JPS63109281A - Ignition timing control device for internal combustion engine - Google Patents
Ignition timing control device for internal combustion engineInfo
- Publication number
- JPS63109281A JPS63109281A JP25408986A JP25408986A JPS63109281A JP S63109281 A JPS63109281 A JP S63109281A JP 25408986 A JP25408986 A JP 25408986A JP 25408986 A JP25408986 A JP 25408986A JP S63109281 A JPS63109281 A JP S63109281A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- egr
- ignition timing
- intake
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 17
- 238000001514 detection method Methods 0.000 claims description 15
- 230000000979 retarding effect Effects 0.000 claims description 4
- 230000003111 delayed effect Effects 0.000 abstract 2
- 239000000446 fuel Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Electrical Control Of Ignition Timing (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、排気還流制御バルブを具備する自動車等に好
適に利用される内燃機関の点火時期制御装置に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ignition timing control device for an internal combustion engine suitably used in automobiles and the like equipped with an exhaust gas recirculation control valve.
[従来の技術]
一般に、自動車用エンジンでは、排気ガス中に含まれる
NOxの生成を低減するために、吸気系と排気系とを排
気還流通路(以後、EGR通路)で連通ずるとともに、
このEGR通路に排気還流制御バルブ(以後、EGRバ
ルブ)等を介設し、排気ガスの一部を吸気系に還流して
最高燃焼温度を抑制する、いわゆるEGR制御を行うよ
うにしている。[Prior Art] Generally, in an automobile engine, in order to reduce the generation of NOx contained in exhaust gas, an intake system and an exhaust system are communicated through an exhaust gas recirculation passage (hereinafter referred to as an EGR passage).
An exhaust gas recirculation control valve (hereinafter referred to as an EGR valve) is interposed in this EGR passage to perform so-called EGR control in which part of the exhaust gas is recirculated to the intake system to suppress the maximum combustion temperature.
また、排気系に設けた三元触媒での排気ガスの浄化を効
率よく行うために、吸気系に供給される燃料供給量を調
整し、空燃比が理論空燃比近傍に維持されるようにして
いる。その際、燃料供給量は、排気還流が実行された状
態で空燃比が略理論空燃比となるように設定しているの
が普通である。In addition, in order to efficiently purify exhaust gas with a three-way catalyst installed in the exhaust system, the amount of fuel supplied to the intake system is adjusted to maintain the air-fuel ratio near the stoichiometric air-fuel ratio. There is. At this time, the amount of fuel supplied is usually set so that the air-fuel ratio becomes approximately the stoichiometric air-fuel ratio in a state where exhaust gas recirculation is performed.
一方、点火系統においては、エンジンの回転速度、ある
いは燃焼室へ供給された燃料の燃焼速度等に応じた最適
な点火時期を得るために、例えば、ディストリビュータ
に内蔵された遠心式進角装置や真空式進角装置等の進角
値を調節することにより、点火時期を制御するようにし
ている。そして、前述したEGR実行時には、燃料の燃
焼速度が低下するため、点火時期を設定する際は、EG
R実行時の燃料の燃焼速度に適合するように点火時期を
若干速めるようにしているのが一般的である。また、特
開昭59−32672号公報に示されるように、排気還
流率の変動に応じて点火時期を補正するようにしたもの
もある。On the other hand, in the ignition system, in order to obtain the optimal ignition timing according to the engine rotation speed or the combustion speed of the fuel supplied to the combustion chamber, for example, a centrifugal advance device built in the distributor or a vacuum The ignition timing is controlled by adjusting the advance value of a type advance device or the like. When the above-mentioned EGR is executed, the combustion speed of the fuel decreases, so when setting the ignition timing, the EGR
Generally, the ignition timing is slightly advanced to match the combustion speed of the fuel during R execution. Furthermore, as shown in Japanese Unexamined Patent Publication No. 59-32672, there is also a system in which the ignition timing is corrected in accordance with fluctuations in the exhaust gas recirculation rate.
[発明が解決しようとする問題点]
ところが、EGR制御は大気圧と吸気圧との差圧が略設
定値以上となった場合に作動するEGRバルブによる機
械式である。換言すれば、排気ガスの一部が吸気中に還
流されるのは、大気圧と吸気圧との差圧がEGRバルブ
の作動圧を上回った場合であり、エンジンの運転中、常
時EGRを実行しているのではなく、大気圧と吸気圧と
の差圧により、EGRを実行していない領域が存在する
。しかしながら、吸気系に供給される燃料供給量は、吸
気中に排気ガスが混入されているものとみなして、空燃
比が理論空燃比となるように設定されるため、EGRが
実行されていない領域では排気ガスが吸気に還流されな
い分、空燃比の制御中心が理論空燃比からずれるととも
に、燃料の燃焼速度が速くなる。そのため、EGR実行
領域外では最適な点火時期に着火されずにトルクが低下
してエミッション等の悪化を招き不具合となる。[Problems to be Solved by the Invention] However, the EGR control is mechanical using an EGR valve that is activated when the differential pressure between atmospheric pressure and intake pressure exceeds a substantially set value. In other words, part of the exhaust gas is recirculated into the intake air when the differential pressure between atmospheric pressure and intake pressure exceeds the operating pressure of the EGR valve, and EGR is constantly being performed while the engine is running. However, there are regions where EGR is not being performed due to the differential pressure between atmospheric pressure and intake pressure. However, the amount of fuel supplied to the intake system is set so that the air-fuel ratio becomes the stoichiometric air-fuel ratio, assuming that exhaust gas is mixed in the intake air, so the amount of fuel supplied to the intake system is set so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. In this case, the control center of the air-fuel ratio shifts from the stoichiometric air-fuel ratio because the exhaust gas is not recirculated to the intake air, and the combustion speed of the fuel increases. Therefore, outside the EGR execution range, the ignition is not performed at the optimum ignition timing, and the torque decreases, causing problems such as deterioration of emissions.
本発明はかかる不具合を簡単かつ確実に解消することの
できる内燃機関の点火時期御装置を提供することを目的
としている。An object of the present invention is to provide an ignition timing control device for an internal combustion engine that can easily and reliably eliminate such problems.
[問題点を解決するための手段]
本発明は、かかる目的を達成するために、大気圧と吸気
圧との差圧により作動する排気還流制御バルブを具備し
てなる内燃機関において、大気圧を検出する大気圧検出
手段と、吸気圧を検出する吸気圧検出手段と、前記両検
出手段による検出値に基づいて大気圧と吸気圧との差圧
が前記排気還流制御バルブの作動圧を上回っているか否
かを判別する差圧判定手段と、この差圧判定手段により
前記差圧が前記作動圧を下回っていると判定された場合
にのみ点火時期を遅くする方向に進角値を補正する進角
値補正手段とを設けてなることを特徴とする。[Means for Solving the Problems] In order to achieve the above object, the present invention provides an internal combustion engine equipped with an exhaust gas recirculation control valve that operates based on the differential pressure between atmospheric pressure and intake pressure. an atmospheric pressure detection means for detecting the intake pressure, an intake pressure detection means for detecting the intake pressure, and a differential pressure between the atmospheric pressure and the intake pressure based on the detected values by both the detection means exceeds the operating pressure of the exhaust recirculation control valve. differential pressure determining means for determining whether the differential pressure is lower than the operating pressure; and an advance for correcting the advance value in the direction of retarding the ignition timing only when the differential pressure determining means determines that the differential pressure is lower than the operating pressure. It is characterized in that it is provided with an angle value correction means.
[作用]
このような構成によると、排気還流制御バルブの作動状
態は、該バルブの作動状態を直接に左右する大気圧と吸
気圧とを検出することにより判別される。すなわち、大
気圧検出手段と吸気圧検出手段からの検出値に基いて、
大気圧と吸気圧との差圧が排気還流制御バルブの作動圧
を上回っているか否かが差圧判定手段により判定される
。そして、大気圧と吸気圧との差圧が排気還流制御バル
ブの作動圧を上回り排気還流が実行されている場合は、
従前の点火時期が設定され、一方、前記差圧が前記作動
圧を下回り排気還流が実行されていない場合は、進角値
補正手段により点火時期が遅くなる方向に進角値が補正
されることになる。[Operation] According to this configuration, the operating state of the exhaust gas recirculation control valve is determined by detecting the atmospheric pressure and the intake pressure, which directly influence the operating state of the valve. That is, based on the detected values from the atmospheric pressure detection means and the intake pressure detection means,
The differential pressure determining means determines whether the differential pressure between the atmospheric pressure and the intake pressure exceeds the operating pressure of the exhaust recirculation control valve. If the differential pressure between atmospheric pressure and intake pressure exceeds the operating pressure of the exhaust recirculation control valve and exhaust recirculation is being performed,
If the previous ignition timing is set and, on the other hand, the differential pressure is lower than the operating pressure and exhaust gas recirculation is not being performed, the advance value is corrected by the advance value correction means in a direction that retards the ignition timing. become.
[実施例] 以下、本発明の一実施例を図面を参照して説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
第2図は、自動車用エンジンを概略的に示したもので、
図面において1はエンジン本体を示し、2はエンジン本
体1の燃焼室3に連通ずる吸気通路、4は排気通路を示
している。吸気通路2の燃焼室3側を形成する吸気管5
とエアクリーナ側に配設されたスロットルボディとの間
にはサージタンク6を介設している。そして、このサー
ジタンク6内と排気通路4内とを排気還流通路7で連通
させるとともに、該排気還流通路7に大気圧PAと吸気
圧PMとの差圧により作動する排気還流制御バルブ(以
後、EGRバルブと称する)8を介設しである。EGR
バルブ8はエンジンの運転状況に応じたバルブ開成によ
り、排気通路4内の排気ガスの一部を吸気通路2に介設
した前記サージタンク6内に導くためのもので、その負
圧室8aとスロットルバルブ付近のEGRポート9とを
連通する負圧通路10を介して負圧室8aに吸気圧PM
が導入されるようになっている。一方、この負圧室8a
とダイヤフラムを隔てて設けられた定圧室8bには、常
時大気圧PAが導入されるようになっている。そして、
大気圧PAと前記負圧室8aに導かれる吸気圧PMとの
差圧がEGRバルブ作動圧PEGRV (例えば10
0mmHg)を上回るとEGRバルブ8が開成し排気通
路4内の排気ガスの一部をサージタンク6内に導入する
ように設定しである。また、前記負圧通路10の途中に
は、EGRモジュレータ11を介設し、EGRバルブ8
下流側の排気還流通路7内の排気圧を利用して前記EO
Rバルブ8の負圧室8aへ導入される吸気圧PMが調整
されるようにしであるとともに、該EGRモジュレータ
11の上流側には、前記EGRバルブ8の負圧室8aに
作用する吸気圧PMをエンジンの低負荷領域で制限する
電子式の負圧切換弁12を介設しである。Figure 2 schematically shows an automobile engine.
In the drawings, 1 indicates an engine body, 2 an intake passage communicating with a combustion chamber 3 of the engine body 1, and 4 an exhaust passage. An intake pipe 5 forming the combustion chamber 3 side of the intake passage 2
A surge tank 6 is interposed between the throttle body and the throttle body disposed on the air cleaner side. The inside of this surge tank 6 and the inside of the exhaust passage 4 are communicated through an exhaust gas recirculation passage 7, and an exhaust gas recirculation control valve (hereinafter referred to as 8 (referred to as an EGR valve) is installed. EGR
The valve 8 is for guiding a part of the exhaust gas in the exhaust passage 4 into the surge tank 6 interposed in the intake passage 2 by opening the valve according to the operating condition of the engine. Intake pressure PM is transferred to the negative pressure chamber 8a through a negative pressure passage 10 that communicates with the EGR port 9 near the throttle valve.
is being introduced. On the other hand, this negative pressure chamber 8a
Atmospheric pressure PA is always introduced into a constant pressure chamber 8b provided with a diaphragm in between. and,
The differential pressure between the atmospheric pressure PA and the intake pressure PM guided to the negative pressure chamber 8a is the EGR valve operating pressure PEGRV (for example, 10
0 mmHg), the EGR valve 8 opens and a portion of the exhaust gas in the exhaust passage 4 is introduced into the surge tank 6. Further, an EGR modulator 11 is interposed in the middle of the negative pressure passage 10, and an EGR valve 8
Using the exhaust pressure in the exhaust gas recirculation passage 7 on the downstream side, the EO
The intake pressure PM introduced into the negative pressure chamber 8a of the R valve 8 is adjusted, and the intake pressure PM acting on the negative pressure chamber 8a of the EGR valve 8 is arranged on the upstream side of the EGR modulator 11. An electronic negative pressure switching valve 12 is provided to limit the pressure in the engine's low load range.
また、前記サージタンク6側には、大気圧PAを検出す
る大気圧検出手段および吸気圧PMを検出する吸気圧検
出手段たる共通の圧力センサ13を設けである。圧力セ
ンサ13は切換弁14を介して外気中とサージタンク6
内とに選択的に接続し得るようになっている。具体的に
は、切換弁14は前記負圧切換弁12と略同様なもので
、バキュウムスイッチングタイプの三方切換弁であり、
第1の入力ポート14aを前記サージタンク6内に連通
させるとともに、第2の入力ポート14bをフィルタを
介して外気中に開放し、出力ポート14Cを前記圧力セ
ンサ13に接続している。そして、その電気入力端子に
通電が行われていない場合には、吸気圧PA側に保持さ
れて前記第1の入力ポート14aと出力ポート14cと
が連通し、電気入力端子に通電がなされた場合には、大
気圧PA側に切換って前記第2の入力ポート14bと出
力ポート14cとが連通ずるように構成されている。Further, on the surge tank 6 side, a common pressure sensor 13 is provided as an atmospheric pressure detection means for detecting the atmospheric pressure PA and an intake pressure detection means for detecting the intake pressure PM. The pressure sensor 13 is connected to the outside air and the surge tank 6 via the switching valve 14.
It is possible to selectively connect to the inside and outside. Specifically, the switching valve 14 is substantially the same as the negative pressure switching valve 12, and is a vacuum switching type three-way switching valve.
The first input port 14a is communicated with the inside of the surge tank 6, the second input port 14b is opened to the outside air via a filter, and the output port 14C is connected to the pressure sensor 13. When the electrical input terminal is not energized, the intake pressure is held at the PA side and the first input port 14a and the output port 14c communicate with each other, and when the electrical input terminal is energized. In this case, the second input port 14b and the output port 14c are configured to communicate with each other by switching to the atmospheric pressure PA side.
一方、前記吸気管5に設けられたインジェクタ15から
の燃料噴射量をエンジンの運転状況に応じて細密に制御
するマイクロコンピュータシステム16は、前記排気通
路4に設けた02センサ17からの情報に基づいて空燃
比を理論空燃比近傍に維持する、いわゆる02フイード
バツク制御の瘍剤を担うとともに、差圧判定手段18と
、進角値補正手段19の一部をも担っており、中央演算
処理装置20と、メモリ21と、入・出力インターフェ
ース22.23とを備えている。そして、前記入力イン
ターフェース22に少なくとも前記= 7 −
02センサ17からの信号aと、圧力センサ13からの
信号すとが入力され、前記出力インターフェース23か
らは、インジェクタ15と、負圧切換弁12と、切換弁
14およびアクチュエータ24に向けて信号cSd、e
、fが出力されるようになっている。アクチュエータ2
4は、点火プラグ25に電気を導くディストリビュータ
26内の進角調整部(図示せず)を入力される信号に応
じて作動させるようになっている。On the other hand, a microcomputer system 16 that finely controls the amount of fuel injection from the injector 15 provided in the intake pipe 5 according to the operating condition of the engine is based on information from the 02 sensor 17 provided in the exhaust passage 4. The central processing unit 20 plays a role in so-called 02 feedback control, which maintains the air-fuel ratio near the stoichiometric air-fuel ratio. , a memory 21, and input/output interfaces 22 and 23. Then, at least the signal a from the =7-02 sensor 17 and the signal from the pressure sensor 13 are input to the input interface 22, and the injector 15, the negative pressure switching valve 12, and the output interface 23 are input to the input interface 22. , signals cSd, e to the switching valve 14 and the actuator 24.
, f are output. Actuator 2
Reference numeral 4 operates an advance angle adjustment section (not shown) in a distributor 26 that guides electricity to a spark plug 25 in response to an input signal.
差圧判定手段18は、前記切換弁14が外気側と吸気側
に選択的に切換制御されることにより、圧力センサ13
から得られる大気圧PAと吸気圧PMとの差圧が前記E
GRバルブ作動圧PEGRV (100mmHg)を上
回っているか否かを判定するように設定されている。The differential pressure determining means 18 is configured to control the pressure sensor 13 by selectively switching the switching valve 14 between the outside air side and the intake side.
The differential pressure between the atmospheric pressure PA and the intake pressure PM obtained from the above E
It is set to determine whether or not the GR valve operating pressure exceeds PEGRV (100 mmHg).
一方、前記アクチュエータ24とマイクロコンピュータ
システム16とで構成する進角値補正手段19は、上記
差圧判定手段18の判定結果に基づき大気圧PAと吸気
圧PMとの差圧がEGRバルブ作動圧PEGRVを下回
っている場合にのみ、点火時期を遅くする方向にディス
トリビュータ26内の進角調整部を作動させて進角値を
補正するように設定されている。すなわち、大気圧PA
と吸気圧PMとの差圧がEGRバルブ作動圧PEGRV
を上回りEGR実行中の場合は、基本進角値TH,TB
SE等をもとに最終進角値THTが設定される。一方、
大気圧PAと吸気圧PMとの差圧がEGRバルブ作動圧
PEGRVを下回りEGRが実行されていない場合には
、基本進角値Tl1TBSEにEGR実行領域外でのE
GR補正値THTEGR(例えば、クランク角度の上死
点に対して遅角側に一8°ずらした値)等を付加し点火
時期を遅くする方向に最終進角値THTが設定される。On the other hand, the advance angle value correction means 19 constituted by the actuator 24 and the microcomputer system 16 determines that the differential pressure between the atmospheric pressure PA and the intake pressure PM is equal to the EGR valve operating pressure PEGRV based on the determination result of the differential pressure determination means 18. Only when the value is less than , the advance angle adjustment section in the distributor 26 is operated to retard the ignition timing to correct the advance value. That is, atmospheric pressure PA
The difference between the pressure and the intake pressure PM is the EGR valve operating pressure PEGRV.
If EGR is in progress, the basic advance angle values TH, TB
The final lead angle value THT is set based on SE, etc. on the other hand,
If the differential pressure between the atmospheric pressure PA and the intake pressure PM is lower than the EGR valve operating pressure PEGRV and EGR is not being executed, the basic advance value Tl1TBSE is set to EGR outside the EGR execution area.
The final advance value THT is set in the direction of retarding the ignition timing by adding a GR correction value THTEGR (for example, a value shifted by 18 degrees to the retard side with respect to the top dead center of the crank angle).
そして、上記マイクロコンピュータシステム16には、
以上のような制御を行うために、第4図に示すようなプ
ログラムも内蔵させである。まず、ステップ51で切換
弁14を切換た後の圧力センサ13からの大気圧PAを
取込みステップ52へ進む。ステップ52でも同様に圧
力センサ13によるサージタンク6内の吸気圧PMを取
込み、ステップ53へ進む。そして、ステップ53では
、例えば回転数センサ等からの情報をもとに基本進角値
THTBSEを演算しステップ54へ進む。ステップ5
4ではEGR補正実行フラグFLAGが1か否かを判定
し、EGR補正実行フラグFLAGが1であればステッ
プ55へ進み、大気圧PAとEGRバルブ作動圧PEG
RVおよびヒステリシス旧S分との差圧をEGR補正判
定値CMPとしてセットしステップ57へ進む。The microcomputer system 16 includes:
In order to perform the above control, a program as shown in FIG. 4 is also included. First, in step 51, the atmospheric pressure PA from the pressure sensor 13 after switching the switching valve 14 is taken in, and the process proceeds to step 52. In step 52, the intake pressure PM in the surge tank 6 is similarly acquired by the pressure sensor 13, and the process proceeds to step 53. Then, in step 53, a basic advance angle value THTBSE is calculated based on information from, for example, a rotation speed sensor, and the process proceeds to step 54. Step 5
In step 4, it is determined whether the EGR correction execution flag FLAG is 1 or not, and if the EGR correction execution flag FLAG is 1, the process proceeds to step 55, where atmospheric pressure PA and EGR valve operating pressure PEG are determined.
The differential pressure between the RV and the old hysteresis S is set as the EGR correction determination value CMP, and the process proceeds to step 57.
一方、EGR補正判定フラグFLAGが1でなければス
テップ56へ進み大気圧PAとEGRバルブ作動圧PE
GRVをEGR補正判定値CMPとしてCMPにセット
する。ステップ57では吸気圧PMがEGR補正判定値
CMP以上か否かを判定し、未満である−すなわち大気
圧PAと吸気圧PMとの差圧がEGRバルブの作動圧P
EGRVを上回っていると判定した場合は、EGRバル
ブ8が作動しEGR実行中として、ステップ58へ進み
、一方、吸気圧PMがEGR補正判定値CMP以」二で
あると判定した場合は、EGRが実行されていないと判
定しステップ59へ進む。ステップ58では、EGR補
正判定フラグFLAGに0をセット(クリア)してステ
ップ60へ進む。ステップ60では、前記ステップ53
において演算された基本進角値THTBSEをもとに、
EGR実行時の最終進角値THTを設定する。一方、ス
テップ59ではEGR補正判定フラグFLAGに1をセ
ットしてステップ61へ進み、ステップ61では基本進
角値TIITBSEに、EGR実行時のEGR補正値T
IITEGRを付加した値をもとに最終進角値THTを
設定する。On the other hand, if the EGR correction determination flag FLAG is not 1, the process proceeds to step 56, where atmospheric pressure PA and EGR valve operating pressure PE
Set GRV to CMP as EGR correction determination value CMP. In step 57, it is determined whether or not the intake pressure PM is equal to or greater than the EGR correction determination value CMP.
If it is determined that the intake pressure PM exceeds EGRV, the EGR valve 8 is activated and EGR is executed, and the process proceeds to step 58. On the other hand, if it is determined that the intake pressure PM is greater than or equal to the EGR correction determination value CMP, the EGR valve 8 is activated and EGR is executed. It is determined that the process has not been executed, and the process proceeds to step 59. In step 58, the EGR correction determination flag FLAG is set (cleared) to 0, and the process proceeds to step 60. In step 60, the step 53
Based on the basic advance angle value THTBSE calculated in
Sets the final advance angle value THT during EGR execution. On the other hand, in step 59, the EGR correction determination flag FLAG is set to 1, and the process proceeds to step 61. In step 61, the basic advance angle value TIITBSE is set to the EGR correction value T during EGR execution.
The final lead angle value THT is set based on the value to which IITEGR is added.
しかして、このような構成によると、切換弁14の切換
制御により得られる圧力センサ13からの検出値をもと
に、EGRバルブ8が作動しているか否か、換言すれば
、排気ガスの一部が吸気中に還流されているか否かが判
定される。すなわち、大気圧PAと吸気圧PMとの差圧
がEGRバルブ作動圧PEGRを上回っていれば、EG
Rバルブ8が作動し、排気還流が実行されていることに
なる。その場合は、各種センサ等からの情報により算出
された基本進角値THTBSEをもとに、最終進角値T
HTが設定され、この値をもとに点火プラグ25に電気
が導かれることになる(ステップ57→58−60)。According to such a configuration, it is possible to determine whether or not the EGR valve 8 is operating based on the detected value from the pressure sensor 13 obtained by switching control of the switching valve 14, in other words, it is possible to determine whether or not the EGR valve 8 is operating. It is determined whether part of the air is being refluxed during inspiration. In other words, if the differential pressure between atmospheric pressure PA and intake pressure PM exceeds the EGR valve operating pressure PEGR, the EGR
This means that the R valve 8 is activated and exhaust gas recirculation is being performed. In that case, the final lead angle value T
HT is set, and electricity is led to the spark plug 25 based on this value (steps 57→58-60).
一方、大気圧PAと吸気圧PMとの差圧がEGRバルブ
8の作動圧PEGRV未満であれば、EGRバルブ8が
作動せず、排気還流が行われていないことになる。その
場合は、基本進角値THTBSEにEGR補正値TII
TEGR等が付加されて点火時期が遅くなる方向に最終
進角値THTが設定されることになる(ステップ57→
59→61)。On the other hand, if the differential pressure between the atmospheric pressure PA and the intake pressure PM is less than the operating pressure PEGRV of the EGR valve 8, the EGR valve 8 does not operate and exhaust gas recirculation is not performed. In that case, the EGR correction value TII is added to the basic advance angle value THTBSE.
The final advance value THT is set in the direction of retarding the ignition timing by adding TEGR etc. (Step 57→
59 → 61).
したがって、このような構成であれば、圧力センサ13
からの情報をもとにEGR実行中か否かを確実に判定す
ることができるとともに、EGR実行領域外での燃焼速
度に適合した最適な点火時期を設定することができる。Therefore, with such a configuration, the pressure sensor 13
It is possible to reliably determine whether or not EGR is being executed based on the information from the engine, and also to set the optimum ignition timing that matches the combustion speed outside the EGR execution range.
その結果、EGR実行領域外においても最適な点火時期
に着火されるため、出力トルクの低下による運転性が損
なわれるようなことが防止できる。また、大気圧PAと
吸気圧PMとの差圧は圧力センサ13により検出される
相対的なものであるから、大気圧PAが変動しても確実
にEGRバルブ8の作動を検知して、前述した進角値の
補正を行うことができる。As a result, ignition is performed at the optimum ignition timing even outside the EGR execution range, so it is possible to prevent drivability from being impaired due to a decrease in output torque. In addition, since the differential pressure between the atmospheric pressure PA and the intake pressure PM is a relative value detected by the pressure sensor 13, the operation of the EGR valve 8 can be reliably detected even if the atmospheric pressure PA fluctuates, and the above-mentioned The lead angle value can be corrected.
そして、本実施例では、通常、設置される圧力センサ1
3に切換弁14を付設し、圧力センサ13の圧力検出領
域を大気側と吸気側とに切換制御し得るようにしている
ため、格別な圧力センサを設けるようなこともなく、好
都合である。In this embodiment, the pressure sensor 1 that is normally installed is
3 is provided with a switching valve 14 so that the pressure detection area of the pressure sensor 13 can be switched between the atmospheric side and the intake side, which is advantageous since there is no need to provide a special pressure sensor.
なお、本発明は、上記実施例に限定されるものではなく
、例えば、大気圧検出手段と吸気圧検出手段とを各別に
設けるようにしてもよく、あるいは、EGR実行領域外
でのEGR補正値を排気ガスの還流量に応じて設定する
ようにしてもよい。Note that the present invention is not limited to the above-mentioned embodiments, and for example, the atmospheric pressure detection means and the intake pressure detection means may be provided separately, or the EGR correction value outside the EGR execution area may be may be set depending on the amount of exhaust gas recirculation.
[発明の効果]
以上、詳述したように本発明では、大気圧と吸気圧とを
直接検出し、排気還流制御バルブの作動状態を大気圧の
変化に左右されることなく、確実に判別するようにして
いる。そして、排気還流制御バルブの作動状態に応じて
進角値を補正し、最適な点火時期を設定するようにして
いる。その結果、排気還流が実行されていない領域にお
いても、運転性が損なわれるようなことのない内燃機関
の点火時期制御装置を提供することができる。[Effects of the Invention] As detailed above, the present invention directly detects atmospheric pressure and intake pressure, and reliably determines the operating state of the exhaust recirculation control valve without being affected by changes in atmospheric pressure. That's what I do. Then, the advance angle value is corrected according to the operating state of the exhaust gas recirculation control valve to set the optimum ignition timing. As a result, it is possible to provide an ignition timing control device for an internal combustion engine that does not impair driveability even in a region where exhaust gas recirculation is not performed.
第1図は本発明を明示するための構成説明図、第2図は
本発明の一実施例を示すシステム説明図、第3図は同実
施例の制御設定条件を示す図、第4図は同実施例の制御
手順を示すフローチャート図である。
1・・・エンジン本体
2・・・吸気通路
4・・・排気通路
6・・・サージタンク
7・・・EGR通路
8・・・EGRバルブ
10・・・負圧通路
13・・・大気圧検出手段(圧力センサ)13・・・吸
気圧検出手段(圧力センサ)14・・・切換弁
16・・・マイクロコンピュータシステム18・・・差
圧判定手段
19・・・進角値補正手段Fig. 1 is an explanatory diagram of the configuration to clarify the present invention, Fig. 2 is an explanatory diagram of a system showing an embodiment of the invention, Fig. 3 is a diagram showing control setting conditions of the embodiment, and Fig. 4 is an explanatory diagram of the system. It is a flowchart figure which shows the control procedure of the same Example. 1... Engine body 2... Intake passage 4... Exhaust passage 6... Surge tank 7... EGR passage 8... EGR valve 10... Negative pressure passage 13... Atmospheric pressure detection Means (pressure sensor) 13...Intake pressure detection means (pressure sensor) 14...Switching valve 16...Microcomputer system 18...Differential pressure determination means 19...Advance value correction means
Claims (1)
ルブを具備してなる内燃機関において、大気圧を検出す
る大気圧検出手段と、吸気圧を検出する吸気圧検出手段
と、前記両検出手段による検出値に基いて大気圧と吸気
圧との差圧が前記排気還流制御バルブの作動圧を上回っ
たか否かを判定する差圧判定手段と、この差圧判定手段
により前記差圧が前記作動圧を下回っていると判定され
た場合にのみ点火時期を遅くする方向に進角値を補正す
る進角値補正手段とを設けてなることを特徴とする内燃
機関の点火時期制御装置。In an internal combustion engine equipped with an exhaust gas recirculation control valve operated by a pressure difference between atmospheric pressure and intake pressure, an atmospheric pressure detection means for detecting atmospheric pressure, an intake pressure detection means for detecting intake pressure, and both detection means are provided. differential pressure determining means for determining whether the differential pressure between the atmospheric pressure and the intake pressure exceeds the operating pressure of the exhaust recirculation control valve based on a value detected by the means; 1. An ignition timing control device for an internal combustion engine, comprising: an advance angle value correcting means for correcting an advance angle value in the direction of retarding the ignition timing only when it is determined that the ignition timing is lower than the operating pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25408986A JPS63109281A (en) | 1986-10-25 | 1986-10-25 | Ignition timing control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25408986A JPS63109281A (en) | 1986-10-25 | 1986-10-25 | Ignition timing control device for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63109281A true JPS63109281A (en) | 1988-05-13 |
Family
ID=17260070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25408986A Pending JPS63109281A (en) | 1986-10-25 | 1986-10-25 | Ignition timing control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63109281A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5746046A (en) * | 1980-09-04 | 1982-03-16 | Nissan Motor Co Ltd | Internal combustion engine-controller |
JPS57179370A (en) * | 1981-04-27 | 1982-11-04 | Toyota Motor Corp | Ignition timing control system |
JPS5968536A (en) * | 1982-10-14 | 1984-04-18 | Nissan Motor Co Ltd | Exhaust purifying device for internal-combustion engine |
-
1986
- 1986-10-25 JP JP25408986A patent/JPS63109281A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5746046A (en) * | 1980-09-04 | 1982-03-16 | Nissan Motor Co Ltd | Internal combustion engine-controller |
JPS57179370A (en) * | 1981-04-27 | 1982-11-04 | Toyota Motor Corp | Ignition timing control system |
JPS5968536A (en) * | 1982-10-14 | 1984-04-18 | Nissan Motor Co Ltd | Exhaust purifying device for internal-combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60237140A (en) | Controller for internal-combustion engine | |
EP1088979B1 (en) | A control system for a direct injection engine of spark ignition type | |
JP3273174B2 (en) | Engine control device | |
JPS63109281A (en) | Ignition timing control device for internal combustion engine | |
JPS63109250A (en) | Air-fuel ratio control device for internal combustion engine | |
JPS6181568A (en) | Method of controlling exhaust gas recirculation of internal-combustion engine | |
JP2621032B2 (en) | Fuel injection control device | |
JPH04166633A (en) | Air-fuel ratio control method for internal combustion engine | |
JPS60166728A (en) | Electronic control device for supercharged engine | |
JPS62225745A (en) | Air-fuel ratio control device for engine | |
JPS61175252A (en) | Combustion controller for engine | |
JPS63124865A (en) | Ignition timing control device for internal combustion engine | |
JPH0826821B2 (en) | Exhaust gas recirculation control device for diesel engine | |
JPH03199653A (en) | Atmospheric pressure detection for internal combustion engine | |
JPS624678Y2 (en) | ||
JPS63179171A (en) | Exhaust gas recirculation device for engine | |
JPH0417793Y2 (en) | ||
JPH0517394Y2 (en) | ||
JPH0559259B2 (en) | ||
JPH01203622A (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0437251Y2 (en) | ||
JPS6062661A (en) | Ignition-timing controller for engine | |
JPH01130051A (en) | Exhaust gas recirculation system for internal combustion engine | |
JPH04330345A (en) | Fuel injection control device for internal combustion engine | |
JPH0295772A (en) | Ignition timing controller for engine provided with exhaust reflux controller |