので
省略しである。第2図は、内筒6にヒンジ7aを介して
取り付けられた連結部材8a、8bおよびリング9の配
置を示す斜視図である。
A hinge 7a is provided at the end of the inner cylinder 6 and the end face of the joint shaft 2, respectively, on the same circumference centered on the rotor center.
, 7b are equally spaced, and connecting members 8a and 8b rotatably connected to the ring 9 are rotatably connected to the hinges 7a and 7b, respectively. In FIG. 1, the parts of the superconducting rotor that are not shown are the same as the conventional structure shown in FIG. 6, so they are omitted. FIG. 2 is a perspective view showing the arrangement of connecting members 8a, 8b and ring 9 attached to inner cylinder 6 via hinge 7a.

次に作用について説明する。超電導巻線5が極低温に冷
却されるに伴い、超電導巻線5を保持する内筒6も温度
が低下して熱変形を生じる。この熱変形による内筒6の
軸方向の収縮を、ヒンジ7a。
Next, the effect will be explained. As the superconducting winding 5 is cooled to an extremely low temperature, the temperature of the inner cylinder 6 that holds the superconducting winding 5 also decreases, causing thermal deformation. The hinge 7a absorbs the axial contraction of the inner cylinder 6 due to this thermal deformation.

7bおよび連結部材8a、 8bによって構成されるリ
ンク機構は許容しつつ、内筒6の半径方向および回転方
向の移動を拘束する。すなわち、第3図において、実線
は常温時の状態を破線は冷却時の状態をそれぞれ表わす
が、連結部材8a、 8bの相互の結合およびヒンジ7
a、7bとの結合は回転可能となっているので、このリ
ンク機構は内筒6の軸方向の変形を妨げない。しかし、
内筒6の第3図に示されない他端が固定されているので
、前記リンク機構は内筒6の半径方向の変形を拘束する
。また円周方向に対しては、連結部材8a、 8bはヒ
ンジ7a。
7b and the connecting members 8a, 8b, the link mechanism restricts movement of the inner cylinder 6 in the radial direction and rotational direction while allowing the movement. That is, in FIG. 3, the solid line represents the state at room temperature and the broken line represents the state when cooled, but the connection between the connecting members 8a and 8b and the hinge 7
Since the connections with a and 7b are rotatable, this link mechanism does not hinder the deformation of the inner cylinder 6 in the axial direction. but,
Since the other end of the inner cylinder 6, which is not shown in FIG. 3, is fixed, the link mechanism restrains the inner cylinder 6 from deforming in the radial direction. Further, in the circumferential direction, the connecting members 8a and 8b are hinges 7a.

7bに剛に結合されたはり部材とみなせるので、円筒6
は軸心方向の回転は拘束される。さらに、内筒6が熱収
縮すると、連結部材8a、8bの移動に伴いリング9は
伴径が拡大されて連結部材8a、8bに張力を与えるの
で5円筒6の半径方向まわりの回転に拘束を加える。
Since it can be regarded as a beam member rigidly connected to the cylinder 6
rotation in the axial direction is restricted. Furthermore, when the inner cylinder 6 heat-shrinks, the ring 9 expands its diameter as the connecting members 8a, 8b move and applies tension to the connecting members 8a, 8b, thereby restraining the rotation of the cylinder 5 in the radial direction. Add.

このように本発明による超電導回転子においては、内筒
6は超電導巻線5を冷却する冷媒による極低温化に伴う
軸方向の収縮を許容されつつ、それ以外の方向の変形を
拘束される。さらに従来構造と比較して、フレキシブル
・サポートが不要となるために、外筒3と継ぎシャフト
2を直接締結することができるので、結合作業等の製造
上の困難が回避されるとともに、回転子の大型化にも対
応が可能となる。
As described above, in the superconducting rotor according to the present invention, the inner cylinder 6 is allowed to shrink in the axial direction due to the cryogenic temperature caused by the refrigerant that cools the superconducting winding 5, but is restrained from deforming in other directions. Furthermore, compared to the conventional structure, there is no need for a flexible support, so the outer cylinder 3 and joint shaft 2 can be directly connected, which avoids manufacturing difficulties such as connection work, and It is also possible to handle larger sizes.

以下、本発明の他の実施例について第4図および第5図
を用いて説明する。第4図に示す実施例は、連結部材8
aと8bの支点を内筒6および継ぎシャフト2に設けた
ヒンジ7a、7bより外周側に配置したものである。ま
た、第5図に示す実施例は、3連の連結部材8a、 8
b、 8cと2連リング9a、9bからなる複列のリン
ク機構をなすもので、内筒6のより大きな熱変形にも対
応が可能である。
Other embodiments of the present invention will be described below with reference to FIGS. 4 and 5. In the embodiment shown in FIG.
The fulcrums of a and 8b are arranged on the outer peripheral side of the hinges 7a and 7b provided on the inner cylinder 6 and the connecting shaft 2. Further, the embodiment shown in FIG. 5 has three connecting members 8a, 8
b, 8c and double rings 9a, 9b form a double-row link mechanism, and can cope with larger thermal deformation of the inner cylinder 6.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超電導巻線を浸漬する冷媒による内筒
の極低温度化に半う内筒の軸方向の熱変形を吸収しつつ
内筒の位置を保持するとともに、製造・組立の作業を容
易ならしめ、かつ大容量機にも適用が可能である。
According to the present invention, the temperature of the inner cylinder is brought to an extremely low temperature by the refrigerant in which the superconducting winding is immersed, the thermal deformation in the axial direction of the half-inner cylinder is absorbed, and the position of the inner cylinder is maintained, and the position of the inner cylinder is maintained during manufacturing and assembly work. This makes it easy to use and can be applied to large-capacity machines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超電導回転子の一実施例を示す縦断面
図、第2図は上記実施例の部分斜視図、第3図は上記実
施例の作用説明図、第4図および第5図はそれぞれ本発
明の他の実施例を示す縦断面図、第6図は従来の超電導
回転子を示す縦断面図である。 1.2・・・継ぎシャフト       3・・・外筒
4・・・ラジエーション・シールド 5・・・超電導巻
線6・・・内筒           7a 、7b 
、7c・・・ヒンジ8a 、8b 、8cm連結部材 
     9.9a、9b−リング10・・・フレキシ
ブル・サポート 第1図 第2図 第3図 第4図 第5図
FIG. 1 is a longitudinal sectional view showing one embodiment of the superconducting rotor of the present invention, FIG. 2 is a partial perspective view of the above embodiment, FIG. 3 is an explanatory diagram of the operation of the above embodiment, and FIGS. The figures are longitudinal sectional views showing other embodiments of the present invention, and FIG. 6 is a longitudinal sectional view showing a conventional superconducting rotor. 1.2... Joint shaft 3... Outer tube 4... Radiation shield 5... Superconducting winding 6... Inner tube 7a, 7b
, 7c... Hinge 8a, 8b, 8cm connection member
9.9a, 9b-ring 10...Flexible support Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 継ぎシャフトの端面と内筒の端面とをリンク機構によっ
て結合したことを特徴とする超電導回転子。
A superconducting rotor characterized in that an end face of a joint shaft and an end face of an inner cylinder are connected by a link mechanism.
JP61255803A 1986-10-29 1986-10-29 Superconducting rotor Pending JPS63110954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61255803A JPS63110954A (en) 1986-10-29 1986-10-29 Superconducting rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61255803A JPS63110954A (en) 1986-10-29 1986-10-29 Superconducting rotor

Publications (1)

Publication Number Publication Date
JPS63110954A true JPS63110954A (en) 1988-05-16

Family

ID=17283849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61255803A Pending JPS63110954A (en) 1986-10-29 1986-10-29 Superconducting rotor

Country Status (1)

Country Link
JP (1) JPS63110954A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2454008A (en) * 2007-10-25 2009-04-29 Converteam Ltd Mounting field coil structures in a rotor or a stator of a superconducting electrical machine
US20130002083A1 (en) * 2007-10-25 2013-01-03 Ge Energy Power Conversion Technology Ltd. Rotor or a stator for a superconducting electrical machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2454008A (en) * 2007-10-25 2009-04-29 Converteam Ltd Mounting field coil structures in a rotor or a stator of a superconducting electrical machine
US20100096942A1 (en) * 2007-10-25 2010-04-22 Joseph Eugene Rotor or a stator for a superconducting electrical machine
GB2454008B (en) * 2007-10-25 2012-05-02 Converteam Technology Ltd A rotor or a stator for a superconducting electrical machine
CN102723849A (en) * 2007-10-25 2012-10-10 科孚德机电技术有限公司 A rotor or a stator for a superconducting electrical machine
CN102723848A (en) * 2007-10-25 2012-10-10 科孚德机电技术有限公司 A rotor or a stator for a superconducting electrical machine
US20130002083A1 (en) * 2007-10-25 2013-01-03 Ge Energy Power Conversion Technology Ltd. Rotor or a stator for a superconducting electrical machine
US8692433B2 (en) 2007-10-25 2014-04-08 Ge Energy Power Conversion Technology Limited Rotor or a stator for a superconducting electrical machine

Similar Documents

Publication Publication Date Title
US4619156A (en) Harmonic gear apparatus
US3700290A (en) Flexure hinge assembly
US3742769A (en) Gyroscope
CN101517868A (en) Torque transmission assembly for superconducting rotating machines
JPS63110954A (en) Superconducting rotor
US20180216715A1 (en) Joint apparatus
US4291997A (en) Flexible support for superconducting machine rotor
JP2003004106A (en) Transmission adopting eccentric oscillation type internal engagement planetary gear structure
US4329602A (en) Superconducting rotor
JPS585583B2 (en) superconducting rotating machine
JPS60148370A (en) Rotor of superconductive rotary electric machine
JPS61231873A (en) Superconductive rotor
JPS5828920B2 (en) Rotating heat storage type heat exchange device
JPH03285559A (en) Rotor for superconducting rotary electric machine
JPH0628507B2 (en) Airtight coupling device for rotating machinery
JPH04105548A (en) Rotor of superconducting rotary electric apparatus
JPS604159Y2 (en) Support device for torus type fusion device
JP2577314Y2 (en) Brake drum of eddy current reduction device
JPH0756621Y2 (en) Spindle motor
JPH0747882Y2 (en) Cryogenic support device
JPS5936731Y2 (en) bearing outer ring
JPH0635660Y2 (en) Superconducting rotating electric machine rotor
JP2667063B2 (en) Superconducting rotating electric machine rotor
JPS5956841A (en) Superconductive rotor
JPH0249541Y2 (en)