JPS63109118A - Method for operating heating furnace - Google Patents
Method for operating heating furnaceInfo
- Publication number
- JPS63109118A JPS63109118A JP25498086A JP25498086A JPS63109118A JP S63109118 A JPS63109118 A JP S63109118A JP 25498086 A JP25498086 A JP 25498086A JP 25498086 A JP25498086 A JP 25498086A JP S63109118 A JPS63109118 A JP S63109118A
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- exhaust gas
- air
- heating furnace
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims description 12
- 239000007789 gas Substances 0.000 claims abstract description 47
- 238000002485 combustion reaction Methods 0.000 claims abstract description 39
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000001301 oxygen Substances 0.000 claims abstract description 38
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 38
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000446 fuel Substances 0.000 abstract description 12
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 7
- 238000012546 transfer Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 235000013527 bean curd Nutrition 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、スラブ、ビレット、ブルーム等の釦付を所定
の目標温度に加熱する場合に使用する加熱炉、灼熱炉(
本発明では加熱炉と総称する)の操業方法に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heating furnace, a scorching furnace (
The present invention relates to a method of operating a heating furnace (generally referred to as a heating furnace).
従来、加熱炉等の燃焼及び伝熱効率の向上を図るため、
加熱炉等の燃焼用空気に酸素を富化する方法が周知であ
った。Conventionally, in order to improve the combustion and heat transfer efficiency of heating furnaces,
Methods of enriching combustion air, such as in heating furnaces, with oxygen are well known.
しかし、伝熱効率等の向上のためには、酸素濃度を大き
くする必要があるが、酸素濃度の増大は、同時に炉内の
火炎温度の上昇をもたらし、その結果、窒素酸化物(N
Ox)の発生量も増大する。他方、このNOxの排出量
に関しては、公害防止法で一定の上限値が定められてお
り、むやみに富化酸素量を増加できない。However, in order to improve heat transfer efficiency, etc., it is necessary to increase the oxygen concentration, but an increase in the oxygen concentration also causes an increase in the flame temperature in the furnace, and as a result, nitrogen oxides (N
The amount of Ox) generated also increases. On the other hand, regarding the amount of NOx discharged, a certain upper limit is set by the Pollution Control Law, and the amount of enriched oxygen cannot be increased unnecessarily.
そこで、かなり高い酸素濃度下での酸素富化燃焼を行な
うと同時にNOxOx生成種力抑制するための各種の提
案がなされたが、その中で特に加熱炉内の火炎及びガス
温度の低下による方法が有効である。その−例として、
炉内雰囲気ガスをファン等により強制的に循環させる方
法が考えられているが、この方法では炉内温度の低温均
一化には効果があるが、バーナの火炎自体の温度低下に
は寄与せず、したがって酸素濃度をあまり高く設定する
ことはできなかった。Therefore, various proposals have been made to perform oxygen-enriched combustion at a considerably high oxygen concentration and at the same time to suppress the generation of NOxOx. It is valid. As an example,
A method of forcibly circulating the atmospheric gas inside the furnace using a fan, etc. has been considered, but although this method is effective in making the temperature inside the furnace low and uniform, it does not contribute to lowering the temperature of the burner flame itself. Therefore, it was not possible to set the oxygen concentration too high.
そこで本発明の目的は、NOXの生成を法規制の枠内に
抑制しつり、高い酸素濃度下での酸素富化燃焼を行なう
ことにより、加熱炉内の伝熱効率を向上させようとする
ものである。Therefore, the purpose of the present invention is to suppress the generation of NOX within the limits of legal regulations and to improve the heat transfer efficiency in the heating furnace by performing oxygen-enriched combustion under a high oxygen concentration. be.
上記従来の問題点を解決し、上記目的を達成するための
本第1発明は、バーナの燃焼用空気に、加熱炉の燃焼排
ガスの一部に酸素を富化してなる混合気体を注入するこ
とを特徴としている。A first aspect of the present invention for solving the above-mentioned conventional problems and achieving the above-mentioned objects is to inject into the combustion air of the burner a mixed gas made by enriching oxygen in a part of the combustion exhaust gas of the heating furnace. It is characterized by
また、本第2発明は、バーナの燃焼用空気に、加熱炉の
燃焼排ガスの一部に酸素を富化してなる混合気体を注入
する際、該排ガス中の窒素酸化物濃度を検知し、該濃度
に応じて富化酸素濃度を制?TIIすることを特徴とす
るものである。In addition, the second invention detects the concentration of nitrogen oxides in the exhaust gas when injecting a gas mixture obtained by enriching oxygen in a part of the combustion exhaust gas of the heating furnace into the combustion air of the burner. Control enriched oxygen concentration according to concentration? It is characterized by TII.
一般に、燃焼用空気に酸素を富化することは、燃焼用空
気中の不要な窒素の量を低減し、加熱効率を向上させる
上で有効である。Generally, enriching combustion air with oxygen is effective in reducing the amount of unnecessary nitrogen in the combustion air and improving heating efficiency.
ところで、本発明においては、従来のように、燃焼用空
気として空気に酸素富化したものを用いるのではなく、
炉から排出される燃焼排ガスを酸素富化して凝似空気を
製造し、これを燃焼用空気に混合して使用する。したが
って、バーナ部での燃焼火炎温度は比較的低温に抑える
ことができるから、NO2の生成が抑制される。換言す
ると、本発明では公害防止上、規制されているNOX排
出量を超えることなく、燃焼用空気に富化する酸素量を
増加することができ、炉内の伝熱効率をより一層向上さ
せることができる。By the way, in the present invention, instead of using oxygen-enriched air as combustion air as in the past,
The flue gas discharged from the furnace is enriched with oxygen to produce condensed air, which is mixed with combustion air for use. Therefore, since the combustion flame temperature in the burner section can be kept to a relatively low temperature, the generation of NO2 is suppressed. In other words, the present invention makes it possible to increase the amount of oxygen enriched in the combustion air without exceeding the regulated NOx emissions in order to prevent pollution, and to further improve the heat transfer efficiency in the furnace. can.
他方で、生成したNOxの一部が燃焼用空気として循環
されるから、排ガス損失が減少し、全体として炉効率が
向上し、燃料が節約できる。On the other hand, a portion of the NOx produced is circulated as combustion air, reducing exhaust gas losses, increasing overall furnace efficiency and saving fuel.
さらに、特に本第2発明では、炉から排ガス中のNOに
の濃度を検知し、これに応じて燃焼用空気中の富化酸素
濃度を制御するものであるから、炉内の燃焼状態の変動
等にも的確に対応でき、炉効率を向上させ、公害発生を
抑制することができる。Furthermore, especially in the second invention, since the concentration of NO in the exhaust gas from the furnace is detected and the enriched oxygen concentration in the combustion air is controlled accordingly, fluctuations in the combustion state in the furnace can be avoided. etc., it is possible to improve furnace efficiency and suppress the occurrence of pollution.
以下、本発明を図面に基づき詳説する。 Hereinafter, the present invention will be explained in detail based on the drawings.
まず本発明による燃焼方法を第1図により説明する。第
1図において、燃焼用の空気は燃焼用空気ブロワ−1に
より圧送され排ガス出側に配した空気予熱器(排熱回収
装置)2に入り、ここで予熱された後、燃焼用空気本管
3を通って、加熱炉4の各バーナ部へ供給される。一方
、加熱炉4から排出された燃焼排ガスの一部は空気予熱
器2の前段で採取され排ガス循環ブロワ−5により混合
器6へ送られる。該混合器6は純酸素配管7と連結して
おり、該配管を通じて純酸素が混合器6へ供給される。First, the combustion method according to the present invention will be explained with reference to FIG. In Fig. 1, combustion air is force-fed by a combustion air blower 1, enters an air preheater (exhaust heat recovery device) 2 arranged on the exhaust gas outlet side, and is preheated here. 3 and is supplied to each burner section of the heating furnace 4. On the other hand, a part of the combustion exhaust gas discharged from the heating furnace 4 is collected before the air preheater 2 and sent to the mixer 6 by the exhaust gas circulation blower 5. The mixer 6 is connected to a pure oxygen pipe 7, through which pure oxygen is supplied to the mixer 6.
混合器6では排ガスと純酸素が充分混合され、次いで、
得られる混合気体は混合気体供給ダクト8を通って、燃
焼用空気本管3内へ注入され、空気予熱器から送られて
くる燃焼用空気と混合された後、加熱器3の各ゾーンの
バーナ部へ送られる。かくして、加熱炉3のバーナ部で
は、燃焼排ガスの混入により、富化酸素量の多い燃焼用
空気が供給されるので、NOxの排出を抑制しながら、
炉内伝熱効率を高めることができる。In the mixer 6, the exhaust gas and pure oxygen are thoroughly mixed, and then
The resulting mixed gas is injected into the combustion air main pipe 3 through the mixed gas supply duct 8, mixed with the combustion air sent from the air preheater, and then sent to the burners in each zone of the heater 3. sent to the department. In this way, in the burner section of the heating furnace 3, combustion air with a large amount of oxygen enrichment is supplied due to the mixture of combustion exhaust gas, so that while suppressing NOx emissions,
Heat transfer efficiency within the furnace can be increased.
次に、第2図により本発明による燃焼制御方法を説明す
る。まず、排ガスダクトに設けた空気予熱器2の後段に
、NoXと0□の検知装置9を設け、該装M9からの信
号を分析計10へ送る。 分析計10ではNOXと02
の濃度を測定した後、その各濃度に応じた信号を演算装
置11に送る。該装置11には燃料の使用量に対応する
信号12が入る。Next, the combustion control method according to the present invention will be explained with reference to FIG. First, a NoX and 0□ detection device 9 is provided downstream of the air preheater 2 provided in the exhaust gas duct, and a signal from the device M9 is sent to the analyzer 10. Analyzer 10 has NOX and 02
After measuring the concentration of each concentration, a signal corresponding to each concentration is sent to the calculation device 11. The device 11 receives a signal 12 corresponding to the amount of fuel used.
演算装置11では上記の各種信号に基づき演算を行ない
、炉の効率上最適なoz’J、W4環排ガス量。The calculation device 11 performs calculations based on the above-mentioned various signals to determine the optimal oz'J and W4 ring exhaust gas amounts in terms of furnace efficiency.
空気量を算出し、各制御信号を純酸素量制御装置13、
排ガス量制御装置14.空気制御装置15へ送り、それ
ぞれ適正な02 量、排ガス!、空気量が、燃焼用空気
本管3を介して、加熱炉のバーナ部へ送られる。かくし
て、外乱が生じても常に最適な状態で加熱炉4内での燃
焼が行なわれることになる。Calculates the air amount and sends each control signal to a pure oxygen amount control device 13;
Exhaust gas amount control device 14. Send to the air control device 15, each with an appropriate amount of 02, exhaust gas! , a quantity of air is sent via the combustion air main 3 to the burner section of the furnace. In this way, even if a disturbance occurs, combustion within the heating furnace 4 is always performed in an optimal state.
次に、本発明を具体的な操業条件に即して、調査検討し
た結果を図面に基づき説明する。なお、この操業は、燃
料:COG、加熱量:85T/H,燃料原単位: 30
0Mca l! /T、二次空気温度:450℃。Next, the results of research and study on the present invention will be explained based on the drawings in accordance with specific operating conditions. In addition, this operation uses COG fuel, heating amount: 85 T/H, fuel consumption rate: 30
0Mcal! /T, secondary air temperature: 450°C.
循環ガス温度=450°Cという条件で連続式加熱炉に
て行なった。The experiment was carried out in a continuous heating furnace under the condition that the circulating gas temperature was 450°C.
第3図及び第4図は上記加熱炉において、バーナに専大
する排ガス循環率と、NOx生成量及び炉内伝熱効率と
の関係を、富化酸素濃度の大小関係と共に調査した結果
を示したものである。両図により、以下に述べるように
NOx生成量を法規制値以下に抑制しながら、富化酸素
濃度を上昇させるに必要な循環ガス量を決定でき、併せ
て、その循環ガス量を採用した場合の炉内伝熱効率の向
1度合をも把握することができる。両図中、排ガス循環
率(ρ)は、(ρ)=排ガス循環量/燃料ガス量で定義
し、NOx生成量は通常の空気を使用したときのNOx
生成量を1としたときのNOx生成比で表示する。Figures 3 and 4 show the results of investigating the relationship between the exhaust gas circulation rate exclusively for the burner, the amount of NOx produced, and the heat transfer efficiency in the furnace, as well as the magnitude relationship of the enriched oxygen concentration, in the above heating furnace. It is. From both figures, it is possible to determine the amount of circulating gas necessary to increase the enriched oxygen concentration while suppressing the amount of NOx production below the legal regulation value, as described below. It is also possible to grasp the degree of in-furnace heat transfer efficiency. In both figures, the exhaust gas circulation rate (ρ) is defined as (ρ) = exhaust gas circulation amount / fuel gas amount, and the NOx generation amount is the NOx when normal air is used.
Displayed as a NOx production ratio when the production amount is set to 1.
さて、第3図により具体的な検討を進める。まず、現状
のNOx生成比(通常空気を使用した場合)は1であり
、このときの酸素濃度は21%(A点)である。ところ
で、本発明者らの調査によると現状値(現状でのNOx
生成値)は110ppmであり、この値とNOXの法規
制値(170ppm )とを比較すると、従来方法でも
現状値の約1.5倍まで、NOxの生成が許容されるこ
とになる。つまり、第3図のNOx生成比=1.5のと
きの酸素濃度23%(B点)まで、排ガスの循環をせず
に酸素を富化させることができる(すなわちA点−B点
)。このとき、炉内伝熱効率はA′点−B′点へ上昇す
る(第4図参照)。Now, we will proceed with a more specific study using Figure 3. First, the current NOx generation ratio (when normal air is used) is 1, and the oxygen concentration at this time is 21% (point A). By the way, according to the research conducted by the present inventors, the current value (current NOx
The NOx production value) is 110 ppm, and comparing this value with the NOx regulation value (170 ppm) shows that even with the conventional method, NOx production is allowed up to about 1.5 times the current value. In other words, oxygen can be enriched without circulating the exhaust gas (i.e., point A-B) up to the oxygen concentration of 23% (point B) when the NOx generation ratio=1.5 in FIG. 3. At this time, the heat transfer efficiency in the furnace increases to point A'-B' (see FIG. 4).
次に、NOx生成比を法規制の上限に留めながら、富化
酸素濃度を上昇させるには、本発明に従ってB点=C点
へと排ガス循環率(ρ)を上昇させる(ただし、富化酸
素濃度は28%(D、D’点)とする)。この時、炉内
伝熱効率はB′点−〇′点へと上昇する(第4図参照)
。Next, in order to increase the enriched oxygen concentration while keeping the NOx generation ratio within the upper limit of legal regulations, according to the present invention, the exhaust gas circulation rate (ρ) is increased from point B to point C (however, the exhaust gas circulation rate (ρ) The concentration is 28% (points D and D'). At this time, the heat transfer efficiency in the furnace rises to point B'-〇' (see Figure 4).
.
さらに、以上の操作を、富化酸素濃度と燃料原単位低減
効果(燃料節約率)との関係において示すと第5図のよ
うになる。図中、A“、B”、C“。Furthermore, the above operation is shown in FIG. 5 in terms of the relationship between enriched oxygen concentration and fuel consumption reduction effect (fuel saving rate). In the figure, A", B", C".
D#はそれぞれ前記A、B、C,D点に対応する。D# corresponds to the points A, B, C, and D, respectively.
同図で明らかなように、排ガスを循環しながら、酸素を
富化(28%)すれば、燃料節約率は、A′点−B#点
−C“点へと上昇する。なお、曲線A″−B“=D″は
排ガス循環をせず、酸素を富化した場合を表示したもの
であるが、B″−D“ではNOx生成値が法規制値を超
えてしまい、採用できない。As is clear from the figure, if oxygen is enriched (28%) while circulating the exhaust gas, the fuel saving rate increases from point A' to point B# to point C. "-B"=D" indicates the case where exhaust gas is not circulated and oxygen is enriched, but in B"-D", the NOx production value exceeds the legal regulation value, so it cannot be adopted.
次に、本発明方法による燃料節約効果を第6図によりさ
らに具体的に説明する。第6図は、最大加熱(T/H)
時における燃料、酸素量、循環排ガス使用量の推移を従
来例(酸素富化のみ行ない、排ガス循環を行なわない)
と比較したものである。Next, the fuel saving effect achieved by the method of the present invention will be explained in more detail with reference to FIG. Figure 6 shows maximum heating (T/H)
Conventional example (oxygen enrichment only, no exhaust gas circulation)
This is a comparison.
(図中(a)は従来法、(b)は本発明法を表わす)。((a) in the figure represents the conventional method, and (b) represents the method of the present invention).
図から、最大T/H′NI間であっても、排ガスを循環
させると共に富化酸素を増加させることにより使用燃料
を大巾に凍らすことができ、しかも、このときNOx生
成量も法規制値を超えることなく操業できることがわか
る。From the figure, even at the maximum T/H'NI, the fuel used can be frozen to a large extent by circulating the exhaust gas and increasing enriched oxygen, and at this time, the amount of NOx produced is also within the legal limit. It can be seen that operation can be performed without exceeding the value.
以上の通り、本発明においては、従来の酸素富化設備に
排ガス循環系を付加したので、炉内伝熱効率及び燃料節
約率が格段に向上する。As described above, in the present invention, since an exhaust gas circulation system is added to the conventional oxygen enrichment equipment, the in-furnace heat transfer efficiency and fuel saving rate are significantly improved.
なお、本発明方法は、加熱炉、熱処理炉をはじめあらゆ
る燃焼設備に応用可能である。Note that the method of the present invention is applicable to all kinds of combustion equipment including heating furnaces and heat treatment furnaces.
第1図及び第2図はそれぞれ本第1.第2発明法の一具
体例図、第3図は排ガス循環率とNoX生成比及び富化
酸素濃度の関係を示す図、第4図は排ガス循環率と炉内
伝熱効率及び富化酸素濃度の関係を示す図、第5図は富
化酸素濃度と燃料原単位低減効果との関係を示す図、第
6図は加熱炉の最大T/H時での従来法(a)と本発明
法(blとの比較図である。
2・・・空気予熱器、4・・・加熱炉、6・・・混合器
、9・・・検知装置、10・・・分析計、11・・・演
算装置、13・・・純酸素量制御装置、14・・・排ガ
ス量制御装置、15・・・空気量制御装置。
特許出願人 住友金属工業株式会社
第1図
第2図
キ井力゛ス 循環1ン (/’)
羽F77’ス循頂率(p)
第5図
富イヒイに○2(%)
第6
(a)
8与 Fa’l 集子 i5゜
(b)Figures 1 and 2 are from Book 1, respectively. A diagram showing a specific example of the second invention method, Figure 3 is a diagram showing the relationship between the exhaust gas circulation rate, NoX generation ratio, and enriched oxygen concentration, and Figure 4 is a diagram showing the relationship between the exhaust gas circulation rate, in-furnace heat transfer efficiency, and enriched oxygen concentration. Figure 5 is a diagram showing the relationship between enriched oxygen concentration and fuel consumption reduction effect, and Figure 6 is a diagram showing the relationship between the conventional method (a) and the present invention method (a) at the maximum T/H of the heating furnace. It is a comparison diagram with bl. 2... Air preheater, 4... Heating furnace, 6... Mixer, 9... Detection device, 10... Analyzer, 11... Arithmetic device , 13... Pure oxygen amount control device, 14... Exhaust gas amount control device, 15... Air amount control device. Patent applicant Sumitomo Metal Industries, Ltd. Figure 1 Figure 2 Key force circulation 1 (/') Feather F77's crest circulation rate (p) Figure 5 Tofu Ihii ○2 (%) 6th (a) 8th Fa'l Shuko i5゜ (b)
Claims (2)
部に酸素を富化してなる混合気体を注入することを特徴
とする、加熱炉の操業方法。(1) A method for operating a heating furnace, which comprises injecting into the combustion air of the burner a mixed gas obtained by enriching part of the combustion exhaust gas of the heating furnace with oxygen.
部に酸素を富化してなる混合気体を注入するとともに、
その際前記排ガス中の窒素酸化物濃度を検知し、その濃
度に応じて富化酸素濃度を制御することを特徴とする、
加熱炉の操業方法。(2) Injecting into the combustion air of the burner a mixed gas made by enriching oxygen in a part of the combustion exhaust gas of the heating furnace,
At this time, the concentration of nitrogen oxides in the exhaust gas is detected, and the enriched oxygen concentration is controlled according to the concentration.
How to operate a heating furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25498086A JPS63109118A (en) | 1986-10-27 | 1986-10-27 | Method for operating heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25498086A JPS63109118A (en) | 1986-10-27 | 1986-10-27 | Method for operating heating furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63109118A true JPS63109118A (en) | 1988-05-13 |
Family
ID=17272542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25498086A Pending JPS63109118A (en) | 1986-10-27 | 1986-10-27 | Method for operating heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63109118A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0324225A (en) * | 1989-06-22 | 1991-02-01 | Nkk Corp | Oxygen enriching combustion method for continuous heating furnace |
JP2012097312A (en) * | 2010-11-01 | 2012-05-24 | Jfe Steel Corp | Fire extinguishing method of continuous heating furnace |
-
1986
- 1986-10-27 JP JP25498086A patent/JPS63109118A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0324225A (en) * | 1989-06-22 | 1991-02-01 | Nkk Corp | Oxygen enriching combustion method for continuous heating furnace |
JP2012097312A (en) * | 2010-11-01 | 2012-05-24 | Jfe Steel Corp | Fire extinguishing method of continuous heating furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1096202B1 (en) | Method and apparatus for NOx reduction | |
EP0877203B1 (en) | Dual oxidant combustion method | |
JP2693101B2 (en) | A method for reducing the amount of nitrogen oxides generated during combustion | |
JP2942711B2 (en) | Deep stage combustion method | |
EP0281144A2 (en) | Oxygen enriched combustion | |
JPH07253210A (en) | Combustion method, which do not depend upon super-stoichiometry | |
CN105937766A (en) | Low nitrogen oxide incinerating device used for treatment of nitrogen containing waste gas and nitrogen containing waste liquid and low nitrogen oxide incinerating method used for treatment of nitrogen containing waste gas and nitrogen containing waste liquid | |
DE102011018846A1 (en) | Axial piston motor and method for operating an axial piston motor | |
US20010007232A1 (en) | Process for the thermal treatment of meal-form raw materials | |
KR20120094949A (en) | Method for heating a blast furnace stove | |
Teng et al. | Control of NOx emissions through combustion modifications for reheating furnaces in steel plants | |
CN103380216B (en) | Apparatus and method for heating a blast furnace stove | |
JPS63109118A (en) | Method for operating heating furnace | |
CN205373424U (en) | Industrial furnace waste heat recovery system | |
EP1087023A1 (en) | Rotary hearth furnace and method of reducing metal oxide in a rotary hearth furnace | |
CN205842694U (en) | A kind of low NOx incinerator processing nitrogenous waste gas, waste liquid | |
RU2353855C2 (en) | Method of staged combustion using preheated oxidant | |
CN205782967U (en) | A kind of New-type boiler is without nitre combustion system | |
JPH0116887Y2 (en) | ||
JPH07301403A (en) | Combustion device of boiler furnace | |
CN112923391B (en) | Air preheater capable of reducing NOx emission of tail gas of heating furnace and using method | |
JPH0328624A (en) | Multi-stage combustion method | |
JPS58120004A (en) | Two-staged combustion | |
JP2001003055A (en) | Method for reducing nitrogen oxide in duplex coke oven combustion exhaust gas | |
US2920692A (en) | Method of firing open hearth furnaces |