JPS63109867A - Living body prosthesis - Google Patents

Living body prosthesis

Info

Publication number
JPS63109867A
JPS63109867A JP61255418A JP25541886A JPS63109867A JP S63109867 A JPS63109867 A JP S63109867A JP 61255418 A JP61255418 A JP 61255418A JP 25541886 A JP25541886 A JP 25541886A JP S63109867 A JPS63109867 A JP S63109867A
Authority
JP
Japan
Prior art keywords
group
wire
stress
products
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61255418A
Other languages
Japanese (ja)
Inventor
博司 山本
星島 一夫
弘 山下
牧野内 謙三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61255418A priority Critical patent/JPS63109867A/en
Publication of JPS63109867A publication Critical patent/JPS63109867A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は整形外科、脳外科、口腔外科、歯科等における
医療分野で使用される生体補綴部材に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a bioprosthetic member used in the medical fields such as orthopedics, neurosurgery, oral surgery, dentistry, and the like.

(従来の技術) 従来から使用されている金属線材を圧縮集積してなる生
体補綴部材としては、予め波形をした金属線を短く切断
した短線、あるいは波形にした長い連続線を集積させて
圧縮成形し、真空焼成して製作したものであった。
(Prior art) Conventionally used bioprosthetic components made by compressing and accumulating metal wires include short wires made by cutting short metal wires that have been pre-corrugated, or long continuous wires that are corrugated and then compression molded. It was manufactured by vacuum firing.

このような生体補綴部材は、骨に近い弾性率を有し、生
体に適用した場合、少なくとも表面部に骨組織の侵入を
許容する細孔が形成されている。
Such a bioprosthetic member has an elastic modulus close to that of bone, and when applied to a living body, pores are formed in at least the surface portion to allow penetration of bone tissue.

(発明が解決しようとする問題点) しかしながら、このような補綴部材が有する弾性率は不
均質であり、しかも個々の製品ごとのバラツキが大きい
。そのため、生体に対して作用する応力を一定値に設定
することができず、安定した良質の治療効果をあげるこ
とができない。しかも強度も不十分で、大きな荷重を受
ける部位の補綴部材として使用することは困難である。
(Problems to be Solved by the Invention) However, the elastic modulus of such prosthetic members is non-uniform, and furthermore, there is a large variation among individual products. Therefore, the stress acting on the living body cannot be set to a constant value, and stable and high-quality therapeutic effects cannot be achieved. In addition, the strength is insufficient, making it difficult to use as a prosthetic member for areas subject to large loads.

そのうえ、表面部に存在する細孔の分布も不均一であり
、大きさく平均孔径)も極端に異なるなど個々の製品ご
とにバラツキがある。このような生体補綴部材では生体
組織の造成侵入が−様なものとはならず、良好なる生体
との安定的固定が得られないという欠点があった。
In addition, the distribution of pores present on the surface is uneven, and the size and average pore diameter vary greatly among individual products. Such a bioprosthetic member has the drawback that the creation and invasion of living tissue does not occur in a similar manner, and good stable fixation with the living body cannot be achieved.

(問題点を解決するための手段) 上記に鑑みて、弾性率、平均孔径のバラツキが小さく、
細孔径の分布幅も狭く、しかも−様に分布した補綴部材
を得るべく、金属線材を予め網状体と成し、数組状体を
所望の形状に圧縮成形させた金属線材の集積体でもって
生体補綴部材を構成する。
(Means for solving the problem) In view of the above, the variation in elastic modulus and average pore diameter is small;
In order to obtain a prosthetic member in which the distribution width of pore diameters is narrow and evenly distributed, metal wires are formed into a network in advance, and several sets of metal wires are compression-molded into a desired shape. Construct a bioprosthetic member.

(実施例) 以下、本発明を実施例により具体的に詳述する。(Example) Hereinafter, the present invention will be specifically explained in detail with reference to Examples.

(実施例1) 線径56,250,500μmの純チタンの線材を編み
上げて第1図に示す形状の金′fI41を作った後、こ
の金網1を丸めて直径20mmの円形断面を有する金型
へ充填し、線径50.250,500μmの各線材に対
して油圧プレス装置で加圧成形して気孔率約5ozの集
積体を得た。こうして得られた各20個のφ20 X 
101の集積体のうち10個は未焼結のままで、他の1
0個は約1350℃で真空焼結させた。これら2群の試
験片のうち、加圧成形し、未焼結の群を本発明品第1群
とし、更に真空焼結工程を経た群を本発明品第2群とす
る。
(Example 1) After braiding pure titanium wire rods with wire diameters of 56, 250, and 500 μm to make gold 'fI41 in the shape shown in FIG. 1, this wire mesh 1 was rolled to form a mold with a circular cross section of 20 mm in diameter. The wire rods having wire diameters of 50, 250 and 500 μm were press-formed using a hydraulic press to obtain an aggregate having a porosity of about 5 oz. Each of the 20 pieces of φ20 X obtained in this way
Of the 101 aggregates, 10 remain unsintered and the other 1
0 pieces were vacuum sintered at about 1350°C. Among these two groups of test pieces, the group that was pressure-formed and unsintered was defined as the first group of products of the present invention, and the group that was further subjected to a vacuum sintering process was defined as the second group of products of the present invention.

次に比較の為に従来方法による試験片も製作した。即ち
、線径50.250.500μmの純チタンの線材に周
期約5.0mm 、振幅約1.0mmの正弦波様のウェ
ーブをつけて、それをそのまま丸めてφ20mmの円形
断面を有する金型へ充填し、線径50μm、 250μ
m、500 pmに応じて各々10MPa、 50MP
a、 150MPaの圧力で加圧成形して気孔率約50
χの集積体を得た。
Next, for comparison, test pieces were also produced using the conventional method. That is, a pure titanium wire with a wire diameter of 50.250.500 μm is given a sinusoidal wave with a period of about 5.0 mm and an amplitude of about 1.0 mm, and then it is rolled into a mold with a circular cross section of 20 mm in diameter. Filled, wire diameter 50μm, 250μm
10MPa, 50MP depending on m, 500 pm respectively
a. Pressure molded at a pressure of 150 MPa to achieve a porosity of approximately 50
We obtained an aggregate of χ.

更にこれを約1350℃で真空焼結させた。こうして得
られたφ20 X 10 Nの集積体各10個を従来品
第1群とした。
Further, this was vacuum sintered at about 1350°C. Ten aggregates of φ20×10 N thus obtained were used as a first group of conventional products.

一方、線径50μm、250μm、500μmの純チタ
ン線材に周期約5.On+n+ 、振幅1.0mmの正
弦波様のウェーブをつけ、更に長さ約30mmの短線に
切断する。
On the other hand, pure titanium wires with wire diameters of 50 μm, 250 μm, and 500 μm have a period of about 5. On+n+, a sine wave-like wave with an amplitude of 1.0 mm is applied, and then cut into short lines of about 30 mm in length.

こうして得られた多数の短線をφ20mmの円形断面を
有する金型中へ縦に充填し、線径50μm、250pe
a 、50071mに応じて各々10MPa、50MP
a、 150MPaで加圧成形して気孔率約50χの集
積体を作った。更にこれを約1350℃で真空焼結させ
た。こうして得られた線径に応じて各々10個のφ20
X10Aの試験片群を従来品第2群とした。
A large number of short wires obtained in this way were vertically filled into a mold having a circular cross section of φ20 mm, and the wire diameter was 50 μm and 250 pe.
a, 10MPa and 50MPa respectively according to 50071m
a. Pressure molding was performed at 150 MPa to produce an aggregate with a porosity of approximately 50χ. Further, this was vacuum sintered at about 1350°C. 10 pieces of φ20 each according to the wire diameter obtained in this way.
The test piece group of X10A was designated as the second group of conventional products.

以上の様にして製作された4群、合計12種類の試験片
について画像解析装置を用いて、平均細孔径、細孔分布
の計測を行った。また、圧縮試験により圧縮弾性率及び
破壊応力の計測を行った。第1−2表には細孔径分布範
囲と線材の直径の関係、第1−1表には平均細孔径と線
材の直径の関係、第2表には応力−圧縮弾性率−線材の
直径の関係をそれぞれ示しである。
Using an image analysis device, the average pore diameter and pore distribution were measured for a total of 12 types of test specimens in 4 groups produced as described above. In addition, the compressive elastic modulus and fracture stress were measured by a compression test. Table 1-2 shows the relationship between the pore diameter distribution range and the wire diameter, Table 1-1 shows the relationship between the average pore diameter and the wire diameter, and Table 2 shows the relationship between stress - compressive elastic modulus - wire diameter. The relationships are shown below.

このうち第1−2表には実施例としての4群12種の補
綴部材の細孔径分布範囲を示した。但し、これは図−2
の細孔径−度数ヒストグラムにおいて細孔の存在する細
孔径の範囲と決められている。
Among these, Table 1-2 shows the pore diameter distribution ranges of 12 types of prosthetic members in 4 groups as examples. However, this is shown in Figure 2.
This is defined as the range of pore diameters in which pores exist in the pore diameter-frequency histogram.

これによると本発明品第1群、第2群の差はほとんどな
いが、本発明品の第1群、2群は共に従来品の第1群、
2群に比べて細孔径分布の幅が狭い。
According to this, there is almost no difference between the first group and the second group of the products of the present invention, but the first group and the second group of the products of the present invention are the same as the first group of the conventional product.
The width of the pore size distribution is narrower than that of Group 2.

第1−1表は4群12種の試験片各10個について、各
々平均細孔径を計測し、10個の平均値と標準偏差がし
めされている。このような本発明品第1.2群、従来品
第1.2群の合計4群の平均値はほぼ同程度であった。
Table 1-1 shows the average pore diameters of 10 specimens of 12 types in 4 groups, and the standard deviations of the 10 specimens. The average values of a total of four groups, Group 1.2 of the present invention product and Group 1.2 of the conventional product, were approximately the same.

ところが、10個の補綴物の平均細孔径のバラツキを示
す標準偏差は本発明品第1.2群において共に小さいの
に対して従来品第1.2群は共に前者2群に比し、2〜
3倍大きい。
However, the standard deviation indicating the variation in the average pore diameter of the 10 prostheses is small for the products of the present invention in Groups 1 and 2, whereas the standard deviations of Groups 1 and 2 of the conventional products are both smaller than the former two groups. ~
Three times bigger.

(以下余白) 第1−2表 細孔径の分布範囲と線材の直径の関係第2
表は、4群に種々の10個について加圧速度0.5mm
 /分で圧縮試験を行い、得られた第3図のような応カ
ー歪み曲線を解析して圧縮弾性率を求めたものである。
(Left below) Table 1-2 Relationship between pore diameter distribution range and wire diameter No. 2
The table shows the pressurization speed of 0.5 mm for 10 various groups in 4 groups.
A compression test was carried out at 1/min, and the resulting stress strain curve as shown in FIG. 3 was analyzed to determine the compressive elastic modulus.

これによれば、圧縮弾性率は、応力により異なり、各応
力0.5.1.0.3.OMPaの点における各応カー
歪み曲線の接線の傾きとして定義され典型的な応力−圧
縮弾性率曲線が第4図に示されている。
According to this, the compressive elastic modulus varies depending on the stress, and for each stress 0.5.1.0.3. A typical stress-compressive modulus curve, defined as the slope of the tangent to each stress strain curve at the point OMPa, is shown in FIG.

また、第2表からも判る事は1)本発明品第1群は本発
明品第2群、従来品第1.2群に比し、圧縮弾性率が有
意に小さい。2)本発明品第1群、2群は共に標準偏差
が小さく、従来品第1.2群の173〜174程度であ
る。
Furthermore, it can be seen from Table 2 that 1) the first group of products of the present invention has a significantly lower compressive modulus of elasticity than the second group of products of the present invention and the conventional products group 1.2; 2) Both the first and second groups of the products of the present invention have small standard deviations, which are about 173 to 174 for the conventional products of groups 1 and 2.

(以下余白) 一方、第3表には圧縮試験における破壊応力の値と線材
の直径の関係を示した。この破壊応力の値は第4図の応
力−圧縮弾性率曲線において応力の増加に対して、圧縮
弾性率が減少に転する応力として定義されている。そし
て、第3表から次の事が判る。1)本発明品第2群は本
発明品第1群に比し、破壊応力は有意に大きい。2)本
発明品第1群の破壊応力は従来品第1群、2群のそれと
同等程度であった。
(Margins below) On the other hand, Table 3 shows the relationship between the value of fracture stress in the compression test and the diameter of the wire rod. The value of this fracture stress is defined as the stress at which the compressive elastic modulus starts to decrease as the stress increases in the stress-compressive elastic modulus curve shown in FIG. The following can be seen from Table 3. 1) The breaking stress of the second group of products of the present invention is significantly higher than that of the first group of products of the present invention. 2) The breaking stress of the first group of products of the present invention was comparable to that of the first and second groups of conventional products.

(以下余白) (実施例2) 直径250 μmの純チタン線材を網状に編み上げ、5
mm X7mmの長方形断面を有する金型へ充填し、5
0MPaの圧力で加圧成形して、気孔率約50!、約5
mm X 5mm X 7mmの直方体の試験片を得た
。これを約1400°Cで真空焼結させた。こうして得
られた試験片を、ピーグル大の大腿骨及び下位腰椎間に
埋入して3,6,24.36週で層殺し、試料のまわり
の骨組織ごととり出し、顕微鏡下で観察した。その結果
、大腿骨埋入群、下位腰椎間埋入群共に3週より良好な
骨侵入が認められ、6週でこれが更に進行し、36週で
は骨は試験片の中心部まで到達していた。この様子を第
5図として大腿骨埋入群の6週での組織構造を写真で示
した。
(Left below) (Example 2) Pure titanium wire with a diameter of 250 μm was woven into a net shape, and
Fill a mold with a rectangular cross section of mm x 7 mm, and
Pressure molded at a pressure of 0 MPa, with a porosity of approximately 50! , about 5
A rectangular parallelepiped test piece measuring mm x 5 mm x 7 mm was obtained. This was vacuum sintered at about 1400°C. The test piece thus obtained was implanted between a peagle-sized femur and lower lumbar vertebrae, layered at 3, 6, 24, and 36 weeks, and the bone tissue surrounding the sample was taken out and observed under a microscope. As a result, better bone invasion was observed in both the femoral bone implantation group and the lower lumbar intervertebral implantation group from 3 weeks onwards, and this progressed further at 6 weeks, and by 36 weeks, the bone had reached the center of the specimen. . This situation is shown in Figure 5, which shows the tissue structure of the femur implantation group at 6 weeks as a photograph.

以上の実施例の他にも、ジルコニウム線材、チタン合金
線材、Co−Cr線材を用いても、線材を網状に編み上
げ、圧縮成形する事により均一で高強度の補職部材が得
られた。
In addition to the above examples, even when using zirconium wire, titanium alloy wire, or Co--Cr wire, uniform and high-strength auxiliary members were obtained by knitting the wire into a net shape and compression molding.

(発明の効果) 叙上のように金属線材を網状に編み、これを集積体とし
て成形する事により均一、高強度な生体補綴部材を提供
することが出来る。
(Effects of the Invention) As described above, by knitting metal wires into a net shape and molding this into an aggregate, it is possible to provide a bioprosthetic member that is uniform and has high strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る生体補綴部材を形成する金網の例
を示す平面図、第2図は生体補綴部材の細孔径とその度
数との関係を示すグラフ図、第3図は応カー歪み曲線を
示したグラフ図である。 第4図は応力−圧縮弾性率の関係を示すグラフ図、第5
図は本発明生体補綴部材を生体に埋入した場合の組織構
造を示す写真である。 1・・・・金網
Fig. 1 is a plan view showing an example of a wire mesh forming a bioprosthetic member according to the present invention, Fig. 2 is a graph showing the relationship between the pore diameter of the bioprosthetic member and its frequency, and Fig. 3 is a graph showing the stress distortion due to stress. It is a graph diagram showing a curve. Figure 4 is a graph showing the stress-compressive modulus relationship;
The figure is a photograph showing the tissue structure when the bioprosthetic member of the present invention is implanted in a living body. 1...wire mesh

Claims (2)

【特許請求の範囲】[Claims] (1)金属線材を、予め網状体と成し、該網状体を所望
形状に圧縮成形した金属線材の集積体から成る生体補綴
部材。
(1) A bioprosthetic member consisting of an assembly of metal wires formed by forming the metal wires into a net-like body in advance and compression-molding the net-like body into a desired shape.
(2)上記金属線材の線径が200〜500μmである
特許請求の範囲第1項記載の生体補綴部材。
(2) The bioprosthetic member according to claim 1, wherein the metal wire has a wire diameter of 200 to 500 μm.
JP61255418A 1986-10-27 1986-10-27 Living body prosthesis Pending JPS63109867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61255418A JPS63109867A (en) 1986-10-27 1986-10-27 Living body prosthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61255418A JPS63109867A (en) 1986-10-27 1986-10-27 Living body prosthesis

Publications (1)

Publication Number Publication Date
JPS63109867A true JPS63109867A (en) 1988-05-14

Family

ID=17278483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61255418A Pending JPS63109867A (en) 1986-10-27 1986-10-27 Living body prosthesis

Country Status (1)

Country Link
JP (1) JPS63109867A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012781A1 (en) * 2002-08-02 2004-02-12 Yoshinori Kuboki Medical material made of titanium fiber
WO2011136347A1 (en) * 2010-04-28 2011-11-03 株式会社ハイレックスコーポレーション Cell induction material
JP2016000877A (en) * 2014-06-12 2016-01-07 グンゼ株式会社 Metallic sponge-like three-dimensional knitted fabric

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137050A (en) * 1985-12-05 1987-06-19 テクメデイカ・インコ−ポレイテツド Production of mesh screen having affinity to living body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137050A (en) * 1985-12-05 1987-06-19 テクメデイカ・インコ−ポレイテツド Production of mesh screen having affinity to living body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012781A1 (en) * 2002-08-02 2004-02-12 Yoshinori Kuboki Medical material made of titanium fiber
CN100400112C (en) * 2002-08-02 2008-07-09 久保木芳德 Medical material made of titanium fiber
US7419679B2 (en) 2002-08-02 2008-09-02 Yoshinori Kuboki Medical implant having a layer of titanium or titanium alloy fibers
WO2011136347A1 (en) * 2010-04-28 2011-11-03 株式会社ハイレックスコーポレーション Cell induction material
JP2011229761A (en) * 2010-04-28 2011-11-17 Hi-Lex Corporation Cell guiding material
JP2016000877A (en) * 2014-06-12 2016-01-07 グンゼ株式会社 Metallic sponge-like three-dimensional knitted fabric

Similar Documents

Publication Publication Date Title
US5492768A (en) Porous living body repairing member, and a method of imparting elasticity to it
US5030233A (en) Porous flexible metal fiber material for surgical implantation
US4693721A (en) Porous flexible metal fiber material for surgical implantation
Nilles et al. Biomechanical evaluation of bone‐porous material interfaces
US3852045A (en) Void metal composite material and method
Asaoka et al. Mechanical properties and biomechanical compatibility of porous titanium for dental implants
Hamidi et al. A review of biocompatible metal injection moulding process parameters for biomedical applications
GB2059267A (en) Compound material for prosthetic devices
US4454612A (en) Prosthesis formation having solid and porous polymeric components
Galante et al. Fiber metal composites in the fixation of skeletal prosthesis
US4878914A (en) Ceramic prosthesis for living body & method of making the same
Cook et al. A model for the implant-bone interface characteristics of porous dental implants
CN110063820A (en) With active 3D printing Invasive lumbar fusion device of interface Bone Ingrowth and preparation method thereof
JPH06339490A (en) Artificial articular cartilage and manufacture thereof
EP0107476A2 (en) Bone graft substitute
CN116059012A (en) Multidimensional space gradient hole type minimum curved surface bone implant material and design method thereof
JPS63109867A (en) Living body prosthesis
KR101239112B1 (en) Method for Preparing Porous Titanium-Hydroxyapatite Composite
JP2740071B2 (en) Method for producing sintered metal body for implant
JP2000169251A (en) Production of ceramic complex and ceramic complex
JPH0349766A (en) Production of porous body having excellent osteoaffinity
Rostoker et al. Some mechanical properties of sintered fiber metal composites
US7625519B2 (en) Method for manufacturing biomedical porous article
KR20150055500A (en) Porous materials for implant using bulk rods and metal powders and method for preparing thereof
CN107198600A (en) A kind of interbody spinal implant