JPS63109419A - Liquid crystal panel - Google Patents
Liquid crystal panelInfo
- Publication number
- JPS63109419A JPS63109419A JP61256030A JP25603086A JPS63109419A JP S63109419 A JPS63109419 A JP S63109419A JP 61256030 A JP61256030 A JP 61256030A JP 25603086 A JP25603086 A JP 25603086A JP S63109419 A JPS63109419 A JP S63109419A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- ferroelectric liquid
- film
- crystal panel
- composite film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 56
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 claims abstract description 38
- 239000002131 composite material Substances 0.000 claims abstract description 20
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 229920000642 polymer Polymers 0.000 claims description 9
- 239000011521 glass Substances 0.000 abstract description 6
- 230000035939 shock Effects 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 125000006850 spacer group Chemical group 0.000 abstract description 4
- 238000002347 injection Methods 0.000 abstract description 3
- 239000007924 injection Substances 0.000 abstract description 3
- 238000005507 spraying Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 230000005684 electric field Effects 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 239000004990 Smectic liquid crystal Substances 0.000 description 6
- 230000003446 memory effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 210000002858 crystal cell Anatomy 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005621 ferroelectricity Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 101150034533 ATIC gene Proteins 0.000 description 1
- 206010010297 Confabulation Diseases 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
- C09K19/542—Macromolecular compounds
- C09K19/544—Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
Landscapes
- Chemical & Material Sciences (AREA)
- Liquid Crystal (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は液晶表示装置、あるいは光シヤツター用の液晶
パネルに係わり、特に強誘電性液晶パネルに関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a liquid crystal display device or a liquid crystal panel for optical shutter, and more particularly to a ferroelectric liquid crystal panel.
従来の技術 従来の技術を以下、図面を用いて説明する。Conventional technology The conventional technology will be explained below with reference to the drawings.
現在、液晶表示パネルとしてはT N (Twiste
dNe+*atic : ツィスティッドネマチック)
型表示方式が最も広く用いられている。しかし、表示容
量に限界があるためその改良が望まれている。Currently, T N (Twist) is the most popular liquid crystal display panel.
dNe+*atic: twisted nematic)
The type display method is the most widely used. However, since there is a limit to display capacity, improvements are desired.
最近、強誘電性液晶を利用した表示方式が発表され、そ
の速い応答時間の他に高いマトリクス性を有する可能性
を持つことから非常に注目を集めている0本発明はこれ
らの液晶表示方式に適した液晶パネルの開発を目的とし
ている。Recently, display systems using ferroelectric liquid crystals have been announced, and are attracting much attention because of their fast response time and potential for high matrix properties.The present invention applies to these liquid crystal display systems. The aim is to develop suitable liquid crystal panels.
まず、従来の液晶パネルの構成について以下、図面を用
いて説明する。First, the configuration of a conventional liquid crystal panel will be described below with reference to the drawings.
第2図は従来の液晶パネルの構成を表した図面である。FIG. 2 is a diagram showing the configuration of a conventional liquid crystal panel.
第2図のように透明導電性膜22を表面に有するガラス
基板21に挟持された液晶23が配向処理を施された配
向膜24により一定方向に配向している。またセル厚を
均一にするためにガラス、プラスチックなどのスペーサ
ー25を用いている。26は偏光板である。As shown in FIG. 2, a liquid crystal 23 sandwiched between glass substrates 21 having a transparent conductive film 22 on the surface thereof is oriented in a certain direction by an alignment film 24 that has been subjected to an alignment treatment. Further, a spacer 25 made of glass, plastic, etc. is used to make the cell thickness uniform. 26 is a polarizing plate.
通常のTNあるいはGH(ゲスト−ホスト)タイプのパ
ネルではセル厚は約5〜lOμmで用いられており、ま
た強誘電性液晶では表面のメモリー効果を用いるために
は約2μmと薄いセル厚を設定する必要がある。In normal TN or GH (guest-host) type panels, the cell thickness is approximately 5 to 10μm, and in ferroelectric liquid crystals, the cell thickness is set to be as thin as approximately 2μm in order to utilize the surface memory effect. There is a need to.
また製作工程としてはまず透明導電膜を有するガラス基
板に配向膜を塗布し、さらに配向処理として通常、ラビ
ングを行う、その後、スペーサーとして通常、ガラスフ
ァイバーを均一にばらまき周辺に上下基板を接着するた
めのシール部を設け、貼り合せた後、圧力を印加して均
一なセル厚を有する空パネルを作成する。その後、パネ
ルを真空中で液晶に浸け、常圧にもどすことにより、空
パネルに液晶を注入する必要がある。In addition, the manufacturing process involves first applying an alignment film to a glass substrate with a transparent conductive film, and then rubbing as an alignment treatment.After that, glass fibers are usually uniformly distributed as spacers and the upper and lower substrates are bonded together. After providing a sealing portion and bonding, pressure is applied to create an empty panel with uniform cell thickness. Thereafter, it is necessary to inject liquid crystal into the empty panel by immersing the panel in liquid crystal in a vacuum and returning it to normal pressure.
次に強誘電性液晶について図面を用いて説明する。まず
、強誘電性液晶ついて図を用いて説明する0強誘電性液
晶とは強誘電性を示す液晶のことを言う、結晶の対称性
の理論から強誘電性を示すためにはまず液晶分子が不斉
中心を有しておらなければならず。また層構造を有しか
つ層内で分子が傾いている必要がある。このような対称
性を満足する結晶相としてスメクチックCカイラル相、
スメクチック1カイラル相、スメクチックCカイラル相
などが現在まで発見され強誘電性液晶相として認められ
ている。Next, ferroelectric liquid crystal will be explained using drawings. First, let's explain about ferroelectric liquid crystals using diagrams.0 Ferroelectric liquid crystals are liquid crystals that exhibit ferroelectricity.From the theory of crystal symmetry, in order to exhibit ferroelectricity, liquid crystal molecules must first be It must have an asymmetric center. It also needs to have a layered structure and the molecules within the layers need to be tilted. As crystal phases that satisfy such symmetry, smectic C chiral phase,
Smectic 1 chiral phase, smectic C chiral phase, etc. have been discovered so far and are recognized as ferroelectric liquid crystal phases.
本明細書では強誘電性液晶相の中で最も高い対称性を有
するスメクチックCカイラル相を用いてその性質を説明
する。第3図は強誘電性液晶分子の模式図である0強誘
電性液晶は通常、スメクチック液晶と呼ばれる層構造を
有する液晶である。In this specification, the properties will be explained using the smectic C chiral phase, which has the highest symmetry among ferroelectric liquid crystal phases. FIG. 3 is a schematic diagram of ferroelectric liquid crystal molecules. Ferroelectric liquid crystal is usually a liquid crystal having a layered structure called smectic liquid crystal.
分子は層の垂線方向に対してθだけ傾いている。The molecules are tilted by θ with respect to the normal direction of the layer.
また強誘電性液晶は不斉中心をもつことがらラセミ体で
ない光学活性な液晶分子によって構成されている0分子
の構成として第3図に示すように強誘電性液晶分子は分
子の長軸に垂直な方向に自発分極となる永久双極子モー
メントを有しており、カイラルスメクチツクC相におい
ては第3図の円錐形(以下コーンと呼ぶ)の外側を自由
に動くことができる。またコーンの中心点Oより液晶分
子に対して下したベクトルはCダイレクタ−と呼ばれて
いる。In addition, ferroelectric liquid crystals have an asymmetric center and are composed of optically active liquid crystal molecules that are not racemic.As shown in Figure 3, ferroelectric liquid crystal molecules are perpendicular to the long axis of the molecules. It has a permanent dipole moment that becomes spontaneously polarized in a direction such that it can move freely outside the conical shape (hereinafter referred to as a cone) in FIG. 3 in the chiral smectic C phase. Further, the vector directed from the center point O of the cone toward the liquid crystal molecules is called the C director.
第3図において31は液晶分子、32は永久双極子、3
3はCダイレクタ−134はコーン、35は層構造、3
6は層法線方向、37は傾き角θを示している。In Figure 3, 31 is a liquid crystal molecule, 32 is a permanent dipole, 3
3 is a C director, 134 is a cone, 35 is a layered structure, 3
6 indicates the layer normal direction, and 37 indicates the inclination angle θ.
強誘電性液晶分子は不斉原子を存しているため通常、ね
じれ構造を有している。このねじれ構造を第4図に示す
、第4図より層の法線方向にねじれ構造が存在するこか
る。Ferroelectric liquid crystal molecules usually have a twisted structure because they contain asymmetric atoms. This twisted structure is shown in FIG. 4. From FIG. 4, it can be seen that the twisted structure exists in the normal direction of the layer.
第4図において41は液晶分子、42は永久双極子モー
メント、43はねじれの周期を表すピンチ(L)、44
は層構造、45は層の法線方向、46は1頃き角θを表
す。In FIG. 4, 41 is a liquid crystal molecule, 42 is a permanent dipole moment, 43 is a pinch (L) representing the period of twist, and 44
represents the layer structure, 45 represents the normal direction of the layer, and 46 represents the angle θ.
次に強誘電性液晶の動作原理について図を用いて説明す
る0強誘電性液晶パネルのセルP1(d)がピッチより
厚いとき(d>L)、セル基板表面の影響はセル中央部
まで及ばないため、通常、ねじれ構造を持った状態で存
在する。しかしセル厚がピッチより小さいとき(dくL
)ねじれ構造は基板表面の力でほどかれ第5図(alの
ような分子が基板表面と平行になった二つの領域(ドメ
イン)が現れる。この二つの領域は分子の持つ永久双極
子モーメントがそれぞれ反対の方向を向いているもので
あり、一方は紙面裏から表方向へもう一方は紙面表から
裏方向へ向いている。これはそれぞれ層法線に対する分
子のflJtき角に対応している。Next, we will explain the operating principle of ferroelectric liquid crystal using a diagram.When cell P1(d) of a ferroelectric liquid crystal panel is thicker than the pitch (d>L), the influence of the cell substrate surface extends to the center of the cell. Therefore, it usually exists in a twisted structure. However, when the cell thickness is smaller than the pitch (d
) The twisted structure is unraveled by the force of the substrate surface, and two regions (domains) appear in which molecules such as (al) are parallel to the substrate surface. They are oriented in opposite directions, one from the back to the front of the paper and the other from the front to the back of the paper. This corresponds to the flJt angle of the molecule with respect to the layer normal, respectively. .
このとき紙面裏方向から表方向に電界を印加すると永久
双極子モーメントは全て電界の方向に向き第5図中)の
ように分子が全て十〇の傾き角を持った状態となる。こ
のような状態で偏光板の偏光子(P)の偏光軸方向を分
子の長軸方向に検光子(A)の偏光軸方向を分子の短軸
方向に平行にすると(第5図(bl参照)偏光子(P)
を通過した直線偏光は複屈折を受けずに透過し検光子(
A)により遮られ暗状態が得られる。また電界を逆方向
に印加すると第5図(C)のように分子が全て一〇の傾
きを持つ状態となり偏光子を通過した直線偏光は複屈折
効果により検光子を通り抜は明状態が得られる。At this time, when an electric field is applied from the back to the front of the paper, all the permanent dipole moments are directed in the direction of the electric field, and all the molecules have an inclination angle of 10, as shown in Figure 5). In this state, if the polarization axis of the polarizer (P) of the polarizing plate is made parallel to the long axis of the molecule and the polarization axis of the analyzer (A) is made parallel to the short axis of the molecule (see Figure 5 (bl) ) Polarizer (P)
The linearly polarized light that has passed through passes through the analyzer (
A) and a dark state is obtained. Furthermore, when an electric field is applied in the opposite direction, the molecules all have a tilt of 10 as shown in Figure 5 (C), and the linearly polarized light that passes through the polarizer becomes bright when it passes through the analyzer due to the birefringence effect. It will be done.
第5図+al、 (bl、 (C1において51は電界
の方向、52は分子の永久双極子モーメント、53は層
構造、54は傾き角θ、55は偏光子(P)、56検光
子(A)の偏光軸をそれぞれ表している。Figure 5 + al, (bl, (In C1, 51 is the direction of the electric field, 52 is the permanent dipole moment of the molecule, 53 is the layer structure, 54 is the tilt angle θ, 55 is the polarizer (P), 56 is the analyzer (A ) respectively represent the polarization axes.
以上のように電界の正負により明暗の状態をそれぞれ得
ることができる。As described above, bright and dark states can be obtained depending on the positive and negative electric fields.
(文献:幅用、作話、近寝、二強誘電性液晶を使った高
速ディスプレイ、オプトロニクス、9号、64頁、19
83年)
またこのようにセル厚がピッチより小さいセル(d<L
)においては通常ねじれ構造がほどけているため電界を
取り除いた後も分子はそのままの状態で安定であり、い
わゆるメモリー効果が生じるといわれている。このメモ
リー効果は表面による効果でありそのためこのメモリー
効果を用いるためにはセル厚を約2.0μm程度にする
必要がある。(Literature: width, confabulation, near sleep, high-speed display using diferroelectric liquid crystal, Optronics, No. 9, p. 64, 19
1983) Also, in this way, the cell thickness is smaller than the pitch (d<L
), the twisted structure is usually untwisted, so the molecules remain stable even after the electric field is removed, causing a so-called memory effect. This memory effect is an effect due to the surface, and therefore, in order to use this memory effect, the cell thickness must be approximately 2.0 μm.
発明が解決しようとする問題点
しかしながら上記のパネル構成では工程が多く、注入に
も時間がかかった。特に強誘電性液晶ではセル厚が小さ
いため均一なパネルを作成するのが難しく、また注入時
間も大巾に費やす必要があるという問題点があった。ま
た強誘電性液晶パネルでは表面のメモリー効果を用いる
ため振動、あるいはシラツクに弱いという問題点があっ
た。特に強誘電性液晶パネルは2.0μm程度のセル厚
にしなければならない問題点があった。Problems to be Solved by the Invention However, the above-mentioned panel configuration required many steps and took a long time for injection. In particular, with ferroelectric liquid crystals, the cell thickness is small, making it difficult to create a uniform panel, and there are also problems in that a large amount of injection time is required. In addition, ferroelectric liquid crystal panels have the problem of being susceptible to vibration or static since they use a surface memory effect. In particular, ferroelectric liquid crystal panels have the problem of having to have a cell thickness of about 2.0 μm.
問題点を解決するための手段
上記、種々の問題点を解決するために液晶を高分子に混
合し、複合膜を作成する、しかる後に一方向に延伸する
ことにより液晶分子の配向制御を行い、液晶フィルムを
作成することを特徴としている。Means for Solving the Problems In order to solve the various problems mentioned above, liquid crystal is mixed with polymer to create a composite film, and then the orientation of the liquid crystal molecules is controlled by stretching in one direction. It is characterized by creating liquid crystal film.
作用
液晶を高分子に混合し、複合膜を作成する、しかる後に
一方向に延伸することにより液晶分子の配向制御を行い
、液晶フィルムを作成することでスペーサーの散布、配
向膜塗布、注入などの工程を省くことができ、工程を簡
単にできる。また、強誘電性液晶パネルなどのように薄
いセル厚の場合でも高分子との複合膜であるため作製し
やすく、また振動、ショックに対しても強いという作用
を有する。Function Liquid crystal is mixed with a polymer to create a composite film, and then stretched in one direction to control the orientation of the liquid crystal molecules.By creating a liquid crystal film, it is possible to spray spacers, apply an alignment film, inject, etc. Steps can be omitted and the process can be simplified. Furthermore, even in the case of a thin cell such as a ferroelectric liquid crystal panel, since it is a composite film with a polymer, it is easy to produce, and it also has the effect of being strong against vibrations and shocks.
実施例
以下、本発明の一実施例として強誘電性液晶と高分子と
の複合材料について図面を用いて説明する。EXAMPLE A composite material of a ferroelectric liquid crystal and a polymer will be described below as an example of the present invention with reference to the drawings.
まず、用いた複合膜の作製法について説明する。First, the method for manufacturing the composite membrane used will be explained.
高分子はポリビニルクロライド(PVC)を用いた。強
誘電性液晶はチッソ社製C31015の混合液晶材料を
用いた。Polyvinyl chloride (PVC) was used as the polymer. As the ferroelectric liquid crystal, a mixed liquid crystal material C31015 manufactured by Chisso Corporation was used.
作製法としてはシクロヘキサノン溶液にPvCとC51
015を5:2の割合で混合し、混合溶液を作製した。The preparation method is to add PvC and C51 to a cyclohexanone solution.
015 at a ratio of 5:2 to prepare a mixed solution.
こののちロールコータ−にてテフロン板の上に約30μ
mの膜厚に塗布し、加熱し、乾燥を行った。乾燥後、延
伸機により約5μmの厚さまで一方向に延伸を行った。After this, apply approximately 30μ on a Teflon plate using a roll coater.
It was applied to a film thickness of m, heated, and dried. After drying, it was stretched in one direction to a thickness of about 5 μm using a stretching machine.
延伸後の複合膜を強誘電性液晶C31015が等方性液
体になるように約100℃まで上昇させ、その後、ゆっ
くりと室温まで降下させた。The stretched composite film was heated to about 100° C. so that the ferroelectric liquid crystal C31015 became an isotropic liquid, and then slowly cooled to room temperature.
このようにして作製した複合膜における強誘電性液晶の
配向を偏光8Ji微鏡によって観察したところクロスニ
コル下で電界を印加することにより、くっきりとした明
暗を電界の正負により、観察することができた0次にこ
のようにして作製した複合膜の光学特性を測定した。用
いた光学測定系について図面を用いて説明する。ここで
用いた複合フィルムの特性を測定するために第1図に示
すような液晶パネルを作成した。ここで1は上下の偏光
板、2は上下のガラス基板、3は透明電極層、4は強誘
電性液晶と高分子の複合フィルム、このように対向電極
間に強誘電性液晶の複合フィルムを封入し強誘電性液晶
パネルを作成した。The orientation of the ferroelectric liquid crystal in the composite film thus prepared was observed using a polarized 8Ji microscope. By applying an electric field under crossed Nicol conditions, clear brightness and darkness could be observed depending on the positive and negative electric fields. Next, the optical properties of the composite film thus prepared were measured. The optical measurement system used will be explained using the drawings. In order to measure the characteristics of the composite film used here, a liquid crystal panel as shown in FIG. 1 was prepared. Here, 1 is the upper and lower polarizing plates, 2 is the upper and lower glass substrates, 3 is the transparent electrode layer, 4 is the composite film of ferroelectric liquid crystal and polymer, and the composite film of ferroelectric liquid crystal is placed between the opposing electrodes. A ferroelectric liquid crystal panel was created by encapsulating it.
次にこのパネルを用いて電圧−透過率曲線(以下、B−
V曲線とする)を測定した。B−V曲線の測定に用いた
光学実験系を第6図に示す。第6図において光源61よ
り発せられた白色光は偏光子62を通り液晶セル63に
直線偏光として入射した後、検光子64を通って集光レ
ンズ65によって集光され光電子倍増管66で感知され
、ストレージオシロ67によりB−V曲線として測定さ
れる。なお液晶セルにはプログラマブルパルスジェネレ
ーター68により任意の波形を加えることができるよう
にした。Next, using this panel, a voltage-transmittance curve (hereinafter referred to as B-
V curve) was measured. The optical experimental system used for measuring the BV curve is shown in FIG. In FIG. 6, white light emitted from a light source 61 passes through a polarizer 62 and enters a liquid crystal cell 63 as linearly polarized light, passes through an analyzer 64, is focused by a condensing lens 65, and is sensed by a photomultiplier tube 66. , measured by the storage oscilloscope 67 as a BV curve. Note that an arbitrary waveform can be applied to the liquid crystal cell by a programmable pulse generator 68.
このような実験系において前述の構成を有する強誘電性
液晶パネルのB−V曲線を測定した。また強誘電性液晶
パネルのセル厚は約5.0μmのものを用いた。In such an experimental system, the BV curve of the ferroelectric liquid crystal panel having the above-mentioned configuration was measured. Further, the cell thickness of the ferroelectric liquid crystal panel used was approximately 5.0 μm.
得られたB−V曲線を第7図(al、 +blに示す、
第7図181. lb)において横軸は時間<1)であ
り、縦軸は電圧(V)あるいは輝度(B)である、第7
図181は印加した電圧波形であり、第7開山)は対応
する輝度曲線である。この図面より、第7図181にお
いて、まず正の印加パルス(波高値+20v。The obtained BV curve is shown in Figure 7 (al, +bl).
Figure 7 181. lb), the horizontal axis is time < 1), and the vertical axis is voltage (V) or brightness (B).
FIG. 181 shows the applied voltage waveform, and the seventh peak) shows the corresponding brightness curve. From this drawing, firstly, in FIG. 7 181, a positive applied pulse (peak value +20V).
幅1.Qmsec)が印加され第7図(b)において対
応する輝度変化は暗状態から明状態へと輝度は変化した
。正のパルスが印加された後、1.0secの間、Ov
の状態が続いている。Width 1. Qmsec) was applied, and the corresponding luminance change in FIG. 7(b) was from a dark state to a bright state. Ov for 1.0 sec after the positive pulse is applied.
The situation continues.
このOvの状態でも輝度は明のままでメモリー効果が存
在している。その後、負の印加パルス(波高値−20V
、幅l、Qmsec)が印加され、メモリー状態の明状
態から暗状態に輝度は変化した。この暗状態にもメモリ
ー性があり、1.0秒後に正の印加パルスが印加される
まで変化しなかった。またこのメモリー状態は高分子と
の複合膜であるため多少のショック、振動には影響され
なかった。Even in this Ov state, the brightness remains bright and a memory effect exists. After that, a negative applied pulse (peak value -20V
, width l, Qmsec), and the brightness changed from the bright state of the memory state to the dark state. This dark state also had memory properties and did not change until a positive pulse was applied 1.0 seconds later. Also, this memory state was not affected by shock or vibration because it was a composite membrane with polymers.
発明の効果
本発明における液晶フィルムは従来の液晶パネルの製造
法を筒素化し、しかも強誘電性液晶に対してはそのメモ
リー状態を振動、ショックに対して強固なものにすると
いうような効果があった。Effects of the Invention The liquid crystal film of the present invention makes the conventional liquid crystal panel manufacturing method a cylindrical one, and has the effect of making the memory state of ferroelectric liquid crystals more robust against vibrations and shocks. there were.
第1図は本発明の液晶フィルムを用いたパネルを表す模
式図、第2図は従来の液晶パネルの構成を表す模式図、
第3図は強誘電性液晶分子の模式図、第4図、は強誘電
性液晶のねじれ構造を表す模式図、第5図+a+、 (
bl、 (elは強誘電性液晶の表示原理を表す模式図
、第6図はB−V曲線を測定するための光学実験系をあ
られす模式図、第7図(a)5(blは本構成の液晶パ
ネルのB−V曲線をあられすグラフである。
1・・・・・・偏光板、2・・・・・・ガラス基板、3
・・・・・・透明電極層、4・・・・・・複合フィルム
、 ゛代理人の氏名 弁理士 中尾敏男 ほか1名l
−発m反
4−η4E々ルム
?
第2図
第3図
あ
第4図
血
第5図
第6図
第7図
秤量(も)FIG. 1 is a schematic diagram showing a panel using the liquid crystal film of the present invention, FIG. 2 is a schematic diagram showing the configuration of a conventional liquid crystal panel,
Figure 3 is a schematic diagram of ferroelectric liquid crystal molecules, Figure 4 is a schematic diagram showing the twisted structure of ferroelectric liquid crystal, Figure 5 +a+, (
bl, (el is a schematic diagram showing the display principle of ferroelectric liquid crystal, Figure 6 is a schematic diagram showing the optical experimental system for measuring the BV curve, Figure 7 (a) This is a graph showing the B-V curve of a liquid crystal panel with the following configurations: 1...Polarizing plate, 2...Glass substrate, 3
......Transparent electrode layer, 4...Composite film, Name of agent: Patent attorney Toshio Nakao and one other person
-Fu m anti 4 - η4 E erum? Figure 2 Figure 3 A Figure 4 Blood Figure 5 Figure 6 Figure 7 Weighing (also)
Claims (6)
液晶フィルムであることを特徴とする液晶パネル。(1) A liquid crystal panel characterized in that the optical modulation element is a liquid crystal film made of a composite material consisting of a polymer and liquid crystal.
請求の範囲第(1)項記載の液晶パネル。(2) The liquid crystal panel according to claim (1), wherein the liquid crystal is a ferroelectric liquid crystal.
方式として用いられることを特徴とする特許請求の範囲
第(1)項記載の液晶パネル。(3) The liquid crystal panel according to claim (1), wherein the liquid crystal contains a pleochroic dye and is used in a guest-host mode.
より液晶の配向制御を行った液晶フィルムであることを
特徴とする特許請求の範囲第(1)項記載の液晶パネル
。(4) The liquid crystal panel according to claim (1), which is a liquid crystal film in which alignment of liquid crystals is controlled by stretching a composite material made of a polymer and liquid crystals.
請求の範囲第(4)項記載の液晶パネル。(5) The liquid crystal panel according to claim (4), wherein the liquid crystal is a ferroelectric liquid crystal.
方式として用いられることを特徴とする特許請求の範囲
第(4)項記載の液晶パネル。(6) The liquid crystal panel according to claim (4), wherein the liquid crystal contains a pleochroic dye and is used in a guest-host mode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61256030A JPS63109419A (en) | 1986-10-28 | 1986-10-28 | Liquid crystal panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61256030A JPS63109419A (en) | 1986-10-28 | 1986-10-28 | Liquid crystal panel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63109419A true JPS63109419A (en) | 1988-05-14 |
Family
ID=17286941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61256030A Pending JPS63109419A (en) | 1986-10-28 | 1986-10-28 | Liquid crystal panel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63109419A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0348939A2 (en) * | 1988-06-29 | 1990-01-03 | Idemitsu Kosan Company Limited | Method of orienting liquid crystal optical device and apparatus usable for the method |
US5200108A (en) * | 1988-07-26 | 1993-04-06 | Idemitsu Kosan Co., Ltd. | Ferroelectric liquid crystal composition, liquid crystal optical device produced by using the ferroelectric liquid crystal composition, and method of producing the liquid crystal optical device |
US5434685A (en) * | 1992-01-10 | 1995-07-18 | Kent State University | Ferroelectric liquid crystal cell, a method of making it, and its use |
US5638194A (en) * | 1992-12-17 | 1997-06-10 | Sharp Kabushiki Kaisha | Polymer dispersed ferroelectric liquid crystal display device and a method for producing the same |
-
1986
- 1986-10-28 JP JP61256030A patent/JPS63109419A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0348939A2 (en) * | 1988-06-29 | 1990-01-03 | Idemitsu Kosan Company Limited | Method of orienting liquid crystal optical device and apparatus usable for the method |
EP0348939A3 (en) * | 1988-06-29 | 1990-09-12 | Idemitsu Kosan Company Limited | Method of orienting liquid crystal optical device and apparatus usable for the method |
US5200108A (en) * | 1988-07-26 | 1993-04-06 | Idemitsu Kosan Co., Ltd. | Ferroelectric liquid crystal composition, liquid crystal optical device produced by using the ferroelectric liquid crystal composition, and method of producing the liquid crystal optical device |
US5434685A (en) * | 1992-01-10 | 1995-07-18 | Kent State University | Ferroelectric liquid crystal cell, a method of making it, and its use |
US5504600A (en) * | 1992-01-10 | 1996-04-02 | Kent State University | Method of making a ferroelectric liquid crystal cell including a cooling step |
US5638194A (en) * | 1992-12-17 | 1997-06-10 | Sharp Kabushiki Kaisha | Polymer dispersed ferroelectric liquid crystal display device and a method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001526408A (en) | Phase-separated composite organic film and method for producing the same | |
JPH01177016A (en) | Ferroelectric liquid crystal shutter | |
JPS63109419A (en) | Liquid crystal panel | |
JP2647828B2 (en) | Liquid crystal device manufacturing method | |
JPS63109418A (en) | Liquid crystal film and its production | |
JPH02208633A (en) | Liquid crystal display device | |
JPS63264721A (en) | Liquid crystal color panel | |
JPS63264723A (en) | Liquid crystal color film and its production | |
JP2815415B2 (en) | Manufacturing method of ferroelectric liquid crystal panel | |
JP3757365B2 (en) | Ferroelectric smectic liquid crystal dispersed in polymer | |
JP2639583B2 (en) | Ferroelectric polymer liquid crystal device | |
JP2000122043A (en) | Liquid crystal optical modulator and its production | |
JP2665331B2 (en) | Driving method of ferroelectric liquid crystal display device | |
JP2548390B2 (en) | Method for manufacturing ferroelectric liquid crystal panel | |
JPS63264724A (en) | Liquid crystal panel | |
JPH0210323A (en) | Ferroelectric liquid crystal display element | |
KR0153442B1 (en) | Lcd element | |
JPS63297491A (en) | Liquid crystal composite composition | |
JPH0261616A (en) | Liquid crystal display element | |
JPH07306421A (en) | Ferroelectric liquid crystal element | |
JPS63264722A (en) | Liquid crystal film and its production | |
JPS62170937A (en) | Liquid crystal electrooptical element | |
JPH05297374A (en) | Liquid crystal display element and its display method | |
JPH0331821A (en) | Liquid crystal electrooptical device | |
JPS62257128A (en) | Ferroelectric liquid crystal display device |