JPS6311047B2 - - Google Patents

Info

Publication number
JPS6311047B2
JPS6311047B2 JP59122986A JP12298684A JPS6311047B2 JP S6311047 B2 JPS6311047 B2 JP S6311047B2 JP 59122986 A JP59122986 A JP 59122986A JP 12298684 A JP12298684 A JP 12298684A JP S6311047 B2 JPS6311047 B2 JP S6311047B2
Authority
JP
Japan
Prior art keywords
stirring
stirring element
tube
fluid
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59122986A
Other languages
Japanese (ja)
Other versions
JPS614523A (en
Inventor
Iwao Araki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Industry Machine Co Ltd
Original Assignee
Japan Industry Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Industry Machine Co Ltd filed Critical Japan Industry Machine Co Ltd
Priority to JP59122986A priority Critical patent/JPS614523A/en
Publication of JPS614523A publication Critical patent/JPS614523A/en
Publication of JPS6311047B2 publication Critical patent/JPS6311047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • F28F13/125Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation by stirring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Accessories For Mixers (AREA)

Description

【発明の詳細な説明】 a 産業上の利用分野 本発明は管内に撹拌のための撹拌エレメントを
有するものであつて気体,液体および粉粒体より
なる二種または三種が混在する流動体を、管路内
で流過させつつ混合するフローミキサに関する。
[Detailed Description of the Invention] a. Industrial Application Field The present invention is a device that has a stirring element for stirring inside a pipe, and is capable of handling a fluid containing a mixture of two or three types of gas, liquid, and granular material. This invention relates to a flow mixer that mixes while flowing in a pipe.

b 従来の技術 気体,液体および粉粒体よりなる二種または三
種が混在する流動体を混合する装置としては、容
器内に撹拌羽根等を配設したものが一般的であ
る。しかし、このような装置では流動体の撹拌が
バツチ方式であるため連続的な撹拌処理ができ
ず、また処理時間の経過にともなつて流動体の混
合むらを生じやすいので混合効率が良くなく、特
に液―気混合の場合において気体の無駄な消費量
が多いという欠点がある。さらに装置が大型化す
るためその製作費が高くつき、また広い設置スペ
ースを必要とするなどの欠点もある。
b. Prior Art As a device for mixing a fluid containing a mixture of two or three types of gas, liquid, and granular material, it is common to use a device in which stirring blades or the like are disposed within a container. However, in such a device, since the fluid is stirred in batches, continuous stirring processing is not possible, and the mixing efficiency is not good because the fluid tends to be mixed unevenly as the processing time passes. Particularly in the case of liquid-vapor mixture, there is a drawback that a large amount of gas is wasted. Furthermore, since the device is large, its manufacturing cost is high, and it also has drawbacks such as requiring a large installation space.

そこで、このような欠点を解消するためにフロ
ーミキサが開発されている。このフローミキサは
管路内に撹拌エレメントを配設したものであつ
て、流動体を管路内で流過させつつ上記撹拌エレ
メントによつて流動体の混合を行なうものであ
る。しかし、管路内を流れる流体速度は管路断面
各位置において一様でなく且撹拌エレメントは各
位置の撹拌効果を自由に調整できないので断面全
面にわたつてよい混合状態を維持できずフローミ
キサ全体としての撹拌効果が十分でない。
Therefore, a flow mixer has been developed to overcome these drawbacks. This flow mixer has a stirring element disposed in a pipe, and mixes the fluid by the stirring element while allowing the fluid to flow through the pipe. However, the velocity of the fluid flowing inside the pipe is not uniform at each position in the pipe cross section, and the stirring element cannot freely adjust the stirring effect at each position, so it is not possible to maintain a good mixing state over the entire cross section, and the entire flow mixer The stirring effect is not sufficient.

また従来のフローミキサは圧力損失が大きいた
めに圧送エネルギを大きくしなければならず、ま
た型式によつては撹拌エレメント相互間ならびに
管体との接触点が多く存在しこれら重なり部分の
存在のための低流速部分が発生しダスト並びに化
学反応生成物が付着しやすくなる。さらに、従来
のフローミキサは一般的に曲管に対する適用が困
難であり、またフローミキサの組立ないし分解が
容易でなく、製作費が比較的高くつくという問題
がある。
In addition, conventional flow mixers have a large pressure loss, so the pumping energy must be increased, and depending on the model, there are many contact points between the stirring elements and the pipe bodies, and the presence of these overlapping parts A low flow velocity portion occurs, making it easy for dust and chemical reaction products to adhere. Furthermore, conventional flow mixers are generally difficult to apply to curved pipes, are not easy to assemble or disassemble, and are relatively expensive to manufacture.

なお、第6図および第7図に示す如く管10内
に1本ないし複数本のコイル状の撹拌エレメント
11を螺旋状に配設したフローミキサ12,13
は公知である(実開昭58−91431号公報,実開昭
53−109178号公報)。
Note that, as shown in FIGS. 6 and 7, flow mixers 12 and 13 each have one or more coiled stirring elements 11 disposed in a spiral shape within a tube 10.
is publicly known (Japanese Utility Model Application Publication No. 58-91431,
53-109178).

しかし、これらフローミキサ12,13はいず
れも撹拌エレメント11を螺旋状に配設している
ので、流体の撹拌効果の点で問題がある。すなわ
ち、管10内の流体の速度分布は管10の中央部
で最大であり、管壁に近付くにつれて低速とな
る。このように半径方向に変化する速度分布に対
して最適な撹拌効果を得ようとすると、管中心軸
に対し直角方向の任意断面に対する構成材たるコ
イルエレメントの投影の単位面積中に占める割合
(実開昭58−109178号公報に関して充実比率と称
する)を管10の半径方向に変化させなければな
らない。
However, since both of these flow mixers 12 and 13 have stirring elements 11 arranged in a spiral shape, there is a problem in terms of the fluid stirring effect. That is, the velocity distribution of the fluid within the tube 10 is maximum at the center of the tube 10 and becomes slower as it approaches the tube wall. In order to obtain the optimal stirring effect for the velocity distribution that changes in the radial direction, it is necessary to calculate the ratio (actual (referred to as the filling ratio in connection with Japanese Patent Publication No. 58-109178) must be varied in the radial direction of the tube 10.

しかし、螺旋状に配設した混合エレメント11
ではそのピツチ等をいかに変えてみても前記充足
比率を半径方向に変化させることは不可能であ
り、このため従来のフローミキサ12,13は撹
拌効果の点で改良の余地があつた。
However, the mixing element 11 arranged in a spiral manner
No matter how much the pitch or the like is changed, it is impossible to change the sufficiency ratio in the radial direction, and therefore, there is room for improvement in the conventional flow mixers 12 and 13 in terms of the stirring effect.

c 発明の目的 本発明は上述した問題点を有効に解決すべく発
明するに至つたものであつて、その目的は混合効
率がよく、しかも圧力損失が少ないフローミキサ
を提供することにある。
c. Purpose of the Invention The present invention was developed to effectively solve the above-mentioned problems, and its purpose is to provide a flow mixer with good mixing efficiency and low pressure loss.

d 発明の構成 本発明の要旨は、気体,液体および粉粒体より
なる二種または三種が混在する流動体を、管体内
で流過させつつ混合するフローミキサにおいて、
上記管体内に、一本の線状材をコイル状に成形し
た一本の撹拌エレメントを配設するとともに、上
記撹拌エレメントの径を、その長手方向に沿つて
連続的に変化させて大径部と小径部を形成したこ
とを特徴とするフローミキサにある。
d. Structure of the Invention The gist of the present invention is to provide a flow mixer that mixes two or three types of fluids consisting of gas, liquid, and powder while flowing them through a tube.
A single stirring element made of a single wire material formed into a coil shape is disposed inside the tube, and the diameter of the stirring element is continuously changed along its longitudinal direction to form a large diameter portion. A flow mixer is characterized in that a small diameter portion is formed.

e 実施例 以下に本発明の実施例を図面に基づいて説明す
る。本発明に係るフローミキサ1は、第1図に示
す如く管体2と、この管体2内に配設された撹拌
エレメント3と、この撹拌エレメント3を管体2
に固定するための図示しない支持金具とで構成さ
れている。上記管体2は直管や曲管、あるいは可
撓性のホースまたはチーブなど種々のものを使用
することができ、その材質も金属やゴムなどを採
用可能である。また、撹拌エレメント3は金属製
や樹脂製等の線状材をコイル状に巻いて適度の弾
性をもたせたものであつて、その形状は第3図に
示すように撹拌エレメント3の曲率半径を各ピツ
チP毎に大から小へ、又小から大へと連続的に変
化させて円錐状としたものである。そして撹拌エ
レメント3の軸線が管体2の軸線と一致するよう
に配設されている形状が通常の形式であるが、曲
管の場合等必要により軸線を一致させない事もあ
る。なお撹拌エレメント3の最大半径Rは、撹拌
エレメント3を管体2内にスムーズに挿入できる
ように管体2の内径に対してわずかに小さくされ
ている。なお、撹拌エレメント3が必要とする全
ピツチ数はフローミキサ1の撹拌使用により決定
される。
e Examples Examples of the present invention will be described below based on the drawings. As shown in FIG. 1, the flow mixer 1 according to the present invention includes a pipe body 2, a stirring element 3 disposed inside the pipe body 2, and a stirring element 3 disposed inside the pipe body 2.
It is composed of a support fitting (not shown) for fixing to. The tubular body 2 may be made of various materials such as a straight pipe, a bent pipe, a flexible hose or a tube, and may be made of metal, rubber, or the like. The stirring element 3 is made by winding a wire material made of metal or resin into a coil to give it appropriate elasticity, and its shape has a radius of curvature of the stirring element 3 as shown in Fig. 3. Each pitch P is changed continuously from large to small and from small to large to form a conical shape. The axes of the stirring element 3 are normally arranged so as to coincide with the axis of the tube 2, but the axes may not be made to coincide if necessary, such as in the case of a curved tube. Note that the maximum radius R of the stirring element 3 is made slightly smaller than the inner diameter of the tube 2 so that the stirring element 3 can be smoothly inserted into the tube 2. The total number of pitches required by the stirring element 3 is determined by the use of the flow mixer 1 for stirring.

本型式の撹拌エレメント3は可撓性を有するた
め、直管,曲管,チユーブの何れにも使用するこ
とができる。撹拌エレメント3の端末は、図示し
ない固定金具により管体2のフランジ接合部等に
おいて支持されている。
Since this type of stirring element 3 has flexibility, it can be used in any of straight pipes, curved pipes, and tubes. The end of the stirring element 3 is supported at a flange joint portion of the tube body 2 by a fixture (not shown).

第1図の撹拌エレメント3の大径部4の断面A
―Aに対して小径部5を投影したものを第2図に
示す。同図から明らかなように、撹拌エレメント
3の構成材3aは撹拌エレメント3の1ピツチ
(撹拌エレメント3の構成材3aが大から小,小
から大へと変化するが、この大径構成材相互管の
長さをいう、以下同じ)間において、管体2内の
断面にくまなく分布しており、管体中心軸と垂直
な断面上に2分の1ピツチ間における撹拌エレメ
ントの構成材3aを投影した投影図において任意
の位置における単位面積中に占める構成材3aの
割合(以下充実比率と称する)は、その位置にお
ける撹拌エレメント3の曲率半径と、それに近い
曲率半径をもつた1巻の構成材3aの1ピツチ間
の存在数の大小により決定される。すなわち、大
から小へ、また小から大へと変化する撹拌エレメ
ント3の曲率半径の変化を小さくすれば、1ピツ
チ間のエレメント3の構成材3aのA―A断面に
おける充実比率は大となり、この反対に曲率半径
の変化を大とすればエレメント構成材3aの充実
比率は小となる。また、ある特定の曲率半径にお
いてその付近のみ曲率半径の変化を小とすれば、
その特定の曲率半径の構成材3aのA―A断面に
おける充実比率は大となる。また、管体2の断面
積に対する撹拌エレメント3の構成材3aの断面
積の割合を適当に選択することによつても撹拌強
度を調整することができる。なお、構成材3aの
断面形状は円形として図示したが、円形以外の異
形または角形としてもよい。
Cross section A of the large diameter portion 4 of the stirring element 3 in Fig. 1
- Fig. 2 shows a projection of the small diameter portion 5 with respect to A. As is clear from the figure, the constituent material 3a of the stirring element 3 changes from one pitch of the stirring element 3 (the constituent material 3a of the stirring element 3 changes from large to small and from small to large; The material 3a of the stirring element is distributed throughout the cross section of the tube body 2, and is located between half pitches on the cross section perpendicular to the center axis of the tube body. The proportion of the constituent material 3a in the unit area at any position in the projection diagram (hereinafter referred to as the solidity ratio) is the radius of curvature of the stirring element 3 at that position and the radius of curvature of one roll having a radius of curvature close to that of the stirring element 3 at that position. It is determined by the number of constituent members 3a existing in one pitch. In other words, if the change in the radius of curvature of the stirring element 3, which changes from large to small and from small to large, is made smaller, the filling ratio in the A-A cross section of the constituent material 3a of the element 3 between one pitch becomes larger, On the contrary, if the change in the radius of curvature is increased, the filling ratio of the element constituent material 3a will be decreased. Also, if the change in the radius of curvature is small only in the vicinity of a certain radius of curvature,
The solidity ratio in the AA cross section of the component 3a with that specific radius of curvature is large. Furthermore, the stirring intensity can also be adjusted by appropriately selecting the ratio of the cross-sectional area of the constituent material 3a of the stirring element 3 to the cross-sectional area of the tube body 2. In addition, although the cross-sectional shape of the component 3a is illustrated as circular, it may be a modified shape other than circular or square.

一基のフローミキサ1を構成する撹拌エレメン
ト3が一本の連続した素材である必要はないこと
はいうまでもなく、熔接,スリーブその他の手段
により接続しても差支えない。また必要によりあ
るピツチ数で構成される撹拌エレメント3を複数
個直列に配置する場合もある。また1ピツチ間の
曲率半径の増減も、大から小,小から大へと単調
に変化するものに限るものではなく、例えば大か
ら小,小から中,中から小,小から大へと変化さ
せても差支えない。
Needless to say, the stirring elements 3 constituting one flow mixer 1 do not need to be made of one continuous material, and may be connected by welding, sleeves, or other means. Furthermore, if necessary, a plurality of stirring elements 3 having a certain number of pitches may be arranged in series. Furthermore, the increase or decrease in the radius of curvature between one pitch is not limited to monotonous changes from large to small and small to large, but for example, changes from large to small, small to medium, medium to small, and small to large. There is no harm in letting it happen.

本発明のフローミキサ1は既述のような構造を
有するものであり、第2図に示すような流体断面
全域において、各部分でそれぞれ最適な撹拌作用
を生ずるよう撹拌エレメント3が全断面にくまな
く構成配置されているので、フローミキサ1を通
過する被混合流動体は、撹拌エレメント3によつ
て強制的に渦流,乱流を生じ、短区間で強力かつ
効率のよい混合撹拌作用を受ける。その混合効果
を第4図に図示する。同図において/////印
は混合密度を示すものであつて、被混合流動体が
進行するにつれて順次撹拌混合され、やがて全断
面にわたり満足すべき混合状態となることが示さ
れている。
The flow mixer 1 of the present invention has the structure as described above, and the stirring element 3 covers the entire cross section of the fluid so as to produce an optimal stirring action in each part of the entire fluid cross section as shown in FIG. Since the fluids to be mixed passing through the flow mixer 1 are forcibly turned into vortices and turbulence by the stirring element 3, they are subjected to a strong and efficient mixing and stirring action in a short period of time. The mixing effect is illustrated in FIG. In the figure, the symbol ///// indicates the mixing density, and indicates that as the fluid to be mixed progresses, it is sequentially stirred and mixed, and eventually a satisfactory mixing state is reached over the entire cross section.

次に本発明を熱交換器に応用した実施例を図面
に基づいて説明する。
Next, an embodiment in which the present invention is applied to a heat exchanger will be described based on the drawings.

第5図はU字管形多管円筒式熱交換器に用いら
れた実施例で、伝熱管となる管体2,管板6,シ
エル7,被加熱(又は冷却)流体入口8,同出口
9,隔壁10,加熱(又は冷却)流体入口11,
同出口12,伝熱管となる管体2に挿入された撹
拌エレメント3,じやま板14,支持金物15と
で構成されている。
Fig. 5 shows an embodiment used in a U-shaped multi-tube cylindrical heat exchanger, which includes a tube body 2 serving as a heat transfer tube, a tube plate 6, a shell 7, a heated (or cooled) fluid inlet 8, and an outlet thereof. 9, partition wall 10, heating (or cooling) fluid inlet 11,
It is composed of the outlet 12, a stirring element 3 inserted into a tube body 2 serving as a heat transfer tube, a baffle plate 14, and a support metal fitting 15.

被加熱流体(以下冷却の付記省略)は入口8よ
り流入し管体2内を通り出口9より流出する。加
熱流体は入口11より流入し出口12より流出す
る。管体2は溶接又は拡管工法等により管板6に
固定されており、管板6は又加熱流体と被加熱流
体とを隔離する。隔壁10は伝熱管である管体2
の温度の異なる入口流体,出口流体を隔離するも
ので、じやま板14は加熱流体の通過経路のジグ
ザグとするとともに管体2を支持する。撹拌エレ
メント3は図示のように管体2に挿入され管端部
において支持金物15により支持されている。
The fluid to be heated (cooling will not be described hereinafter) flows in through the inlet 8, passes through the pipe body 2, and flows out through the outlet 9. The heating fluid flows in through the inlet 11 and flows out through the outlet 12. The tube body 2 is fixed to a tube sheet 6 by welding or a tube expansion method, and the tube sheet 6 also separates the heating fluid and the fluid to be heated. The partition wall 10 is a tube body 2 which is a heat transfer tube.
The baffle plate 14 provides a zigzag path for the heating fluid to pass through and supports the tube body 2. As shown, the stirring element 3 is inserted into the tube body 2 and supported by a support metal fitting 15 at the tube end.

本発明の熱交換器は、管内を被加熱流体が流れ
ると撹拌エレメント3により管内内壁付近及びそ
の他の部分も共に撹拌作用を受け、内壁付近にお
いては発生した渦流により局部流速が増加して管
内壁の熱伝達率が増加するとともに、中央部分に
おいても撹拌作用による被加熱流体の熱移動が速
やかとなり、これらの作用により熱通過率が向上
する。撹拌エレメント3の形状は以上の作用に適
する様決定される。
In the heat exchanger of the present invention, when the fluid to be heated flows in the pipe, the stirring element 3 applies a stirring action to both the inner wall of the pipe and other parts, and the local flow velocity increases due to the vortex generated near the inner wall, and the inner wall of the pipe increases. The heat transfer coefficient increases, and the heat transfer of the heated fluid due to the stirring action also becomes rapid in the central portion, and these actions improve the heat transfer rate. The shape of the stirring element 3 is determined to be suitable for the above-mentioned functions.

上記熱交換器によれば次のような効果が得られ
る。
According to the above heat exchanger, the following effects can be obtained.

(1) コイル形状の撹拌エレメントを伝熱管中に挿
入する事により熱通過率を向上させる事ができ
るので低価格で伝熱効果の大きい熱交換器か、
或はコンパクトな形状の熱交換器が得られる。
(1) By inserting a coil-shaped stirring element into the heat transfer tube, the heat transfer rate can be improved, making it a low-cost heat exchanger with a large heat transfer effect.
Alternatively, a compact heat exchanger can be obtained.

(2) 既設の管形式熱交換器を殆ど手直しを要する
事なく能力を向上する事ができる。
(2) Capacity of existing tube heat exchangers can be improved with almost no modification required.

(3) 曲管を伝熱管としたコイル形熱交換器にも応
用できる。
(3) It can also be applied to coil-type heat exchangers that use curved pipes as heat transfer tubes.

(4) 分解清掃が簡単である。(4) Easy to disassemble and clean.

(5) 管路抵抗の増加はわずかであり、かつ大い伝
熱効果が得られる。
(5) The increase in pipe resistance is small and a great heat transfer effect can be obtained.

f 発明の効果 本発明のフローミキサの効果を列挙すると、 (1) 混合効率がよく、短距離流路内で大きな混合
効果が得られ、混合むらが少ない。
f. Effects of the Invention The effects of the flow mixer of the present invention are listed as follows: (1) Good mixing efficiency, large mixing effect can be obtained within a short distance flow path, and there is little mixing unevenness.

(2) 撹拌エレメントの重なりがないため圧力損失
が少なく、混合物質、特に化学反応を伴う場合
の反応生成物の混合エレメントに対する付着が
少なく、つまりによる圧力の損失の増加,混合
能力の低下が小さい。
(2) There is little pressure loss because the stirring elements do not overlap, and there is little adhesion of mixed substances, especially reaction products when chemical reactions are involved, to the mixing elements, so there is little increase in pressure loss or decrease in mixing capacity due to clogging. .

(3) 管体として直管の他に曲管や可撓性のホース
等を使用でき、また管体の材質も金属,ゴム,
ビニール等あらゆるものを利用でき、さらにそ
の構成は管体と撹拌エレメントからなり、管体
内に於る撹拌エレメントの配置場所は何の制約
もなく特殊な付属品も必要とせず、構造が極め
て簡単であるため製作費も安く、その組立,分
解や据付,保守が極めて容易である。
(3) In addition to straight pipes, curved pipes and flexible hoses can be used as the pipe body, and the material of the pipe body may be metal, rubber, etc.
Any material such as vinyl can be used, and its structure consists of a tube body and a stirring element, and there are no restrictions on the location of the stirring element within the tube, and no special accessories are required, making the structure extremely simple. Therefore, the manufacturing cost is low, and assembly, disassembly, installation, and maintenance are extremely easy.

(4) 前項に述べた特徴のため、装置間の一般管路
(直管のみならず曲管も同様)をフローミキサ
の管体として利用できるので、混合装置として
の設置スペースや設置費等を省略することがで
きる。
(4) Due to the features mentioned in the previous section, the general pipe line between devices (not only straight pipes but also curved pipes) can be used as the pipe body of the flow mixer, reducing installation space and installation costs for the mixing device. Can be omitted.

(5) 一般流体輸送管内に撹拌エレメントを配設
し、輸送過程で輸送管自体をフローミキサとし
て使用することができる。
(5) By installing a stirring element inside the general fluid transport pipe, the transport pipe itself can be used as a flow mixer during the transport process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は本発明の実施例を示したもの
であつて、第1図はフローミキサの縦断面図、第
2図は第1図のA―A線断面図に対する撹拌エレ
メントの投影図、第3図はフローミキサの拡大縦
断面図、第4図は流動体の撹拌状態を説明するた
めの説明図、第5図は熱交換器の縦断面図であ
る。また第6図および第7図は従来のフローミキ
サの縦断面図である。 1…フローミキサ、2…管体、3…撹拌エレメ
ント、4…撹拌エレメントの大径部、5…撹拌エ
レメントの小径部。
1 to 5 show examples of the present invention, in which FIG. 1 is a longitudinal cross-sectional view of a flow mixer, and FIG. 2 is a cross-sectional view of a stirring element taken along line A--A in FIG. 3 is an enlarged vertical cross-sectional view of the flow mixer, FIG. 4 is an explanatory view for explaining the stirring state of the fluid, and FIG. 5 is a vertical cross-sectional view of the heat exchanger. Further, FIGS. 6 and 7 are vertical cross-sectional views of a conventional flow mixer. DESCRIPTION OF SYMBOLS 1... Flow mixer, 2... Pipe body, 3... Stirring element, 4... Large diameter part of stirring element, 5... Small diameter part of stirring element.

Claims (1)

【特許請求の範囲】[Claims] 1 気体,液体および粉粒体よりなる二種または
三種が混在する流動体を、管体内で流過させつつ
混合するフローミキサにおいて、上記管体内に、
一本の線状材をコイル状に成形した一本の撹拌エ
レメントを配設するとともに、上記撹拌エレメン
トの径を、その長手方向に沿つて連続的に変化さ
せて大径部と小径部を形成したことを特徴とする
フローミキサ。
1. In a flow mixer that mixes a mixture of two or three types of fluids consisting of gas, liquid, and powder or granules while flowing through a tube, the tube contains:
A single stirring element made of a single wire material formed into a coil shape is provided, and the diameter of the stirring element is continuously changed along its longitudinal direction to form a large diameter part and a small diameter part. A flow mixer that is characterized by:
JP59122986A 1984-06-15 1984-06-15 Flow mixer and heat exchanger Granted JPS614523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59122986A JPS614523A (en) 1984-06-15 1984-06-15 Flow mixer and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59122986A JPS614523A (en) 1984-06-15 1984-06-15 Flow mixer and heat exchanger

Publications (2)

Publication Number Publication Date
JPS614523A JPS614523A (en) 1986-01-10
JPS6311047B2 true JPS6311047B2 (en) 1988-03-11

Family

ID=14849461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59122986A Granted JPS614523A (en) 1984-06-15 1984-06-15 Flow mixer and heat exchanger

Country Status (1)

Country Link
JP (1) JPS614523A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949659A (en) * 2010-08-08 2011-01-19 姚光纯 High-efficiency U-shaped heat exchanger
JP2016087094A (en) * 2014-11-05 2016-05-23 株式会社トキワ container

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704452B1 (en) * 1993-04-30 1995-07-28 Electricite De France FLUID MIXER DEVICE AND HEAT EXCHANGER COMPRISING SUCH A DEVICE.
KR100752635B1 (en) 2006-05-02 2007-08-29 삼성광주전자 주식회사 Heat exchanger for refrigerator
RU2495347C1 (en) * 2012-05-03 2013-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" Method of heat pickup from surface of fuel elements
MX352340B (en) * 2013-08-20 2017-11-06 Petrobalance S A De C V System for mixing chemical products for improving the flow in transport systems by a heavy and/or extra heavy oil duct.
CN107606986A (en) * 2016-07-11 2018-01-19 珠海格力电器股份有限公司 A kind of flow-disturbing heat exchanger tube and heat exchanger
JPWO2020194426A1 (en) * 2019-03-25 2021-10-14 三菱電機株式会社 Heat pump device equipped with water refrigerant heat exchanger and water refrigerant heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551538Y2 (en) * 1977-02-09 1980-12-01
JPS5928661Y2 (en) * 1981-12-17 1984-08-18 日鉱エンジニアリング株式会社 fluid mixing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949659A (en) * 2010-08-08 2011-01-19 姚光纯 High-efficiency U-shaped heat exchanger
JP2016087094A (en) * 2014-11-05 2016-05-23 株式会社トキワ container

Also Published As

Publication number Publication date
JPS614523A (en) 1986-01-10

Similar Documents

Publication Publication Date Title
JPH01500685A (en) Counterflow heat exchanger with spiral tube bundle
JPS6311047B2 (en)
EP0412177B1 (en) Static mixing device
JP2003106795A (en) Commutation device
CN103063060B (en) Novel casing type heat exchanger
KR19990044763A (en) Liquid spray device and liquid spray method
US20230011329A1 (en) Flow reactor
JP2021105507A (en) Flow reactor
JPH07310998A (en) Heat exchanger
AU626663B2 (en) Reactor vessel
JPH0961071A (en) Heat exchanger
CN114225858A (en) Casing structure micro-reactor and application thereof
CN211463116U (en) Premixing device and tubular micro-reactor with same
JP7431725B2 (en) Improved mixer for flow systems
CN209530880U (en) A kind of multi-thread sequentially reaction system
CN2655156Y (en) Screw baffle pipe case type heat exchanger
CN109482129A (en) A kind of multi-thread sequentially reaction system
US4938281A (en) Heat exchanger with mechanical turbulator
JP3389068B2 (en) Flow resistance element
JPS603157B2 (en) Heat exchanger
CN218742005U (en) Tubular continuous flow reactor
JPH08206480A (en) Static mixer device
JPH0620884Y2 (en) High viscosity fluid transport pipe
CN215086715U (en) Static mixer
JPS5928661Y2 (en) fluid mixing device