JPS63108773A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63108773A
JPS63108773A JP25377386A JP25377386A JPS63108773A JP S63108773 A JPS63108773 A JP S63108773A JP 25377386 A JP25377386 A JP 25377386A JP 25377386 A JP25377386 A JP 25377386A JP S63108773 A JPS63108773 A JP S63108773A
Authority
JP
Japan
Prior art keywords
layer
polycrystalline silicon
emitter
opening
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25377386A
Other languages
Japanese (ja)
Inventor
Yujiro Yasunaga
安永 雄次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25377386A priority Critical patent/JPS63108773A/en
Publication of JPS63108773A publication Critical patent/JPS63108773A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the displacement of a mask pattern by a method wherein the surface of a substrate to which a base layer is formed is coated with an insulating layer, an opening is shaped through selective removal, a polycrystalline silicon layer containing a diffusion source is laminated and sections except the polycrystalline silicon layer filled into be opening for an emitter are removed. CONSTITUTION:A base region 2 is shaped previously to the surface of a semicon ductor substrate 1, and a silicon oxide layer 3 is formed and a silicon nitride layer 4 is laminated, thus constituting an insulator layer. The insulator layer is removed selectively to shape an opening 5. A polycrystalline silicon layer 6 to which As is doped as a diffusion source and sections except the layer 6 filled into the opening 5 for an emitter are taken off, and As as the diffusion source is introduced into the region 2 from the opening for the emitter to form an emitter region 7. An emitter electrode 9 and a base electrode 8 are shaped, and a protruding section 10 is removed. Accordingly, the effect of the displace ment of a mask pattern for the polycrystalline silicon layer, side etching, etc. is removed, and the damage of the insulator layer due to etching can be prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半導体素子の製造方法に係り、特に高周波トラ
ンジスタに好適する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a semiconductor device, and is particularly suitable for high-frequency transistors.

(従来の技術) 高周波半導体素子として利用しているnpn型バイポー
ラトランジスタの製造方法を第1図イル二に説明すると
、n導電型を示すSi半導体基板20を用意してその表
面に珪素酸化物層21を公知の熱酸化法により約200
0人形成する。このSi半導体基板20には予めベース
層として動作するp要領域23を設置してあり、この珪
素酸化物層21を通常のPEP法により選択的に除去し
て後述するエミッタならびにベースコンタクト用として
利用する開孔22・・・を設け(第1図口)、更にAs
ドープド多結晶珪素層24をCVD法により堆積後PE
P法によってパターニングを施す。
(Prior Art) A method for manufacturing an npn-type bipolar transistor used as a high-frequency semiconductor element is explained with reference to FIG. 21 to about 200 by a known thermal oxidation method.
Form 0 people. This Si semiconductor substrate 20 is provided with a p-required region 23 which acts as a base layer in advance, and this silicon oxide layer 21 is selectively removed by a normal PEP method and used as an emitter and base contact, which will be described later. An opening 22... is provided (opening in Figure 1), and further As
PE after depositing the doped polycrystalline silicon layer 24 by CVD method.
Patterning is performed using the P method.

この工程によってエミッタ用開孔にはAsドープド多結
晶珪素層24が充填されると共に付近の珪素酸化物21
表面にも積層し、次いでこのAsをSi半導体基板内部
に導入してn型エミッタ領域25を形成する、(第1図
口)更にp型領域23ならびに残ったAsドープド多結
晶珪素層24に電極として動作するA1を連続して設け
るが、具体的にはスパッタ法で1μ叢位を被着後珪素酸
化物層を3000人程度被着してからPEP法によりパ
ターニングして電極26゜27を形成する。この結果第
2図ハに示すようにエミッタ領域25に積層した多結晶
珪素層24はエミッタ電極27よりはみ出した部分28
が残るので、これを更にエツチングにより除去して第2
図二に示す高周波トランジスタ到を完成する。
Through this step, the emitter opening is filled with the As-doped polycrystalline silicon layer 24 and the nearby silicon oxide 21
Then, this As is introduced into the Si semiconductor substrate to form an n-type emitter region 25 (Fig. Specifically, a layer of 1 μm is deposited using a sputtering method, and then a silicon oxide layer is deposited for approximately 3,000 layers, and then patterned using a PEP method to form electrodes 26° and 27. do. As a result, as shown in FIG.
remains, so this is further removed by etching and the second
The high frequency transistor shown in Figure 2 is completed.

(発明が解決しようとする問題点) 第2図イル二に示す製法によって製造する高周波トラン
ジスタ即ちμ波トランジスタは単一のウェーハにエミッ
タをピッチ5.5μl又エミツタ用開孔は直径0.6μ
mと極めて微細な構造が要求されるので、各種パターン
形成に利用するPIEP工程におけるマスク合せの余裕
がないのが実情である。このために、ベース電極26と
Asドープド多結晶珪素層24が短絡したり、この多結
晶珪素層24の中心が開孔22の中心に一致しない事態
が起り電極用のA1は直接エミッタ領域25に接触して
突き抜は現象を起す恐れも発生する。
(Problems to be Solved by the Invention) A high-frequency transistor, that is, a μ-wave transistor manufactured by the manufacturing method shown in FIG.
Since an extremely fine structure of m is required, the reality is that there is no margin for mask alignment in the PIEP process used for forming various patterns. For this reason, the base electrode 26 and the As-doped polycrystalline silicon layer 24 may be short-circuited, or the center of the polycrystalline silicon layer 24 may not coincide with the center of the opening 22, and the electrode A1 may be directly connected to the emitter region 25. There is also a risk that a phenomenon may occur if there is contact and piercing.

前述のような微細パターンを必要とするのでエミッタ電
極27とベース電極26間の距離は1.5μ未満と狭く
、更に多結晶珪素層のはみ出し部分28があるので電極
パターン形成工程に必要なPUP工程ではこの段差のた
めにレジスト残りやレジストパターン細りが発生してそ
の歩留りが低下する。
Since the above-mentioned fine pattern is required, the distance between the emitter electrode 27 and the base electrode 26 is narrow, less than 1.5 μm, and furthermore, since there is a protruding portion 28 of the polycrystalline silicon layer, the PUP process necessary for the electrode pattern forming process is required. This step difference causes resist residue and resist pattern thinning, resulting in a decrease in yield.

更に、多結晶珪素層のはみ出し部分28のエツチングに
当っては前述のようにエミッタ電極27とベース電極2
6間の距離が0.75μ讃と狭い上にこの間にある多結
晶珪素の確認が十分にできずJustetchj、Bを
行ってもバラツキが発生する難点があるほかに、このエ
ツチング工程によって露出する絶縁物層21も侵される
難点は否めない0本発明は上記難点を除去する新規な半
導体素子の製造方法に関し、特に多結晶珪素層のマスク
パターンずれ、サイドエツチング等の影響を除去し更に
エツチングによる絶縁物層の損傷を排除することを目的
とする。
Furthermore, when etching the protruding portion 28 of the polycrystalline silicon layer, the emitter electrode 27 and the base electrode 2 are etched as described above.
The distance between 6 and 6 is narrow at 0.75 μm, and the polycrystalline silicon between them cannot be sufficiently confirmed, resulting in variations even if Justetch and B are performed. In addition, the insulation exposed by this etching process The present invention relates to a new method for manufacturing a semiconductor device that eliminates the above-mentioned drawbacks, and in particular eliminates the effects of mask pattern misalignment and side etching of the polycrystalline silicon layer, and further improves insulation by etching. The purpose is to eliminate damage to the material layer.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) この目的を達成するのに本発明ではベース層を予め形成
した半導体基板表面に絶縁物層を被覆後、これを選択的
に除去して開花を設は更に拡散源を含む多結晶珪素層を
積層し1次いでエミッタ用開孔に充填した多結晶珪素層
以外のそれを除去する。
(Means for Solving the Problem) In order to achieve this object, the present invention further includes coating an insulating layer on the surface of a semiconductor substrate on which a base layer has been formed in advance, and then selectively removing the insulating layer to create a flower. A polycrystalline silicon layer containing a diffusion source is laminated, and then the polycrystalline silicon layer other than the polycrystalline silicon layer filled in the emitter hole is removed.

この除去工程により前記絶縁物層表面の大部分はこの多
結晶珪素層との積層構造となっており、このまSエミッ
タ拡散ならびにA1電極用金属の堆積ならびにそのパタ
ーニングを実施する手法を採用した。このパターニング
に際してはAI主電極外に多結晶珪素層の除去も実施す
る。
As a result of this removal step, most of the surface of the insulator layer has a laminated structure with the polycrystalline silicon layer, and a method of performing S emitter diffusion, deposition of metal for the A1 electrode, and patterning thereof was adopted. During this patterning, the polycrystalline silicon layer is also removed outside the AI main electrode.

(作 用) このように本発明方法では前述のようにエミッタ用開孔
のみに拡散源を含む多結晶珪素層を充填してベース用開
孔のそれを除去するが、絶縁物層表面には多結晶珪素層
を残した状態で電極用A1もしくはA1合金を被着する
方式を採用している。従ってエミッタ用開孔に充填する
多結晶珪素層のずれは心配する必要がなく、これに積層
するAIもしくはA1合金のエツチングに際しては、絶
縁層を直接損傷しない利点をもち、後述のようにこの絶
縁層を複数層構造とすればその効果を向上することにな
る。又エミッタとベース電極間の距離が0.75μmと
極端に狭くてもその全面に存在する多結晶珪素層を目視
しながらエツチングが可能となるので、正確さを増すこ
とができる優利さをもっている。
(Function) As described above, in the method of the present invention, only the emitter opening is filled with the polycrystalline silicon layer containing the diffusion source and the base opening is filled with the polycrystalline silicon layer containing the diffusion source. A method is adopted in which A1 or A1 alloy for electrodes is deposited with the polycrystalline silicon layer remaining. Therefore, there is no need to worry about misalignment of the polycrystalline silicon layer filled in the emitter hole, and when etching the AI or A1 alloy layered thereon, it has the advantage of not directly damaging the insulating layer. The effect will be improved if the layers have a multi-layer structure. Furthermore, even if the distance between the emitter and the base electrode is extremely narrow as 0.75 μm, it is possible to perform etching while visually observing the polycrystalline silicon layer existing over the entire surface, which has the advantage of increasing accuracy.

(実施例) 第1図イ〜ホにより本発明の実施例を詳述するが、都合
上従来の技術と重複する記載もあるが新番号を付して説
明する。
(Example) An example of the present invention will be described in detail with reference to FIGS.

ρ、が0.001〜0.002Ω口のn形半導体基板1
を用意し、そこに比抵抗0.65〜0.75Ω1のn+
形エピタキシャル層(図示せず)を常法に従って設け、
後述するμ波トランジスタのコレクタ電極を形成する領
域とする。
n-type semiconductor substrate 1 with ρ of 0.001 to 0.002Ω
Prepare an n+ resistivity of 0.65 to 0.75Ω1.
a shaped epitaxial layer (not shown) is provided in a conventional manner;
This is a region where a collector electrode of a μ-wave transistor to be described later will be formed.

この半導体基板1のn領域表面にはBをイオン注入して
表面濃度5 X 10”atoms/cc程度のベース
領域2を予め形成後、この表面に熱酸化法によって厚さ
2000人位の酸化珪素層3を設けてから、CVD法に
よって窒化珪素層4を約1700人積層して絶縁物層を
構成する。
After forming a base region 2 in advance with a surface concentration of about 5 x 10" atoms/cc by ion-implanting B into the n-region surface of the semiconductor substrate 1, a silicon oxide film with a thickness of about 2000 nm is deposited on this surface by a thermal oxidation method. After forming the layer 3, about 1700 silicon nitride layers 4 are stacked by CVD to form an insulating layer.

この絶縁物層を通常のPEP法によって選択的に除去し
て開孔5・・・を設けて単一のウェーハにピッチ5.5
μ−でエミッタ用開孔5・・・を形成すると共にその間
孔径を0.6μ薦とし、又このエミッタ用開孔に近接す
るベース用開孔5・・・間の距離は1.5μ履を維持す
る超微細パターンを形成する。(第1図イ)次に拡散源
としてAsをドープした多結晶珪素層6を第1図口に示
すように厚さ3800人の超微細パターンに堆積してか
ら、エミッタ用開孔に充填したもの以外を通常のPEP
工程によって除去して第1図ハを得、このエミッタ用開
孔から拡散源であるAsをベース領域2に導入して表面
温度約2 X 10”atoms/ceの口“形エミッ
タ領域7を設ける。
This insulating layer is selectively removed by a normal PEP method to provide openings 5... and a pitch of 5.5 is formed on a single wafer.
The emitter hole 5 is formed with a diameter of 0.6μ, and the distance between the base hole 5 adjacent to the emitter hole is 1.5μ. Form an ultra-fine pattern to maintain. (Figure 1A) Next, a polycrystalline silicon layer 6 doped with As as a diffusion source was deposited in an ultra-fine pattern with a thickness of 3800 mm as shown in Figure 1, and then the emitter opening was filled. Regular PEP for other items
This is removed by the process to obtain Figure 1(c), and As is a diffusion source is introduced into the base region 2 through this emitter opening to form a mouth-shaped emitter region 7 with a surface temperature of about 2×10” atoms/ce. .

南回では単一のエミッタ領域しか示していないが前述の
ように複数を作成することは勿論である。
Although only a single emitter region is shown in the southern region, it is of course possible to create a plurality of emitter regions as described above.

この工程後はエミッタ電極ならびにベース電極用のA1
をスパッタリング法によりgさ約1μmを被着してから
、珪素酸化物層(図示せず)を3000人位更に被覆す
る6と言うのは後述するRIE法の適用時に使用する塩
素系ガスにより、A1パターニングにおけるレジストの
損傷によりパターン精度の低下を防止するものである。
After this process, A1 for emitter electrode and base electrode
A thickness of approximately 1 μm is deposited by a sputtering method, and then a silicon oxide layer (not shown) is further coated by approximately 3,000 layers. This prevents pattern accuracy from decreasing due to damage to the resist during A1 patterning.

珪素酸化物層は通常のPEP工程によってパターニング
を施してからAlをRIE法によってパターニングする
。その条件は5iC1420SCにパワー450v圧力
8パスカルでA1をエツチングするが、AIに隣接する
多結晶珪素層6はそのJust Etching時間よ
り10分程度長くすることによってパターニングを行う
The silicon oxide layer is patterned by a normal PEP process, and then Al is patterned by RIE. The conditions are that A1 is etched using a 5iC1420SC with a power of 450 V and a pressure of 8 Pascal, but the polycrystalline silicon layer 6 adjacent to AI is patterned by making the Just Etching time about 10 minutes longer.

この工程ではベース用開孔との開会面に被着する多結晶
珪素層を目視しながら行う、尚電極用金属としてはA1
の単層以外としてAl−5iあるいはAl−5L−Cu
も適用可能であることを付記する。
In this process, the polycrystalline silicon layer deposited on the opening surface with the base hole is visually observed.
Al-5i or Al-5L-Cu
It should be noted that this is also applicable.

前記A1のパターニング工程完了によって第1図示に示
すμ波トランジスタ且が完成する。
By completing the patterning step A1, the μ-wave transistor shown in the first diagram is completed.

〔発明の効果〕〔Effect of the invention〕

本発明方法にあっては拡散源を含有する多結晶珪素層を
ベース層が形成され更に絶縁物層のパターニングを完了
した半導体基板に被覆し、そのエミッタ用開孔を塞ぎ又
ベース用開孔間の僅かな隙間全面に多結晶珪素層が存在
するので、黒ずんだ色を目視により判定でき、更に絶縁
物層表面を構成する窒化珪素層が塩素系ガスに侵されな
いので良好なエツチングが可能になる。
In the method of the present invention, a polycrystalline silicon layer containing a diffusion source is coated on a semiconductor substrate on which a base layer has been formed and an insulator layer has been patterned, and the emitter openings are closed and the base openings are closed. Since the polycrystalline silicon layer is present over the entire surface of the small gap, the darkened color can be determined visually, and the silicon nitride layer that makes up the surface of the insulating layer is not attacked by chlorine gas, making it possible to perform good etching. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ〜ホは本発明に係る実施例を工程順に示す断面
図、第2図イル二は従来の工程を示す断面図である。
1A to 1H are cross-sectional views showing an embodiment according to the present invention in the order of steps, and FIG. 2I is a cross-sectional view showing a conventional process.

Claims (1)

【特許請求の範囲】[Claims] ある導電型を示す領域をもつ反対導電型半導体基板表面
に絶縁物層を被覆する工程と、この絶縁物層を選択的に
除去して開孔を設ける工程と、この絶縁物層ならびに露
出するある導電型領域に拡散源を含む多結晶珪素層を積
層する工程と、前記開孔の一部に近接して位置する他の
前記開孔に充填するこの多結晶珪素層を除去する工程と
、前記開孔の一部に充填する前記多結晶珪素層に含有す
る拡散源を前記ある導電型領域に導入して第2の反対導
電型領域を形成する工程と、この第2の反対導電型領域
及び前記ある導電型領域に連続する電極を形成する工程
と、この両電極間に残る前記多結晶珪素層を除去する工
程とを具備することを特徴とする半導体素子の製造方法
A process of coating an insulator layer on the surface of a semiconductor substrate of an opposite conductivity type having a region exhibiting a certain conductivity type, a process of selectively removing this insulator layer to form an opening, and a process of coating this insulator layer and exposed areas. a step of laminating a polycrystalline silicon layer containing a diffusion source in a conductivity type region; a step of removing this polycrystalline silicon layer filling another of the apertures located close to a part of the aperture; a step of introducing a diffusion source contained in the polycrystalline silicon layer filling a part of the opening into the certain conductivity type region to form a second opposite conductivity type region; A method for manufacturing a semiconductor device, comprising the steps of: forming an electrode continuous to the certain conductivity type region; and removing the polycrystalline silicon layer remaining between the two electrodes.
JP25377386A 1986-10-27 1986-10-27 Manufacture of semiconductor device Pending JPS63108773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25377386A JPS63108773A (en) 1986-10-27 1986-10-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25377386A JPS63108773A (en) 1986-10-27 1986-10-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63108773A true JPS63108773A (en) 1988-05-13

Family

ID=17255943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25377386A Pending JPS63108773A (en) 1986-10-27 1986-10-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63108773A (en)

Similar Documents

Publication Publication Date Title
JPH07114210B2 (en) Method for manufacturing semiconductor device
JPS63108773A (en) Manufacture of semiconductor device
JPS63207177A (en) Manufacture of semiconductor device
JPS5846846B2 (en) hand tai souchi no seizou houhou
JPH1140573A (en) Manufacture of semiconductor device
JPS594013A (en) Manufacture of semiconductor device
JPS6125217B2 (en)
JPS61236161A (en) Manufacture of semiconductor device
JPS62130543A (en) Manufacture of semiconductor device
JPS63296277A (en) Semiconductor integrated circuit device
JPS6188543A (en) Manufacture of semiconductor device
JPS629226B2 (en)
JPS62206873A (en) Manufacture of semiconductor device
JPH03157925A (en) Manufacture of semiconductor device
JPS6011459B2 (en) Method for manufacturing a diffused semiconductor device
JPH0254659B2 (en)
JPH03203325A (en) Manufacture of semiconductor device
JPH01270270A (en) Manufacture of semiconductor device
JPS62211950A (en) Manufacture of semiconductor device
JPH02244626A (en) Manufacture of semiconductor device
JPS61158176A (en) Semiconductor device and manufacture thereof
JPS60224245A (en) Manufacture of semiconductor device
JPS63152170A (en) Manufacture of semiconductor device
JPS61216362A (en) Manufacture of high-frequency transistor
JPS61268027A (en) Manufacture of semiconductor device