JPS63109403A - Optical transmission fiber - Google Patents

Optical transmission fiber

Info

Publication number
JPS63109403A
JPS63109403A JP61256069A JP25606986A JPS63109403A JP S63109403 A JPS63109403 A JP S63109403A JP 61256069 A JP61256069 A JP 61256069A JP 25606986 A JP25606986 A JP 25606986A JP S63109403 A JPS63109403 A JP S63109403A
Authority
JP
Japan
Prior art keywords
polysulfone
optical fiber
refractive index
core material
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61256069A
Other languages
Japanese (ja)
Inventor
Akira Tanaka
章 田中
Shinpei Nagatani
真平 永谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61256069A priority Critical patent/JPS63109403A/en
Publication of JPS63109403A publication Critical patent/JPS63109403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To enable the practical application of the plastic optical fiber usable in a high temperature atmosphere of until about 150 deg.C by using polysulfone as a core material, and by using a transparent resin having a softening temp. of >=150 deg.C as a clad material. CONSTITUTION:The titled fiber comprises the polysulfone shown by formula I as the core material and the transparent resin having >=150 deg.C softening temp. such as the transparent resin having the high softening temp. and composed of a maleic anhydride-graft modified 4-methyl pentene-1, a UV curable type resin or a polyorganosiloxane, etc., as the clad material. namely, the polysulfone having refractive index of 1.65 and glass transition point of 180 deg.C is used as the core material, while the polymer which has lower refractive index than that of the polysulfone and the softening temp. of >=150 deg.C is used as the clad material. Thus, the optical fiber usable at the high temp. of until about 150 deg.C is obtd.

Description

【発明の詳細な説明】 〔概要〕 耐熱性の優れた光伝送繊維として、ポリスルホンを芯材
とし、無水マレイン酸グラフト変性ポリ4メチルペンテ
ン−1,紫外線硬化型シリコーン樹脂、ポリオルガノシ
ロキサンなど軟化温度が150℃以上の透明樹脂をクラ
ッド材として構成した光伝送繊維。
[Detailed description of the invention] [Summary] As a light transmission fiber with excellent heat resistance, polysulfone is used as a core material, and maleic anhydride graft modified poly(4-methylpentene-1), ultraviolet curable silicone resin, polyorganosiloxane, etc. Optical transmission fiber made of transparent resin with a temperature of 150°C or higher as a cladding material.

〔産業上の利用分野〕[Industrial application field]

本発明は耐熱性に優れた光伝送繊維(以下光ファイバ)
の構成に関する。
The present invention is an optical transmission fiber (hereinafter referred to as an optical fiber) with excellent heat resistance.
Regarding the configuration of

情報処理技術の進歩は著しく、その一つとして光通信が
実用化されており、伝送線路として透明石英を芯(以下
コア)とし、石英よりも屈折率の低い低損失のガラスを
鞘(以下クラッド)として用い、顔料を混和したプラス
チックスを被覆(ジャケット)として光フアイバケーブ
ルが使用されている。
Information processing technology has made remarkable progress, and optical communication has been put into practical use as one of them.The transmission line is made of transparent quartz as the core (hereinafter referred to as the core), and a low-loss glass with a refractive index lower than that of quartz is used as the sheath (hereinafter referred to as the cladding). ), and optical fiber cables are used as jackets made of plastics mixed with pigments.

また、これとは別に透明な高分子有機化合物(以下ポリ
マ)をコアおよびクラッドとするプラスチック光フアイ
バケーブルが実用化されている。
In addition, plastic optical fiber cables whose core and cladding are made of transparent high-molecular organic compounds (hereinafter referred to as polymers) have also been put into practical use.

このプラスチック光ファイバは前者に較べて伝送損失は
大きいもの\、屈曲が容易なために作業性に優れ、また
低コストのため近距離通信や装置内の光信号処理などに
使用されている。
Although this plastic optical fiber has a higher transmission loss than the former, it is easy to bend, so it has excellent workability, and because it is low cost, it is used for short-distance communications and optical signal processing in equipment.

然し、使用環境は常温とは限らず高温の場合がある。However, the environment in which it is used is not necessarily at room temperature but may be at high temperatures.

例えば、自動車のエンジンルーム、複写機、恒温槽の内
部などがこれに当たり、前者の場合は120℃程度にも
なる。
For example, this applies to the engine room of a car, a copying machine, the inside of a constant temperature bath, etc., and in the former case, the temperature can reach about 120°C.

そのため、従来のプラスチック光ファイバは使用材料の
軟化温度を越えるために使用することができず、耐熱性
の優れたプラスチック光ファイバが必要である。
Therefore, conventional plastic optical fibers cannot be used because they exceed the softening temperature of the materials used, and there is a need for plastic optical fibers with excellent heat resistance.

〔従来の技術〕[Conventional technology]

従来のプラスチック光ファイバはコア材料として屈折率
が1.491のポリメチルメタクリレート(略称PMM
A) 、屈折率が1.586のポリカーボネート(略称
PC) 、屈折率が1.59のポリスチレン(略称PS
)などが用いられ、クラッド材料としては屈折率が1.
41の含弗素ポリアルキルアクリレート、 PMMAな
ど屈折率がコア材よりも少ない材料を組み合わせて構成
されている。
Conventional plastic optical fibers use polymethyl methacrylate (abbreviated as PMM) with a refractive index of 1.491 as the core material.
A) Polycarbonate (abbreviated as PC) with a refractive index of 1.586, Polystyrene (abbreviated as PS) with a refractive index of 1.59
) etc. are used, and the cladding material has a refractive index of 1.
It is constructed by combining materials with a refractive index lower than that of the core material, such as fluorine-containing polyalkyl acrylate of No. 41 and PMMA.

ここで、これらポリマはガラス転移点近傍の温度で使用
すると熱変形が起こり易く、光透過率が急激に低下する
と云う一般的な性質があり、そのためにガラス転移点よ
りも高い温度では使用することはできない。
Here, these polymers have the general property that when used at temperatures near the glass transition point, they tend to undergo thermal deformation and light transmittance rapidly decreases, so they should not be used at temperatures higher than the glass transition point. I can't.

一方、これら材料のガラス転移点は何れも100℃以下
であることから使用温度は80℃以下に限られており、
そのために高温雰囲気中での使用は不可能である。
On the other hand, the glass transition points of these materials are all below 100°C, so the temperature at which they can be used is limited to below 80°C.
Therefore, it is impossible to use it in a high temperature atmosphere.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように従来より使用されている光ファイバの
構成材は何れもガラス転移点が低く、そのために100
℃以上の高温で使用できないことが問題である。
As mentioned above, all the constituent materials of conventionally used optical fibers have low glass transition points, and therefore
The problem is that it cannot be used at high temperatures above ℃.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題はポリスルホンを芯材とし、150℃以上の
軟化温度を有する透明樹脂、例えば無水マレイン酸グラ
フト変性ポリ4メチルペンテン−1゜紫外線硬化型シリ
コーン樹脂或いはポリオルガノシロキサンなど軟化温度
の高い透明樹脂をクラッド材として構成する光伝送繊維
により解決することができる。
The above problem can be solved by transparent resins with a polysulfone core material and a softening temperature of 150°C or higher, such as maleic anhydride graft-modified poly-4-methylpentene-1° ultraviolet curing silicone resins or polyorganosiloxanes. This problem can be solved by using an optical transmission fiber configured as a cladding material.

〔作用〕[Effect]

本発明はコア材として、屈折率が1.65でガラス転移
点が180℃のポリスルホンを使用し、一方クラッド材
としては、これよりも屈折率が少なく、また軟化温度が
150℃以上のポリマを使用することにより150℃程
度までの高温で使用できる光ファイバを実現するもので
、これに該当するポリマとしては、 ■ シリコーン樹脂・・・屈折率1.51.軟化温度1
65℃、 ■ ポリオルガノシロキサン・・・屈折率1.45〜1
.50゜軟化温度約170℃、 ■ 無水マレイン酸グラフト変性ポリ4メチルペンテン
−1・・・屈折率1.46.軟化温度173℃、がある
In the present invention, polysulfone with a refractive index of 1.65 and a glass transition point of 180°C is used as the core material, while a polymer with a lower refractive index and a softening temperature of 150°C or higher is used as the cladding material. By using this material, it is possible to create an optical fiber that can be used at high temperatures of up to about 150°C. Examples of suitable polymers include: ■ Silicone resin: refractive index of 1.51. Softening temperature 1
65℃, ■ Polyorganosiloxane... refractive index 1.45-1
.. 50° Softening temperature approximately 170°C, ■ Maleic anhydride graft modified poly 4 methyl pentene-1...Refractive index 1.46. It has a softening temperature of 173°C.

この材料の内、■と■のガラス転移点は150℃以上で
あるが、■のガラス転移点は約25℃と低い、然し融点
は250℃より高いと云う特徴があり、そのためにクラ
ッド材として充分使用することができる。
Among these materials, the glass transition point of ■ and ■ is above 150℃, but the glass transition point of ■ is as low as about 25℃, but the melting point is higher than 250℃, which makes it suitable for use as a cladding material. It can be used fully.

第1図はポリスルホンの構造式であり、また第3図はポ
リスルホンのガラス転移点が180℃であることを示す
差動熱量計(Differential Scanin
gCalorie−meter略してDSC)の計測デ
ータを示している。
Figure 1 shows the structural formula of polysulfone, and Figure 3 shows a differential calorimeter showing that the glass transition point of polysulfone is 180°C.
The measurement data of gCalorie-meter (DSC) is shown.

〔実施例〕〔Example〕

ポリスルホンをコア材とし、150℃以上の軟化温度を
有するクラッド材として紫外線硬化型シリコーン樹脂、
ポリオルガノシロキサンおよび無水マレイン酸グラフト
変性ポリ4メチルペンテン−1をそれぞれクラッド材と
する三種類の光ファイバを作り、これについて光伝送損
失の温度依存性を測定した。
Polysulfone is used as the core material, and UV-curable silicone resin is used as the cladding material, which has a softening temperature of 150°C or higher.
Three types of optical fibers were made using polyorganosiloxane and maleic anhydride graft-modified poly(4-methylpentene-1) as cladding materials, and the temperature dependence of optical transmission loss was measured for these fibers.

なお、コアの直径は1m1mである。Note that the diameter of the core is 1 m1m.

第2図は上記三種類の光ファイバについて光伝送損失の
温度依存性を測定した結果であり、参考としてPMMA
をコアとし、ポリ弗化ビニリデンをクラッドとする通常
の光ファイバについても挙げである。
Figure 2 shows the results of measuring the temperature dependence of optical transmission loss for the three types of optical fibers mentioned above.
A typical optical fiber having a core of polyvinylidene fluoride and a cladding of polyvinylidene fluoride is also mentioned.

すなわち、PMMA(コア)/ポリ弗化ビニリデン(ク
ラッド)からなる光ファイバ1の光伝送損失は約70℃
から急増するのに対し、ポリスルホンをコア材とし無水
マレイン酸グラフト変性ポリ4メチルペンテン−1をク
ラッドとする光ファイバ2は約165℃から光伝送損失
は増加を始め、また紫外線硬化型シリコーン樹脂をクラ
フトとする光ファイバ3とポリオルガノシロキサンをク
ラッドとする光ファイバ4は共に約170℃から増加を
始めるが、従来のPMMA(コア)/ポリ弗化ビニリデ
ン(クラッド)の光ファイバ1に較べて増加量は少ない
In other words, the optical transmission loss of the optical fiber 1 made of PMMA (core)/polyvinylidene fluoride (cladding) is approximately 70°C.
On the other hand, optical fiber 2, which has polysulfone as the core material and maleic anhydride graft-modified poly(4-methylpentene-1) as the cladding, starts to increase optical transmission loss from about 165°C, and Both the optical fiber 3 made of kraft and the optical fiber 4 made of polyorganosiloxane cladding start to increase at about 170°C, but the temperature increases compared to optical fiber 1 made of conventional PMMA (core)/polyvinylidene fluoride (cladding). The quantity is small.

なお、この四種類の光ファイバについてDSC曲線をと
ったところ、第2図に示す光伝送損失の増加開始温度と
吸熱開始温度とは一致していた。
When DSC curves were taken for these four types of optical fibers, the temperature at which the optical transmission loss began to increase and the temperature at which endothermic absorption began, shown in FIG. 2, coincided.

次に光透過損失率については780nmの半導体レーザ
の波長において、PSやPMMAをコアとする従来の光
ファイバが(1)〜1dB/mの値を示すのに対し、本
発明に係る光ファイバは約5dB/mとや−大きいが近
距離用の光ファイバとして充分使用することができる。
Next, regarding the optical transmission loss rate, at the wavelength of a semiconductor laser of 780 nm, conventional optical fibers having a core of PS or PMMA exhibit a value of (1) to 1 dB/m, whereas the optical fiber according to the present invention shows a value of (1) to 1 dB/m. Although it is a little large at about 5 dB/m, it can be used sufficiently as an optical fiber for short distances.

〔発明の効果〕〔Effect of the invention〕

以上記したように本発明の実施により150℃程度まで
の高温雰囲気で使用可能なプラスチック光ファイバを実
用化することができる。
As described above, by carrying out the present invention, it is possible to put into practical use a plastic optical fiber that can be used in a high temperature atmosphere of up to about 150°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はポリスルホンの構造式、 第2図は本発明に係る光ファイバの光伝送損失の温度特
性図、 第3図はポリスルホンのガラス転移点を示すDSC曲線
図、 である。
FIG. 1 is a structural formula of polysulfone, FIG. 2 is a temperature characteristic diagram of optical transmission loss of the optical fiber according to the present invention, and FIG. 3 is a DSC curve diagram showing the glass transition point of polysulfone.

Claims (2)

【特許請求の範囲】[Claims] (1)ポリスルホンを芯材とし、150℃以上の軟化温
度を有する透明樹脂をクラッド材として構成したことを
特徴とする光伝送繊維。
(1) An optical transmission fiber comprising polysulfone as a core material and a transparent resin having a softening temperature of 150° C. or higher as a cladding material.
(2)150℃以上の軟化温度を有する透明樹脂が無水
マレイン酸グラフト変性ポリ4メチルペンテン−1、紫
外線硬化型シリコーン樹脂或いはポリオルガノシロキサ
ンからなることを特徴とする特許請求の範囲第1項記載
の光伝送繊維。
(2) Claim 1, characterized in that the transparent resin having a softening temperature of 150°C or higher is made of maleic anhydride graft-modified poly(4-methylpentene-1), an ultraviolet curable silicone resin, or a polyorganosiloxane. optical transmission fiber.
JP61256069A 1986-10-28 1986-10-28 Optical transmission fiber Pending JPS63109403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61256069A JPS63109403A (en) 1986-10-28 1986-10-28 Optical transmission fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61256069A JPS63109403A (en) 1986-10-28 1986-10-28 Optical transmission fiber

Publications (1)

Publication Number Publication Date
JPS63109403A true JPS63109403A (en) 1988-05-14

Family

ID=17287467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61256069A Pending JPS63109403A (en) 1986-10-28 1986-10-28 Optical transmission fiber

Country Status (1)

Country Link
JP (1) JPS63109403A (en)

Similar Documents

Publication Publication Date Title
Usui et al. Low-loss passive polymer optical waveguides with high environmental stability
Kaino et al. Low-loss plastic optical fibers
Kobayashi et al. Single-mode optical waveguides fabricated from fluorinated polyimides
JPS6410019B2 (en)
Boucouvalas et al. External refractive-index response of tapered coaxial couplers
JPS63109403A (en) Optical transmission fiber
Shingyouchi et al. Gradient-index doped silica rod lenses produced by a solgel method
JPS6370210A (en) Coated optical fiber
Kaino Linear Optical Properties of Organic Solids
JPH0654363B2 (en) Method for manufacturing plastic optical fiber
KR920002235B1 (en) Resin molding for optical parts
Blyler Plastic optical fibers
JPH05112635A (en) Totally fluorinated wholly aromatic polyester and optical part using the same polyester
JPS6419307A (en) Light transmittable plastic fiber
JPS61123803A (en) Optical fiber
JPS61292105A (en) Plastic optical fiber having superior heat resistance
JPH0429101A (en) Chalcogenide glass fiber for transmitting co2 laser energy
Suzuki et al. Concentrated-type directional coupler for optical fibers
JPS62215906A (en) Light transmitting fiber
JPS62262003A (en) Optical transmission fiber
JPH0345908A (en) Plastic optical fiber having heat resistance
JPH01229069A (en) Resin formed product for optical part
Wu et al. Design and fabrication of SCPOF preform doped with rare earth complexes
Banhegyi Polymers in optical telecommunications. 1. Passive components
JPS63262603A (en) Preparation of optical fiber