JPS63110389A - Gas type hydraulic impact tool - Google Patents

Gas type hydraulic impact tool

Info

Publication number
JPS63110389A
JPS63110389A JP25618686A JP25618686A JPS63110389A JP S63110389 A JPS63110389 A JP S63110389A JP 25618686 A JP25618686 A JP 25618686A JP 25618686 A JP25618686 A JP 25618686A JP S63110389 A JPS63110389 A JP S63110389A
Authority
JP
Japan
Prior art keywords
gas
pressure
port
chamber
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25618686A
Other languages
Japanese (ja)
Inventor
安森 敏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP25618686A priority Critical patent/JPS63110389A/en
Publication of JPS63110389A publication Critical patent/JPS63110389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Earth Drilling (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガス式油圧打撃工具に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a gas-powered hydraulic impact tool.

(従来の技術) 打撃工具の一例として、シリンダ本体内に油圧により前
後動するピストンを設けるとともに、ピストンの後方に
圧縮ガスを封入したガス室を設け、ピストン後退時に圧
縮される上記圧縮ガスの反発力を利用してピストンの前
進を付勢し、チゼル等の工具体を打撃するようにしたガ
ス式油圧打撃工具は一般に知られている。例えば、特公
昭49−29801号公報には、かかるガス式油圧打撃
工具において、ピストン後退時にシリンダ本体へ供給さ
れた油を急速排出してピストンの前進速度を高めるにあ
たり、油の排出する速度が余り速くならないようにして
排出管路のキャビテーションを防止する技術についての
記載がある。
(Prior art) As an example of a striking tool, a piston that moves back and forth by hydraulic pressure is provided in the cylinder body, and a gas chamber filled with compressed gas is provided behind the piston, so that the repulsion of the compressed gas compressed when the piston retreats is provided. 2. Description of the Related Art Gas-type hydraulic impact tools are generally known that use force to urge a piston to move forward and strike a tool body such as a chisel. For example, Japanese Patent Publication No. 49-29801 discloses that in such a gas-type hydraulic impact tool, when the piston retreats, the oil supplied to the cylinder body is rapidly discharged to increase the forward speed of the piston. There is a description of a technique for preventing cavitation in the discharge pipe by preventing it from accelerating.

(J?!明が解決しようとする間屈点)上記ガス式油圧
打撃工具においては、ガス室の圧縮ガスは工具体の打撃
に適した設定圧力で封入されているが、外気温の変化に
より圧縮ガスが膨張、収縮するためガス室における封入
圧力が変化して打撃力が変わったり、あるいは作動不良
を招く問題がある。
(J?! Akira is trying to solve the problem) In the gas-powered hydraulic impact tool mentioned above, the compressed gas in the gas chamber is sealed at a set pressure suitable for impacting the tool body, but due to changes in the outside temperature, As the compressed gas expands and contracts, the sealing pressure in the gas chamber changes, causing problems such as changing the impact force or causing malfunction.

(問題点を解決するための手段) 本発明は、上記問題点を解決する手段として、シリンダ
本体にガス室と連通ずる第1ポートと、大気開放用の第
2ポートと、ガス室からの圧縮ガスよりも高圧のガスが
供給される第3ポートとを備えた弁室を形成し、この弁
室に第1ポートからの圧縮ガスの圧力を一端部に受ける
弁部材と、この弁部材を上記圧縮ガスの受圧力向と反対
方向へ付勢する付勢手段とを設け、弁部材の受圧方向へ
の移動により上記第1と第2のポートを連通し、その反
対方向への移動により上記第1と第3のポートを連通ず
るようにしたガス式油圧打撃工具を提供するものである
(Means for Solving the Problems) As a means for solving the above-mentioned problems, the present invention provides a cylinder body with a first port communicating with the gas chamber, a second port for opening to the atmosphere, and a compression port from the gas chamber. A valve chamber is formed with a third port to which gas having a higher pressure than the gas is supplied, and the valve chamber includes a valve member that receives the pressure of the compressed gas from the first port at one end, and this valve member as described above. A biasing means for biasing the compressed gas in a direction opposite to the pressure receiving direction is provided, and the movement of the valve member in the pressure receiving direction connects the first and second ports, and the movement in the opposite direction causes the first and second ports to communicate with each other. The present invention provides a gas-type hydraulic impact tool in which the first and third ports are communicated with each other.

(作用) 上記ガス式油圧打撃工具の場合、弁部材はガス室の圧力
が低下してくると、付勢手段の付勢により受圧方向とは
反対方向へ移動し、第1と第3のポートが連通して高圧
のガスが第3ポートから第1ポートを経てガス室に供給
される。このガス室の圧力上昇に伴って弁部材はガス室
側からの圧力と付勢手段の付勢力とがつり合う位置まで
上記受圧方向へ移動し、上記第1ポートと第3ポートと
の連通が断たれる。一方、ガス室の圧力が高くなると、
弁部材が受圧力向へ移動して第1と第2のポートが連通
し、ガス室の圧縮ガスが第1ポート、第2ポートを経て
排出され、ガス室の圧力低下に伴って弁部材が受圧力向
の反対方向へ移動し、第1と第2のポートの連通が断た
れる。つまり、ガス室は、その圧力の高低に伴う弁部材
の移動により圧縮ガスを排出しあるいは高圧ガスの供給
を受けて、付勢手段の付勢力に対応する圧力に保持され
ることになる。
(Function) In the case of the above-mentioned gas-type hydraulic impact tool, when the pressure in the gas chamber decreases, the valve member moves in the opposite direction to the pressure receiving direction due to the urging of the urging means, and the valve member moves in the opposite direction to the pressure receiving direction, and the valve member moves in the opposite direction to the pressure receiving direction. are in communication, and high pressure gas is supplied from the third port to the gas chamber via the first port. As the pressure in the gas chamber increases, the valve member moves in the pressure receiving direction to a position where the pressure from the gas chamber side and the urging force of the urging means are balanced, and communication between the first port and the third port is cut off. dripping On the other hand, when the pressure in the gas chamber increases,
The valve member moves in the receiving pressure direction, the first and second ports communicate with each other, the compressed gas in the gas chamber is discharged through the first port and the second port, and as the pressure in the gas chamber decreases, the valve member It moves in the direction opposite to the receiving pressure direction, and communication between the first and second ports is cut off. In other words, the gas chamber is maintained at a pressure corresponding to the biasing force of the biasing means by discharging compressed gas or receiving supply of high-pressure gas by the movement of the valve member as the pressure increases or decreases.

(発明の効果) 従って、本発明によれば、温度の高低により圧縮ガスの
膨張、収縮があっても、ガス室は付勢手段の付勢力に対
応する圧力に保持されるため、工具体に対し常に一定の
打撃力を与えることができ、ガス式油圧打撃工具の信頼
性の向上が図れる。
(Effects of the Invention) Therefore, according to the present invention, even if the compressed gas expands or contracts due to temperature changes, the gas chamber is maintained at a pressure corresponding to the biasing force of the biasing means, so that the tool body A constant impact force can always be applied to the impact tool, and the reliability of the gas hydraulic impact tool can be improved.

(実施例) 以下5本発明の実施例を図面に基いて説明する。(Example) Hereinafter, five embodiments of the present invention will be explained based on the drawings.

第1図に示すガス式油圧打撃工具において、1はさく岩
機のチゼル(工具体)2の後端を打撃するピストンであ
り、シリンダ本体3の内に前後動可能に設けられ、該シ
リンダ本体3内に前室4と後室5が形成されているとと
もに、ピストンlの後方に圧縮ガスを封入したガス室6
が上記後室5と連通しないように形成されている。
In the gas-type hydraulic impact tool shown in FIG. 1, 1 is a piston that impacts the rear end of a chisel (tool body) 2 of a rock drill, and is provided in a cylinder body 3 so as to be movable back and forth. A front chamber 4 and a rear chamber 5 are formed inside the piston 3, and a gas chamber 6 filled with compressed gas is provided behind the piston l.
is formed so as not to communicate with the rear chamber 5.

上記前室4と後室5は、第1および第2の作動油供給通
路7,8を介して作動油供給ポート9に接続されていて
、第1作動油供給通路7にはアキュムレータ10が介設
され、第2作動油供給通路8にはバルブ11が介設され
、また、上記ガス室6には弁手段12が付設されている
The front chamber 4 and the rear chamber 5 are connected to a hydraulic oil supply port 9 via first and second hydraulic oil supply passages 7 and 8, and an accumulator 10 is interposed in the first hydraulic oil supply passage 7. A valve 11 is interposed in the second hydraulic oil supply passage 8, and a valve means 12 is provided in the gas chamber 6.

アキュムレータ10は、上記ガス室6の圧縮ガスよりも
高圧のガスを封入した高圧ガス室10aと油圧室tab
とをプラダ10cで仕切ったもので、油圧室10bが細
孔13を介して上記後室5に連通している。バルブ11
は、その前端に作動油供給ポート9の圧力を受け、後端
には前室4の圧力をピストンlの凹部1a、バルブ切替
通路14、バルブ切替室15を介して受けて前後動し、
第2作動油供給通路8を開閉するようになっている。上
記ピストン1の凹部1aはピストン1が前進位置から所
定距離後退したとき、作動油リターン通路16を介して
作動油リターンポート17に連通ずるようになっている
The accumulator 10 includes a high-pressure gas chamber 10a filled with gas having a higher pressure than the compressed gas in the gas chamber 6, and a hydraulic chamber tab.
The hydraulic chamber 10b is in communication with the rear chamber 5 through a pore 13. Valve 11
receives the pressure of the hydraulic oil supply port 9 at its front end, receives the pressure of the front chamber 4 at its rear end via the recess 1a of the piston l, the valve switching passage 14, and the valve switching chamber 15, and moves back and forth,
The second hydraulic oil supply passage 8 is opened and closed. The recess 1a of the piston 1 communicates with a hydraulic oil return port 17 via a hydraulic oil return passage 16 when the piston 1 is moved back a predetermined distance from the forward position.

しかして、上記弁手段12は、第2図に示すように、シ
リンダ本体3に形成された弁室20と、この弁室20に
介装された弁部材21および付勢手段(スプリング)2
2を備える。弁室20は上記ガス室6に連通路23を介
して通じる第1ポート24と、大気開放通路25に通じ
る第2ポート26と、高圧ガス室10aにガス供給通路
27を介して通じる第3ポート28とを備える。弁部材
21は、一端に第1ポート24からの圧縮ガスの圧力を
受ける受圧面21aを有し、他端に前記受圧力向Pとは
反対の方向へ付勢手段22による付勢力を受けるように
なっていて、受圧力向Pにおいて進退可能になっている
As shown in FIG. 2, the valve means 12 includes a valve chamber 20 formed in the cylinder body 3, a valve member 21 interposed in the valve chamber 20, and a biasing means (spring) 2.
2. The valve chamber 20 has a first port 24 communicating with the gas chamber 6 via a communication passage 23, a second port 26 communicating with an atmosphere opening passage 25, and a third port communicating with the high pressure gas chamber 10a via a gas supply passage 27. 28. The valve member 21 has a pressure receiving surface 21a at one end that receives the pressure of the compressed gas from the first port 24, and has a pressure receiving surface 21a at the other end that receives a biasing force from the biasing means 22 in a direction opposite to the receiving pressure direction P. , and can move forward and backward in the receiving force direction P.

そして、弁室20の壁面と弁部材21との間には、上記
受圧力向Pへの弁部材21の移動により上記第1ポート
24と第2ポート26とを連通ずる排気通路29が形成
され、また、弁部材21には上記受圧力向Pとは反対方
向への弁部材21の移動により上記第1ポート24と第
3ポート28とを連通する給気通路30が形成されてい
る6次に上記ガス式油圧打撃工具の作動を説明する。
An exhaust passage 29 is formed between the wall surface of the valve chamber 20 and the valve member 21, which communicates the first port 24 and the second port 26 by moving the valve member 21 in the receiving pressure direction P. In addition, an air supply passage 30 is formed in the valve member 21 by moving the valve member 21 in a direction opposite to the receiving pressure direction P. The operation of the gas-type hydraulic impact tool will be explained below.

まず、ピストン1の作動について説明すれば。First, the operation of the piston 1 will be explained.

ピストン1は図示の前進位置にあるとき、作動油供給ポ
ート9から第1作動油供給通路7、前室4を介してアキ
ュムレータ10の封入ガス圧に略等しい油圧を凹部1a
に受けて後退を開始する。ピストン1が所定距離後退し
て凹部1aが作動油リターン通路16に連通ずると、バ
ルブ11は凹部1aからバルブ切替通路14、バルブ切
替室15を介して作用する圧力が小さくなるので後退(
左方向へ移動)シ、第2作動油供給通路8が開となり、
ピストンlは前進してチゼル2を叩くとともに、凹部1
aが作動油リターン通路16と連通しなくなるから、バ
ルブ切替室15に作動油の圧力が作用し、バルブ11が
閉じてピストン1は再び後退することになる。また、ピ
ストン1はその後退によりガス室6の圧縮ガスを圧縮す
るから、前進の際に圧縮ガスの反発力を受けてその前進
力が付勢される。
When the piston 1 is in the forward position shown, a hydraulic pressure approximately equal to the pressure of the gas sealed in the accumulator 10 is applied from the hydraulic oil supply port 9 through the first hydraulic oil supply passage 7 and the front chamber 4 to the recess 1a.
In response to this, they began to retreat. When the piston 1 retreats a predetermined distance and the recess 1a communicates with the hydraulic oil return passage 16, the valve 11 moves back (
(moved to the left), the second hydraulic oil supply passage 8 is opened,
The piston l moves forward and hits the chisel 2, and at the same time hits the recess 1
Since the port a is no longer in communication with the hydraulic oil return passage 16, the pressure of the hydraulic oil acts on the valve switching chamber 15, the valve 11 closes, and the piston 1 moves backward again. Moreover, since the piston 1 compresses the compressed gas in the gas chamber 6 by retracting, the forward force is energized by the repulsive force of the compressed gas when the piston 1 moves forward.

しかして、上記弁手段12の作動について説明するに、
ガス室6の圧力がピストン1の作動に適切な状態にある
ときは、弁部材21が第2ポート26および第3ポート
28を閉じた状態で第1ポート24側のガス圧力と付勢
手段22の付勢力とがつり合う。この場合、上記ガス圧
力はピストン1が前進しているときはガス室6の容積が
大きいから低い値Po  (圧縮ガス封入時の圧力)で
あり、ピストン1が後退しているときはガス室6の容積
が小さくなり圧縮ガスが圧縮されているから高い値Pm
axであり、このガス圧力の変動により、弁部材21は
その受圧面21aが第2図に示すA位置と第3図に示す
B位置の間で摺動する。つまり、付勢手段22は弁部材
21の受圧方向Pへの移動距離に比例した付勢力を弁部
材21に与えるから、ガス圧力PoではA位置で、また
ガス圧力P waxではB位置でこのガス圧力と上記付
勢力がつり合う。
Therefore, to explain the operation of the valve means 12,
When the pressure in the gas chamber 6 is in a state appropriate for the operation of the piston 1, the valve member 21 closes the second port 26 and the third port 28, and the gas pressure on the first port 24 side and the urging means 22 The biasing force of is balanced. In this case, the gas pressure is a low value Po (pressure when compressed gas is filled) when the piston 1 is moving forward because the volume of the gas chamber 6 is large, and when the piston 1 is moving backward, the gas pressure is a low value Po (pressure when compressed gas is filled in). Since the volume of is small and the compressed gas is compressed, the value Pm is high.
ax, and due to this change in gas pressure, the pressure receiving surface 21a of the valve member 21 slides between the A position shown in FIG. 2 and the B position shown in FIG. 3. In other words, since the biasing means 22 applies a biasing force to the valve member 21 that is proportional to the moving distance of the valve member 21 in the pressure receiving direction P, the gas The pressure and the above biasing force are balanced.

そうして、外気温が低くシリンダ本体3が冷えてガス室
6の圧縮ガスが収縮したり、ガス洩れがあって、上記ガ
ス圧力がPOよりも小さくなると。
Then, if the outside temperature is low and the cylinder body 3 gets cold, the compressed gas in the gas chamber 6 contracts, or if there is a gas leak and the gas pressure becomes lower than PO.

第4図に示すように弁部材21は付勢手段22の付勢に
より受圧力向Pとは反対方向へ移動し、第1ポート24
と第3ポート28とが給気通路30を介して連通ずる。
As shown in FIG. 4, the valve member 21 moves in the direction opposite to the receiving pressure direction P by the urging of the urging means 22, and the first port 24
and the third port 28 communicate with each other via an air supply passage 30.

これにより、アキュムレータ10の高圧ガス室10aか
らのガスがガス室6に供給され、このガス室6の圧力上
昇に伴って弁部材21は第3ポート28を閉じる位置ま
で受圧方向Pの反対方向へ移動する。そして、ピストン
1の前後動に伴って弁部材21が進退し第3ポート28
の開閉があって高圧ガスが供給されることにより、ガス
室6は最終的にはピストン1の作動に適切な圧力に戻る
As a result, gas from the high pressure gas chamber 10a of the accumulator 10 is supplied to the gas chamber 6, and as the pressure in the gas chamber 6 increases, the valve member 21 moves in the opposite direction of the pressure receiving direction P to the position where the third port 28 is closed. Moving. Then, as the piston 1 moves back and forth, the valve member 21 moves back and forth, and the third port 28
By opening and closing the gas chamber 6 and supplying high-pressure gas, the gas chamber 6 eventually returns to a pressure appropriate for the operation of the piston 1.

一方、外気温が高い場合やピストン1の進退によりシリ
ンダ本体3が高温になり、ガス室6の圧縮ガスが膨張し
て上記ガス圧力がPmaxを越えると、第5図に示すよ
うに弁部材21は受圧方向Pへ移動し第1ポート24と
第2ポート26が排気通路29を介して連通ずる。これ
により、ガス室6の圧縮ガスが大気開放通路25を介し
て放出され、ガス室6の圧力降下に伴って弁部材21が
第2ポート26を閉じ、ガス室6はピストン1の作動に
適切な圧力に戻ることになる。
On the other hand, if the outside temperature is high or the cylinder body 3 becomes hot due to the movement of the piston 1, and the compressed gas in the gas chamber 6 expands and the gas pressure exceeds Pmax, the valve member 2 moves in the pressure receiving direction P, and the first port 24 and the second port 26 communicate with each other via the exhaust passage 29. As a result, the compressed gas in the gas chamber 6 is released through the atmosphere opening passage 25, and as the pressure in the gas chamber 6 decreases, the valve member 21 closes the second port 26, and the gas chamber 6 becomes suitable for the operation of the piston 1. This will lead to a return to pressure.

従って、上記ガス室6は常に適切な圧力に保たれ、ピス
トンlの打撃力の変動や作動不良はなくなる。
Therefore, the gas chamber 6 is always maintained at an appropriate pressure, and fluctuations in the striking force of the piston 1 and malfunctions are eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図はガス式油圧打撃
工具の縦断面図、第2図乃至第5図は弁手段の作動の態
様をそれぞれ示す縦断面図である。 ■・・・・・・ピストン、2・・・・・・チゼル(工具
体)、3・・・・・・シリンダ本体、6・・・・・・ガ
ス室、loa・・・・・・高圧ガス室、12・・・・・
・弁手段、20・・・・・・弁室、21・−・・・・弁
部材、21a・・・・・・受圧面、22・・・・・・付
勢手段。 23・・・・・・連通路、24・・・・・・第1ポート
、25・・・・・・大気開放通路、26・・・・・・第
2ポート、27・・・・・・ガス供給通路、28・・・
・・・第3ポート、29・・・・・・排気通路、30・
・・・・・給気通路。 第4■ 第5図
The drawings show an embodiment of the present invention, and FIG. 1 is a longitudinal sectional view of a gas-type hydraulic impact tool, and FIGS. 2 to 5 are longitudinal sectional views showing the mode of operation of the valve means. ■... Piston, 2... Chisel (tool body), 3... Cylinder body, 6... Gas chamber, loa... High pressure Gas chamber, 12...
- Valve means, 20... valve chamber, 21... valve member, 21a... pressure receiving surface, 22... biasing means. 23... Communication passage, 24... First port, 25... Atmospheric release passage, 26... Second port, 27... Gas supply passage, 28...
...Third port, 29...Exhaust passage, 30.
...Air supply passage. 4■ Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)シリンダ本体内に油圧により前後動するピストン
と、このピストンの後退により圧縮される圧縮ガスを封
入したガス室とを備え、圧縮ガスの反発力を利用してピ
ストンの前進を付勢し工具体を打撃するようにしたもの
において、上記シリンダ本体には上記ガス室に連通する
第1ポートと、大気開放用の第2ポートと、上記圧縮ガ
スよりも高圧のガスが供給される第3ポートとを備えた
弁室が形成され、この弁室には一端部に上記第1ポート
からの圧縮ガスの圧力を受けるとともにこの受圧方向と
反対方向へ付勢手段にて付勢され、上記受圧方向への移
動により上記第1と第2のポートを連通し、上記反対方
向への移動により上記第1と第3のポートを連通する弁
部材が設けられていることを特徴とするガス式油圧打撃
工具。
(1) The cylinder body is equipped with a piston that moves back and forth by hydraulic pressure and a gas chamber filled with compressed gas that is compressed when the piston retreats, and uses the repulsive force of the compressed gas to urge the piston forward. In the tool body, the cylinder body has a first port communicating with the gas chamber, a second port for opening to the atmosphere, and a third port to which gas having a higher pressure than the compressed gas is supplied. A valve chamber is formed with a port, and one end of the valve chamber receives the pressure of the compressed gas from the first port, and is urged by a biasing means in a direction opposite to the pressure receiving direction. A gas-type hydraulic system, characterized in that a valve member is provided that communicates the first and second ports by moving in the opposite direction, and communicates the first and third ports by moving in the opposite direction. Percussion tools.
JP25618686A 1986-10-27 1986-10-27 Gas type hydraulic impact tool Pending JPS63110389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25618686A JPS63110389A (en) 1986-10-27 1986-10-27 Gas type hydraulic impact tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25618686A JPS63110389A (en) 1986-10-27 1986-10-27 Gas type hydraulic impact tool

Publications (1)

Publication Number Publication Date
JPS63110389A true JPS63110389A (en) 1988-05-14

Family

ID=17289098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25618686A Pending JPS63110389A (en) 1986-10-27 1986-10-27 Gas type hydraulic impact tool

Country Status (1)

Country Link
JP (1) JPS63110389A (en)

Similar Documents

Publication Publication Date Title
JP2002250307A (en) Method and mechanism for high-speed pressurization in cylinder with cushioning mechanism
JP2003130008A (en) High speed driving method and its apparatus for pressure cylinder
GB1262170A (en) Hydraulically actuated percussive tools
JPS6362682A (en) Impulse device
JPS5815273B2 (en) Separately excited hydraulic impact machine
US5199504A (en) High efficiency pneumatic impacting mechanism with a plunger valve
US3609969A (en) Hydraulic impact device
US4825960A (en) Synchronized hydraulic hammer arrangement
EP0010532B1 (en) Hydraulically operated impact motor
JP2677751B2 (en) Striking device
JPH04506772A (en) Impact hammer and its control device
US4150603A (en) Fluid operable hammer
JPS63110389A (en) Gas type hydraulic impact tool
JP4242770B2 (en) A striking device having two alternating striking piston control valves
US20030006052A1 (en) Valve for hydraulic rock drill
JPH0321763B2 (en)
JPH0540951Y2 (en)
JP2000326261A (en) Hydraulic striker device
GB1382950A (en) Fluid operated impact device
JPS5816990B2 (en) Self-excited hydraulic impact machine
JP2511459B2 (en) Gas type hydraulic impact tool
JPS6119574A (en) Hydraulic type striking mechanism
CA1056667A (en) Percussive tool
JPS6119392B2 (en)
CA1121231A (en) Fluid operable hammer or impactor