JPS63108930A - Manufacture of metallic die - Google Patents
Manufacture of metallic dieInfo
- Publication number
- JPS63108930A JPS63108930A JP61253268A JP25326886A JPS63108930A JP S63108930 A JPS63108930 A JP S63108930A JP 61253268 A JP61253268 A JP 61253268A JP 25326886 A JP25326886 A JP 25326886A JP S63108930 A JPS63108930 A JP S63108930A
- Authority
- JP
- Japan
- Prior art keywords
- die
- mold
- container
- punch
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000000463 material Substances 0.000 claims abstract description 36
- 238000007733 ion plating Methods 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims 1
- 239000011248 coating agent Substances 0.000 abstract description 4
- 238000000576 coating method Methods 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract 1
- 238000007740 vapor deposition Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 13
- 238000004080 punching Methods 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
Landscapes
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、金型の製造方法に係り、特に打ち抜き金型の
ようにプレス加工において使用される金型の製造方法に
関するものである。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a mold, and particularly to a method for manufacturing a mold used in press working, such as a punching mold. It is something.
(従来の技術)
種々の機械器具の部品を大量生産するために、コイル状
素材、定尺状素材またはスケッチ状素材等を利用して、
打ち抜き加工、曲げ加工または深絞り加工等のようなプ
レス加工法が広く利用されている。(Prior art) In order to mass produce parts for various machines and equipment, coiled materials, fixed length materials, sketch materials, etc. are used.
Pressing methods such as punching, bending or deep drawing are widely used.
このような種々のプレス加工において使用される金型は
、一般の機械工作法において用いられる加工用工具と同
様に、その寿命が問題となる。The lifespan of the molds used in these various types of press working is a problem, as is the case with working tools used in general machining methods.
そこで、例えば打ち抜き金型においては、素材と直接接
触する工具を、耐摩耗性に優れた合金工具鋼、または超
硬合金材から製作された金型が、広く用いられている。Therefore, for example, in punching dies, dies in which the tool that comes into direct contact with the material is made of alloy tool steel or cemented carbide material with excellent wear resistance are widely used.
深絞り用金型では、鋳鉄などを工具材として利用してい
る。Deep drawing dies use materials such as cast iron as tool materials.
打ち抜き金型にしろ、深絞り金型にせよ、工具と材料の
接触は避けられないから、工具の長寿命化、工具及び材
料の表面損傷をできる限り防ぐために、工具材質を選定
するだけでなく、工具表面に硬質材を被覆する技術が普
及している。Whether it is a punching die or a deep drawing die, contact between the tool and the material is unavoidable, so in order to extend the life of the tool and prevent surface damage to the tool and material as much as possible, it is important to not only select the tool material. , the technology of coating the tool surface with a hard material is becoming widespread.
これらの技術のうち、例えば、TD処理、CVD処理な
どが広く普及している。前記処理刃は、TiC等の種々
の炭化物を工具表面に科学的に蒸着する手法であり、工
具表面のみを極めて硬くできる。このため、工具寿命が
際だってのびる。Among these techniques, for example, TD processing, CVD processing, etc. are widely used. The treated blade is a method in which various carbides such as TiC are chemically deposited on the tool surface, and only the tool surface can be made extremely hard. This significantly extends tool life.
しかしながら、前記処理法は化学的蒸着法であるため、
工具材を高温(約1000℃以上)で長時間加熱する必
要があり、工具母材の金属的性質が変化するため、適用
材料に制限がある。例えば、高速度鋼などは、難しい。However, since the treatment method is a chemical vapor deposition method,
It is necessary to heat the tool material at a high temperature (approximately 1000° C. or higher) for a long time, and the metallic properties of the tool base material change, so there are restrictions on the materials that can be used. For example, high-speed steel is difficult.
また、熱歪みが生じるため、精密な金型には適用できな
い。In addition, thermal distortion occurs, so it cannot be applied to precision molds.
このような欠点を克服するため、イオン・ブレーティン
グなどの物理的蒸着法が応用され始めた。In order to overcome these drawbacks, physical vapor deposition methods such as ion brating have begun to be applied.
これは、蒸着したい化合物を加熱しイオン化して、ター
ゲット(この場合は金型)にあて、被膜を工具表面に形
成するものである。比較的、低温状態で(室温から約5
00℃以下)実施可能なため、工具母材の性質が余り変
化せず、適用対象が広く、歪みが少ない、という利点が
ある。This involves heating and ionizing the compound to be vapor deposited, applying it to a target (in this case, a mold), and forming a film on the tool surface. At a relatively low temperature (from room temperature to about 5
00°C or lower), the properties of the tool base material do not change much, and it has the advantage of being applicable to a wide range of subjects and causing less distortion.
(発明が解決しようとする問題点)
イオンプレーティング法によれば上述したような利点が
あるが、イオンプレーティングは物理的に硬化層を蒸着
するため剥離強度の点で十分とはいえず、特に金型表面
に油膜などがあると容易に剥離してしまう。そこで、イ
オンプレーティングを行う前に金型表面にグラインダー
をかけて粗面にすることが考えられるが、均一な粗さに
することができず且つグラインダーに方向性があるため
、研削目に沿って剥離しやすいという問題がある。(Problems to be Solved by the Invention) Although the ion plating method has the above-mentioned advantages, the ion plating method physically deposits a hardened layer, so it cannot be said to be sufficient in terms of peel strength. In particular, if there is an oil film on the mold surface, it will peel off easily. Therefore, it is possible to roughen the surface of the mold by applying a grinder to the surface of the mold before ion plating, but it is not possible to achieve a uniform roughness, and since the grinder has directionality, There is a problem that it is easy to peel off.
したがって本発明は金型材料等に影響されることなく且
つ剥離しにくい硬化層を金型表面に形成する方法を提供
することを目的とする。Therefore, an object of the present invention is to provide a method for forming a hardened layer on a mold surface that is not affected by the mold material and is difficult to peel off.
(問題点を解決するための手段)
本発明は、上記問題点を解決すべくレーザ光を金型の表
面にパルス照射し、該金型の表面に微少な凹凸を形成し
た後、前記金型表面にイオン・ブレーティング法により
高硬質材料をコーティングするようにしたものである。(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention irradiates the surface of a mold with a pulse of laser light to form minute irregularities on the surface of the mold, and then The surface is coated with a highly hard material using the ion-blating method.
(作 用)
本発明は前記手段により、金型表面はレーザ光のパルス
照射によって均一な粗面となり、この粗面にイオンプレ
ーティングによって超硬質材料をコーティングするため
、形成される硬化層の剥離強度が高まる。(Function) According to the present invention, the mold surface becomes a uniform rough surface by pulse irradiation with laser light, and this rough surface is coated with an ultra-hard material by ion plating, so that the hardened layer formed can be peeled off. Increases strength.
(実施例) 以下に本発明の実施例を添付図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the accompanying drawings.
先ず本発明にあっては第1図に示すように、プレス金型
1のポンチ2の表面3に、YAGレーザ発振器4からの
発振されたレーザ光線をファイバーケーブル5及びレー
ザノズルヘッド6を介して照射する。このレーザ光線は
パルス発振によって発振器4から発振するため、第2図
に示すようにポンチ2の表面3に微少な凹凸が均一に形
成される。First, in the present invention, as shown in FIG. irradiate. Since this laser beam is oscillated by the oscillator 4 by pulse oscillation, minute irregularities are uniformly formed on the surface 3 of the punch 2 as shown in FIG.
前記凹凸の高さ及び周期は、レーザ出力、パルス間隔、
レーザノズルヘッド5の移動速度等によって変化するが
、本発明の作用が期待される約1ミクロン(μ)から十
数ミクロン(μ)程度の凹凸は、適切な加工条件を設定
することにより、容易に得ることができる。The height and period of the unevenness are determined by the laser output, pulse interval,
Although it varies depending on the moving speed of the laser nozzle head 5, etc., unevenness of about 1 micron (μ) to about 10-odd microns (μ), where the effect of the present invention is expected, can be easily solved by setting appropriate processing conditions. can be obtained.
さらに、ひとたび条件を設定すれば、加工物の表面全体
に亘って全く同一の微少な凹凸状態を形成することが出
来る。従って、例えば人手によるグラインダ作業等とは
比較にならない、均質美麗な表面状態を実現できる。Furthermore, once the conditions are set, it is possible to form exactly the same minute unevenness over the entire surface of the workpiece. Therefore, it is possible to achieve a uniform and beautiful surface condition that is incomparable to, for example, manual grinding work.
またグラインダ作業によると、研削目と直角方向には被
覆材料は剥離しがたいが、研削目に沿っては剥離しやす
い。レーザによって形成された微少な凹凸は、方向がラ
ンダムであり、特に、被覆材料が剥離しやすい、という
方向がない。Furthermore, according to the grinding operation, the coating material is difficult to peel off in the direction perpendicular to the grinding marks, but it is easy to peel off along the grinding marks. The fine irregularities formed by the laser are random in direction, and there is no particular direction in which the coating material is likely to peel off.
レーザ発振器として、YAGレーザでなく、CO2レー
ザを利用することも考えられるが、CO2レーザでは、
加工対象の表面にうねりを生じさせることなく、微少な
凹凸を形成することは難しく、価格も安定であることか
ら、YAGレーザを応用することが最も適当である。It is also possible to use a CO2 laser instead of a YAG laser as a laser oscillator, but with a CO2 laser,
It is difficult to form minute irregularities without causing waviness on the surface of the workpiece, and since the price is stable, it is most appropriate to apply a YAG laser.
本発明の目的を達成するためには、出力100W程度の
YAGレーザを利用することで十分である。また、レー
ザ発振器は、細かい凹凸を形成するために、数10キロ
ヘルツ(kllz )までのパルス出力が可能であるこ
とが望ましく、この点からもYAGレーザが適当である
。In order to achieve the object of the present invention, it is sufficient to use a YAG laser with an output of about 100 W. Further, in order to form fine irregularities, it is desirable that the laser oscillator be able to output pulses up to several tens of kilohertz (kllz), and from this point of view as well, a YAG laser is suitable.
更に、レーザ光線が照射される際には、前記ポンチ2の
表面3に微少な凹凸が形成されるだけでなく、油等の汚
れがレーザ光線の光熱により蒸発飛散し、加工対象の表
面状態は、非常に清浄となる、という利点がある。Furthermore, when the laser beam is irradiated, not only minute irregularities are formed on the surface 3 of the punch 2, but also dirt such as oil is evaporated and scattered by the light heat of the laser beam, and the surface condition of the workpiece is changed. It has the advantage of being extremely clean.
上記のレーザ光線による加工プロセスは、例えば、ロボ
ットにレーザノズルヘッド5を保持させるなどの工夫に
より、簡単に自動化できる。The processing process using the laser beam described above can be easily automated by, for example, having a robot hold the laser nozzle head 5.
以上の如くして金型1のポンチ2の表面3を粗面とした
ならば、第3図に示すように金型1を容器7内にセット
する。容器7内にはTiC等の超硬質材料8がセットさ
れるとともにこの材料8を加熱するヒータ9が設けられ
、更に容器7にはガスの導入口10及び排気口11が形
成されている。After the surface 3 of the punch 2 of the mold 1 has been roughened as described above, the mold 1 is set in a container 7 as shown in FIG. An ultra-hard material 8 such as TiC is set in the container 7, and a heater 9 for heating the material 8 is provided.The container 7 is further formed with a gas inlet 10 and an exhaust port 11.
そして、金型1を一方の電極に超硬質材料8を他方の電
極につなぎ、容器7内を減圧するとともにヒータ9にて
超硬質材料8を加熱することで、超硬質材料をイオン化
し金型のポンチ表面3に蒸菅せしめる。Then, by connecting the mold 1 to one electrode and the ultra-hard material 8 to the other electrode, reducing the pressure inside the container 7 and heating the ultra-hard material 8 with the heater 9, the ultra-hard material is ionized and the mold is molded. Steam the punch surface 3.
本発明の別の実施例として、金型工具母材の表面を窒化
、浸炭、などの通常の手法により、一旦硬化させた後、
レーザ光を金型の表面にパルス照射し、金型の表面に微
少な凹凸を形成し、前記金型表面にイオン・ブレーティ
ング法により超硬質材料をコーティングすることも、考
えられる。この場合、金型表面だけでなく、表面直下母
材も硬質であることから、耐衝撃性、耐摩耗性に一層優
れた金型工具を研削することは、一般に難しいから、こ
の点からも、レーザ照射により凹凸をする形成法は、有
効である。As another embodiment of the present invention, after the surface of the mold tool base material is once hardened by a conventional method such as nitriding or carburizing,
It is also conceivable to irradiate the surface of the mold with a pulse of laser light to form minute irregularities on the surface of the mold, and then coat the surface of the mold with an ultra-hard material by an ion-blating method. In this case, not only the mold surface but also the base material immediately below the surface is hard, so it is generally difficult to grind a mold tool with better impact resistance and wear resistance. A method of forming irregularities by laser irradiation is effective.
(発明の効果)
以上に説明したように本発明によれば、金型材料に左右
されないイオンプレーディング法によって硬化層を形成
するにあたり、金型表面をレーザ光によって粗面とした
後に形成するようにしたので、硬化層が剥離することが
なく寿命の長い金型を安価に提供することができる。(Effects of the Invention) As explained above, according to the present invention, when forming a hardened layer by the ion plating method, which is not affected by the mold material, the hardened layer is formed after the mold surface is roughened with a laser beam. Therefore, it is possible to provide a mold with a long life at a low cost without causing the cured layer to peel off.
第1図は金型表面にレーザ光を照射している状態を示す
図、第2図は金型表面の凹凸状態を示す線図、第3図は
金型表面にイオンプレーティングを施している状態を示
す図である。
1・・・金型、2・・・ポンチ、3・・・ポンチ表面、
4・・・レーザ発振器、8・・・超硬質材料。Figure 1 shows the mold surface being irradiated with laser light, Figure 2 is a diagram showing the unevenness of the mold surface, and Figure 3 shows ion plating applied to the mold surface. It is a figure showing a state. 1... Mold, 2... Punch, 3... Punch surface,
4...Laser oscillator, 8...Super hard material.
Claims (1)
凹凸を有する粗面とし、次いで金型表面にイオンプレー
ティング法によって超硬質材料をコーティングするよう
にしたことを特徴とする金型の製造方法。A mold characterized in that the mold surface is made into a rough surface with minute irregularities by irradiating pulses of laser light onto the mold surface, and then the mold surface is coated with an ultra-hard material by an ion plating method. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61253268A JPS63108930A (en) | 1986-10-24 | 1986-10-24 | Manufacture of metallic die |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61253268A JPS63108930A (en) | 1986-10-24 | 1986-10-24 | Manufacture of metallic die |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63108930A true JPS63108930A (en) | 1988-05-13 |
Family
ID=17248916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61253268A Pending JPS63108930A (en) | 1986-10-24 | 1986-10-24 | Manufacture of metallic die |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63108930A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1435269A1 (en) * | 2003-01-06 | 2004-07-07 | General Motors Corporation | Method of reducing cycle time for metal forming |
JP2009061465A (en) * | 2007-09-05 | 2009-03-26 | Daido Steel Co Ltd | Metallic mold for cold forging and its manufacturing method |
JP2009061464A (en) * | 2007-09-05 | 2009-03-26 | Daido Steel Co Ltd | Die for warm and hot forging, and its manufacturing method |
KR20170139084A (en) | 2015-04-21 | 2017-12-18 | 도카로 가부시키가이샤 | A roughening method of a base material, a surface treatment method of a base material, a method of producing a thermal spray coating material and a thermal spray coating material |
CN112453204A (en) * | 2020-11-05 | 2021-03-09 | 中南大学 | Method and device for integrally forming shape of alloy complex component |
-
1986
- 1986-10-24 JP JP61253268A patent/JPS63108930A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1435269A1 (en) * | 2003-01-06 | 2004-07-07 | General Motors Corporation | Method of reducing cycle time for metal forming |
JP2009061465A (en) * | 2007-09-05 | 2009-03-26 | Daido Steel Co Ltd | Metallic mold for cold forging and its manufacturing method |
JP2009061464A (en) * | 2007-09-05 | 2009-03-26 | Daido Steel Co Ltd | Die for warm and hot forging, and its manufacturing method |
KR20170139084A (en) | 2015-04-21 | 2017-12-18 | 도카로 가부시키가이샤 | A roughening method of a base material, a surface treatment method of a base material, a method of producing a thermal spray coating material and a thermal spray coating material |
US11131014B2 (en) | 2015-04-21 | 2021-09-28 | Tocalo Co., Ltd. | Method for roughening surface of substrate, method for treating surface of substrate, method for producing thermal spray-coated member, and thermal spray-coated member |
CN112453204A (en) * | 2020-11-05 | 2021-03-09 | 中南大学 | Method and device for integrally forming shape of alloy complex component |
CN112453204B (en) * | 2020-11-05 | 2022-06-10 | 中南大学 | Method and device for integrally forming shape of alloy complex component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7140113B2 (en) | Ceramic blade and production method therefor | |
EP0880423B1 (en) | Cutting die and method of forming | |
US9643877B2 (en) | Thermal plasma treatment method | |
WO2016167161A1 (en) | Protective film and method for producing same | |
US20160221036A1 (en) | Method for enhancing adhesion of low-temperature ceramic coating | |
DE50106765D1 (en) | METHOD FOR PRODUCING A SURFACE-ALLOYED CYLINDRICAL, PARTIAL CYLINDRICAL OR HOLLOW-CYLINDRICAL COMPONENT | |
JPS63108930A (en) | Manufacture of metallic die | |
JPH09253770A (en) | Die | |
JPH03104934A (en) | Method for manufacture of nozzle for use on spinning machine and nozzle manufactured thereby | |
JP2008012820A (en) | Method of manufacturing mold for forming honeycomb structure | |
Kawata | Development of mass-production-type plasma chemical vapour deposition equipment and its application to various dies | |
JPH04344887A (en) | Laser beam machining method | |
Aizawa et al. | High-density plasma nitriding assisted micro-texturing onto martensitic stainless steel mold-die | |
JPH0757904B2 (en) | Heat treatment furnace roll and manufacturing method thereof | |
JPH02241685A (en) | Laser beam machining method for fine ceramics wire drawing die | |
JP2017056498A (en) | Carbide tool and manufacturing method of the same | |
US20220134508A1 (en) | Roller burnishing tool for treating a workpiece surface | |
SU1488092A1 (en) | Method of deforming workpieces | |
JPS61136748A (en) | Cutting-tool holding apparatus | |
JPS59224221A (en) | Processing method for high hardness material | |
JP2017056499A (en) | Carbide tool and manufacturing method of the same | |
JPS62234687A (en) | Manufacture of die | |
CN115652297A (en) | Metal surface pretreatment method adopting powder preset type cladding process | |
JP2876094B2 (en) | Graphite electrolytic electrode | |
JPH0230717A (en) | Method for roughening and treating surface of roll for cold rolling |