JPS63108298A - Boiling transition generation monitor for nuclear-reactor in-core channel - Google Patents

Boiling transition generation monitor for nuclear-reactor in-core channel

Info

Publication number
JPS63108298A
JPS63108298A JP61253771A JP25377186A JPS63108298A JP S63108298 A JPS63108298 A JP S63108298A JP 61253771 A JP61253771 A JP 61253771A JP 25377186 A JP25377186 A JP 25377186A JP S63108298 A JPS63108298 A JP S63108298A
Authority
JP
Japan
Prior art keywords
boiling
boiling transition
reactor
core
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61253771A
Other languages
Japanese (ja)
Inventor
光武 徹
木村 次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP61253771A priority Critical patent/JPS63108298A/en
Publication of JPS63108298A publication Critical patent/JPS63108298A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子炉の炉心内チャンネルの沸Il!遷移の発
生を監視するようにした原子炉炉心内チャンネルの沸騰
遷移発生監視装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is directed to the boiling of channels in the core of a nuclear reactor! The present invention relates to a boiling transition occurrence monitoring device for a channel in a nuclear reactor core, which monitors the occurrence of transition.

(従来の技術) 炉心の熱設計において、燃料枠内で発生した熱を有効に
除熱するために、核沸騰状態(nucleateboi
ling)を越えないように炉心流量、燃料集合体出力
等の運転条件を設定している。核沸騰状態を越える沸騰
遷移事象(boiling transition)が
発生すると、燃料棒表面の熱伝達率は低下し、遷移沸5
(transition boiling)または、膜
沸騰(film boiling)状態に至り1表面温
度は上昇を始める。そして、この状態が長く続き、高温
状態が持続すると、燃料被覆管の酸化及び材料強度の低
下により燃料破損が生ずる、つまり熱的損傷が生ずる。
(Prior Art) In the thermal design of the reactor core, in order to effectively remove the heat generated within the fuel frame, a nucleate boiling state (nucleate boiling state) is used.
Operating conditions such as core flow rate and fuel assembly output are set so as not to exceed When a boiling transition that exceeds the nucleate boiling state occurs, the heat transfer coefficient on the fuel rod surface decreases and the boiling transition exceeds the nucleate boiling state.
(transition boiling) or film boiling state is reached and the surface temperature begins to rise. If this state continues for a long time and the high temperature state persists, fuel failure occurs due to oxidation of the fuel cladding tube and decrease in material strength, that is, thermal damage occurs.

通常の運転状態においては、燃料集合体の熱流体力学的
状態即ち、燃料集合体入口温度、同人ロ流量、炉心圧力
、撚料集合体出力等を、測定値及びプロセス計算機によ
る計算値から求め、限界出力相関式(G E X L相
関式等)を適用して、導間aSが起こらないことを確か
めている。その指標として、最小限界出力比(MCPR
)を用い、この最小限界出力比が1.0を下回らないこ
とを評価している、この最小限界出力比は次の0式によ
り定義されている。
Under normal operating conditions, the thermo-hydrodynamic state of the fuel assembly, that is, the fuel assembly inlet temperature, dosing flow rate, core pressure, twisted assembly output, etc., are determined from measured values and values calculated by a process computer. A limit output correlation formula (GEXL correlation formula, etc.) is applied to confirm that interconductor aS does not occur. As an indicator, the minimum critical power ratio (MCPR
) is used to evaluate that this minimum critical output ratio is not less than 1.0. This minimum critical output ratio is defined by the following 0 formula.

CPR:限界出力比 Qcp  :限界出力 Q  :燃料集合体運転時出力 MCPR= win (CPR)      ・・・■
炉心 しかしながら、このような最小限界出力比の評価方法で
は誤差を伴うため、運転中に熱的健全性が損なわれてい
ないことを確認し、あるいは沸騰遷移が生じることをv
A測できることが望ましい。
CPR: Limit output ratio Qcp: Limit output Q: Output during fuel assembly operation MCPR= win (CPR)...■
However, since this evaluation method of the minimum critical power ratio is accompanied by errors, it is necessary to confirm that the thermal integrity is not compromised during operation, or to confirm that a boiling transition will occur.
It is desirable to be able to measure A.

また、沸1115移が発生しても、一定時間内であれば
、前述の熱的損傷が生じないことが予想されるため、沸
騰遷移発生を常時監視することができれば、一定時間内
の沸騰遷移を許容する運転が可能となり、運転範囲の拡
大につながるということになり、その経済的効果も大と
なる。
Furthermore, even if boiling 1115 occurs, it is expected that the aforementioned thermal damage will not occur within a certain period of time, so if the occurrence of boiling transition can be constantly monitored, it is possible to This makes it possible to operate the vehicle in a manner that allows the vehicle to move freely, leading to an expansion of the operating range, which also has a large economic effect.

(発明が解決しようとする問題点) 本発明は上記事情に鑑みてなされたもので、その目的は
、原子炉の運転にあたり原子炉の炉心内チャンネルの沸
llI″I!i移に至るまでの余裕を常時監視すると共
に沸am移の発生を監視することにより、燃料の健全性
を確保するようにした原子炉炉心内チャンネルの沸騰遷
移発生監視装置を提供することにある。
(Problems to be Solved by the Invention) The present invention has been made in view of the above circumstances, and its purpose is to solve the problem up to the boiling of the channels in the reactor core during operation of the nuclear reactor. An object of the present invention is to provide a system for monitoring the occurrence of boiling transition in a channel in a nuclear reactor core, which ensures the integrity of fuel by constantly monitoring the margin and the occurrence of boiling am transfer.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は上記目的を達成するために、炉心内の冷却水の
流れに沿って設置された複数個の炉内中性子検出器から
得られた検出信号を統計的に評価し、これにより燃料棒
表面液膜上を伝播する撹乱波の伝播速度を算出し、この
伝播速度が炉出力の上昇に対して減少するとき沸騰遷移
が発生していると判定するようにしたことを特徴とする
原子炉炉心内チャンネルの沸騰遷移発生監視装置に関す
るものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention statistically analyzes detection signals obtained from a plurality of in-core neutron detectors installed along the flow of cooling water in the reactor core. From this, the propagation velocity of the disturbance wave propagating on the fuel rod surface liquid film is calculated, and when this propagation velocity decreases as the reactor power increases, it is determined that a boiling transition has occurred. The present invention relates to a system for monitoring the occurrence of boiling transition in a channel in a nuclear reactor core, which is characterized by:

次に、本発明の測定原理について説明する。Next, the measurement principle of the present invention will be explained.

燃料棒表面の液膜上の撹乱波の伝播時間は次のようにし
て求める。
The propagation time of the disturbance wave on the liquid film on the surface of the fuel rod is determined as follows.

同一ストリングにある炉内中性子検出器で検出した2個
の信号X1.X2の時系列データから相互相関関数φ1
2(τ)を次の0式により求める。
Two signals X1. detected by the in-core neutron detector in the same string. From the time series data of X2, the cross-correlation function φ1
2(τ) is obtained using the following equation 0.

φ、2(τ)をフーリエ変換して下記(イ)式により相
互パワースペクトル密度φ□2(f)を求める相互パワ
ースペクトル密度φ1□(f)の性質から、信号間に単
なる輸送遅れがある場合には、相互相関関数φ1□(τ
)に時間遅れてのピークが現われ、相互パワースペクト
ル密度φ1.(1□πf)の位相に、周波数fに比例す
る線形トレンドが現われる。
Fourier transform φ,2(τ) to obtain the mutual power spectral density φ□2(f) using equation (a) below.Due to the nature of the mutual power spectral density φ1□(f), there is a simple transport delay between the signals. In the case, the cross-correlation function φ1□(τ
), a time-delayed peak appears, and the mutual power spectral density φ1. A linear trend proportional to the frequency f appears in the phase of (1□πf).

また、信号間の相互相関係数を表わすコヒーレンシーc
oh(f)を、次式により求める。
In addition, the coherency c, which represents the cross-correlation coefficient between signals,
oh(f) is determined by the following formula.

コヒーレンシーは、伝播する信号間の結合の強さを表わ
し、無相関の場合には、Icoh(f)I = O、減
衰なしに伝播する信号の場合には、Icoh(f) l
 = 1というように、Oから1の間の値をとる。
Coherency represents the strength of the coupling between propagating signals; in the case of uncorrelation, Icoh(f)I = O, and in the case of signals propagating without attenuation, Icoh(f)l
= 1, and takes a value between O and 1.

一方、中性子検出器の信号X1(t)は流れに沿って移
動する微小外乱に対応する成分を含み、この成分は同一
ストリング下流にある中性子検出器の信号XZ(t)に
は時間遅れての後に現われる。従って微小外乱の伝播速
度Ud(t)は下記0式で表わされる。
On the other hand, the signal X1(t) from the neutron detector includes a component corresponding to a minute disturbance moving along the flow, and this component is delayed in the signal XZ(t) from the neutron detector located downstream of the same string. will appear later. Therefore, the propagation velocity Ud(t) of the minute disturbance is expressed by the following equation 0.

Ud(t) = L1□/τ(f)         
・・・0ただし−Ltd:2+1の中性子検出器間の距
離また、気液二相流状態に存在する流れに乗った微小外
乱として良く知られ、観測されているものに、次の2つ
の雑音源がある。
Ud(t) = L1□/τ(f)
...0 However, the distance between the neutron detectors is -Ltd:2+1.In addition, the following two types of noise are well-known and observed as minute disturbances on the flow that exist in a gas-liquid two-phase flow state. There is a source.

■ 蒸気主流中を流れる液滴 ■ 燃料棒表面の液膜上を伝播する撹乱波上記雑音源の
うち、■は蒸気速度に相当する速度で伝播し、■は■よ
りもやや遅い速度をもって伝播することが知られている
。従って上記2つの雑音源が支配的な領域では、軸方向
同一ストリングに置かれた2つの中性子検出器によって
w1測される信号間には1次の0式で簡単化さ九る伝達
特性が存在する。
■ Droplets flowing in the main stream of steam ■ Disturbing waves propagating on the liquid film on the surface of the fuel rod Among the noise sources mentioned above, ■ propagates at a speed equivalent to the vapor velocity, and ■ propagates at a slightly slower speed than ■. It is known. Therefore, in the region where the above two noise sources are dominant, there exists a transfer characteristic between the signals measured by the two neutron detectors placed in the same string in the axial direction, which can be simplified by the first-order 0 equation. do.

ただし、Sit ’12は、上記■■に対応する振動成
分I nil n2は、それぞれの検出器に観測される
S工、s2以外の雑音成分、α1.α8は、信号の減衰
割合、τ0.τ2は、信号の伝達時間。
However, in Sit '12, the vibration component I nil n2 corresponding to the above ■■ is the noise component other than S and s2 observed by each detector, and α1. α8 is the signal attenuation rate, τ0. τ2 is the signal transmission time.

従って、X□、X2の相互パワースペクトルφx x 
(f)は次の(へ)式で表わされる。ただしn l l
n2は無相関性を仮定した。
Therefore, the mutual power spectrum φx x of X□, X2
(f) is expressed by the following formula. However, n l l
It was assumed that n2 was uncorrelated.

φx x (f)= l Gx x I”      
  −(eここで、Gxx(f)=cx、Gs、s、(
f)e    ’十α、G52s、(f)e   2+
const2個の信号間のコヒーレンシーは、前述の■
の伝播時間τ2に対する周波数f2の近傍では。
φx x (f)=l Gx x I”
−(e where Gxx(f)=cx, Gs, s, (
f) e '10 α, G52s, (f) e 2+
The coherency between two const signals is determined by the above
In the vicinity of the frequency f2 for the propagation time τ2 of .

と書くことができ、コヒーレンシーは、前述の■の信号
の減衰割合α2に比例する。
It can be written as follows, and the coherency is proportional to the signal attenuation rate α2 described in (2) above.

実際には、有限のデータ長や、複雑な周波数特性のため
Gx x (f)は上記式のような簡単な式では表わせ
ないので、τ1.τ2推定のための濾波処理が重要であ
る。
In reality, Gx x (f) cannot be expressed by a simple equation such as the above equation due to the finite data length and complex frequency characteristics, so τ1. Filtering processing for estimating τ2 is important.

燃料チャンネル内において、入口部でサブクール状態(
飽和温度以下)の水が、燃料棒から加熱されると共に、
沸騰が始まり、ボイド率または蒸気重量率の増大に従っ
て次のように遷移する。
Inside the fuel channel, a subcooled state (
Water (below the saturation temperature) is heated from the fuel rods and
Boiling begins and changes as follows as the void fraction or steam weight fraction increases.

気泡流 ↓ スラグ流 ↓ 環状流 沸騰水型原子炉(BWR)の通常運転中には、燃料チャ
ンネルの上半分相当の部分では、環状流状態になってい
ることが考えられ、上記■、■の雑音が顕著となり、中
性子束変動に周波数の異なる2つの変動成分を引き起こ
している。
Bubble flow ↓ Slag flow ↓ Annular flow During normal operation of a boiling water reactor (BWR), it is thought that the upper half of the fuel channel is in an annular flow state, and the above The noise becomes noticeable, causing two fluctuation components with different frequencies in the neutron flux fluctuation.

本発明において対象とする中性子束の揺らぎ成分は、環
状流流動様式で、軸方向2ケ所の中性子束検出器でwt
測される成分すに誘起される揺らぎである。
The fluctuation component of the neutron flux, which is the object of the present invention, is determined by the wt
This is the fluctuation induced in the measured component.

環状二相流は、次のような流動様式を持っている。The annular two-phase flow has the following flow pattern.

■ 撹拌波頭域(disturbance wave 
region)■ リップル領域(ripple re
gion)■ 液膜破断領域(non−wetting
 region)上記(1)→■は、蒸気クォリティが
増す時に生ずる流動様式の遷移に対応し、上記■では、
液膜が破断し、乾いた伝熱面が露出する(bryout
)沸騰遷移事象に対応している。
■ Disturbance wave crest
region) ■ Ripple region (ripple re
ion) ■ Liquid film rupture area (non-wetting
region) The above (1) → ■ corresponds to the transition of the flow pattern that occurs when the steam quality increases, and in the above ■,
The liquid film ruptures and a dry heat transfer surface is exposed.
) corresponds to a boiling transition event.

ところで、上記■では環状流流動様式が開始し、蒸気速
度が増すと共に比較的厚い液膜上を波高の高い撹拌波が
、高い周波数を持って伝播していく。
By the way, in the case (2) above, the annular flow mode starts, and as the vapor velocity increases, a stirring wave with a high wave height propagates at a high frequency on a relatively thick liquid film.

そして、上記■では上記■よりも大きな蒸気速度に対し
て波高の小さなリップル状の波が大きな速度で伝播して
いく。従って、このような流動様式に対応する中性子検
出器の変動は、上記■→上記■に従って、伝播時間τの
減少が観測される。さらに蒸気クォリティが増すと、上
記(3)の領域に移行し、液膜破断が生じ上記の、■に
見られた2個の中性子検出器間の液膜上の撹乱波に起因
する相互相関成分は消滅する。
In the above case (2), a ripple-shaped wave with a small wave height propagates at a high speed for a vapor velocity higher than that in the above case (2). Therefore, in the fluctuation of the neutron detector corresponding to such a flow pattern, a decrease in the propagation time τ is observed according to the above-mentioned ■→the above-mentioned ■. When the vapor quality further increases, it shifts to the region (3) above, and the liquid film breaks, resulting in the cross-correlation component caused by the disturbance waves on the liquid film between the two neutron detectors seen in (■) above. disappears.

本発明では、このような撹乱被速度の消滅によって沸騰
遷移発生を検出する原理を用いたものである。即ち、前
記0式で与えられる撹乱波の伝播速度Udを常時監視し
ておき、第2図に示すように伝播速度Udが出力の上昇
に対して消滅するときに、沸騰遷移発生と判定するもの
である。なお。
The present invention uses the principle of detecting the occurrence of a boiling transition by the disappearance of such a disturbance velocity. That is, the propagation velocity Ud of the disturbance wave given by the above equation 0 is constantly monitored, and as shown in Fig. 2, when the propagation velocity Ud disappears due to the increase in output, it is determined that a boiling transition has occurred. It is. In addition.

領域■の発生によって、前述■に対応する相互相関成分
が消滅することを判定する方法は、例えば図3のように
撹乱波伝播に対応する周波数におけるコヒーレンシー1
coh(fz)lを図示し、出力上昇に対してコヒーレ
ンシーが不連続的に減少するかしきい値を下回ることを
監視することが考えられる。
A method for determining that the cross-correlation component corresponding to the above-mentioned region (■) disappears due to the occurrence of the region (■) is to calculate the coherency 1 at the frequency corresponding to the disturbance wave propagation, as shown in FIG.
It is conceivable to plot coh(fz)l and monitor whether the coherency decreases discontinuously or falls below a threshold with respect to an increase in output.

(作用) 本発明の沸騰遷移発生監視装置によれ゛ば、撹乱波の伝
播速度が炉出力の上昇に対して消滅するときに直ちに沸
騰遷移発生と判定することができるので、一定時間内の
沸騰遷移を許容する運転が可能となり、運転範囲を拡大
することができる。
(Function) According to the boiling transition occurrence monitoring device of the present invention, it is possible to immediately determine that a boiling transition has occurred when the propagation velocity of the disturbance wave disappears due to an increase in the furnace output. Operation that allows transitions becomes possible, and the operating range can be expanded.

(実施例) 本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例のブロック図であり、炉心内
の冷却水の流れに沿って設置された複数の炉内中性子検
出器1,2で検出されたデータはデータ収集装置3に収
集される。データ収集装置3からの炉内中性子検出信号
は濾波器4を通って相互パワースペクトル密度計算装置
5.伝播時間計算装置7を介して沸騰遷移発生判定装置
8に入力される。また集合体出力は、プロセス計算機6
を介して沸騰遷移発生判定装置8に入力される。また、
撹乱波伝播に対応する周波数におけるコヒーレンシーは
、コヒーレンシー計算装置f!9を介して沸騰遷移発生
判定装置8に入力される。そして、この沸m遷移発生判
定装置8において、沸騰遷移発生を判定すると1表示装
置10にその判定信号を出力する。
FIG. 1 is a block diagram of an embodiment of the present invention, in which data detected by a plurality of in-core neutron detectors 1 and 2 installed along the flow of cooling water in the reactor core is sent to a data collection device 3. collected. The in-core neutron detection signal from the data collection device 3 passes through a filter 4 and a mutual power spectral density calculation device 5. It is inputted to the boiling transition occurrence determination device 8 via the propagation time calculation device 7. In addition, the aggregate output is the process computer 6
is inputted to the boiling transition occurrence determination device 8 via. Also,
The coherency at the frequency corresponding to the disturbance wave propagation is calculated using the coherency calculation device f! 9 to the boiling transition occurrence determination device 8. When the boiling transition occurrence determining device 8 determines that the boiling transition has occurred, it outputs a determination signal to the 1 display device 10.

次に本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

原子炉炉心内中性子検出器信号をデータ収集装置3によ
って収集し濾波器4に送る。濾波器4によって中性子検
出器変動成分のうち、炉心全体で変動する成分(glo
bal component)を除き、空間的に変動す
る成分(local compnent)を抽出する。
A neutron detector signal in the reactor core is collected by a data collection device 3 and sent to a filter 4. Of the neutron detector fluctuation components, the filter 4 filters out components that fluctuate throughout the core (glo
bal component), and extract spatially varying components (local component).

相互パワースペクトル密度計算装置5では、同一ストリ
ングに属するチャンネル上部2ケ所の中性子検出器信号
から相互パワースペクトル密度を計算し、伝播時間計算
装置7へ送る。
The mutual power spectral density calculation device 5 calculates the mutual power spectral density from the neutron detector signals at two upper portions of the channel belonging to the same string, and sends it to the propagation time calculation device 7.

伝播時間計算装置7では相互パワースペクトル密度の位
相の周波数特性、液膜上の撹乱波の伝播に対応する成分
から、伝播時間を推定する。
The propagation time calculation device 7 estimates the propagation time from the frequency characteristics of the phase of the mutual power spectral density and the component corresponding to the propagation of the disturbance wave on the liquid film.

コヒーレンシー計算装置9では撹乱波伝播時間に対応す
るコヒーレンシーを評価する。
The coherency calculation device 9 evaluates the coherency corresponding to the disturbance wave propagation time.

そして、沸騰遷移発生判定装置8では上記伝播時間およ
び伝播時間に対応するコヒーレンシーおよび集合体出力
より沸騰遷移発生を判定し、表示装置10へ送る。
Then, the boiling transition occurrence determination device 8 determines the occurrence of a boiling transition based on the propagation time and the coherency and aggregate output corresponding to the propagation time, and sends it to the display device 10.

表示装置10では、炉心内すべての燃料チャンネルの沸
騰遷移発生判定信号を受けて、炉心内で沸騰遷移が発生
しているチャンネルを表示する。
The display device 10 receives boiling transition occurrence determination signals for all fuel channels in the core and displays channels in which boiling transition has occurred in the core.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明によれば、原子炉炉心内チ
ャンネルの沸騰遷移の発明を監視することにより燃料の
健全性を確保することができ、さらに一定時間内の沸騰
遷移を許容する運転も可能になるので、運転範囲の拡大
につながり、原子炉の運転効率が向上するというすぐれ
た効果を奏する。
As explained above, according to the present invention, the integrity of the fuel can be ensured by monitoring the boiling transition in the channel in the reactor core, and furthermore, the operation that allows the boiling transition within a certain period of time is also possible. This has the excellent effect of expanding the operating range and improving the operating efficiency of the reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図は撹乱
波伝播速度と集合体出力の関係を示す図、第3図は撹乱
波伝播時間に対応する周波数におけるコヒーレンシーと
集合体出力との関係を示す図である。 1.2・・・炉内中性子検出器 3・・・データ収集装置 4・・・濾波器 5・・・相互パワースペクトル密度計算装置6・・・プ
ロセス計算機 7・・・伝播時間計算装置 8・・・沸I14遷移発生判定装置 9・・・コヒーレンシー計算装置 10・・・表示装置
Figure 1 is a block diagram of an embodiment of the present invention, Figure 2 is a diagram showing the relationship between disturbance wave propagation speed and aggregate output, and Figure 3 is coherency and aggregate output at frequencies corresponding to disturbance wave propagation time. FIG. 1.2... In-reactor neutron detector 3... Data collection device 4... Filter 5... Mutual power spectral density calculation device 6... Process computer 7... Propagation time calculation device 8. ... Boiling I14 transition occurrence determination device 9 ... Coherency calculation device 10 ... Display device

Claims (1)

【特許請求の範囲】[Claims] (1)炉心内の冷却水の流れに沿って設置された複数個
の炉内中性子検出器間の相互パワースペクトル密度を評
価し、これにより燃料棒表面液膜上を伝播する撹乱波の
伝播速度を算出し、上記検出器間の撹乱波伝播時間に対
応する周波数に対するコヒーレンシーが減少するとき沸
騰遷移が発生していると判定するようにしたことを特徴
とする原子炉炉心内チャンネルの沸騰遷移発生監視装置
(1) Evaluate the mutual power spectral density between multiple in-core neutron detectors installed along the flow of cooling water in the reactor core, and use this to determine the propagation velocity of the disturbance wave propagating on the liquid film on the surface of the fuel rods. occurrence of a boiling transition in a channel in a reactor core, characterized in that it is determined that a boiling transition has occurred when coherency with respect to a frequency corresponding to a disturbance wave propagation time between the detectors decreases. Monitoring equipment.
JP61253771A 1986-10-27 1986-10-27 Boiling transition generation monitor for nuclear-reactor in-core channel Pending JPS63108298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61253771A JPS63108298A (en) 1986-10-27 1986-10-27 Boiling transition generation monitor for nuclear-reactor in-core channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61253771A JPS63108298A (en) 1986-10-27 1986-10-27 Boiling transition generation monitor for nuclear-reactor in-core channel

Publications (1)

Publication Number Publication Date
JPS63108298A true JPS63108298A (en) 1988-05-13

Family

ID=17255913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61253771A Pending JPS63108298A (en) 1986-10-27 1986-10-27 Boiling transition generation monitor for nuclear-reactor in-core channel

Country Status (1)

Country Link
JP (1) JPS63108298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164908A (en) * 2012-02-09 2013-08-22 Mitsubishi Electric Corp Heating cooker and method of driving the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164908A (en) * 2012-02-09 2013-08-22 Mitsubishi Electric Corp Heating cooker and method of driving the same

Similar Documents

Publication Publication Date Title
US3240674A (en) Detection of liquid boiling in a reactor
Balabani et al. An experimental study of the mean flow and turbulence structure of cross-flow over tube bundles
US4955004A (en) Liquid acoustic waveguide tube
JPS63108298A (en) Boiling transition generation monitor for nuclear-reactor in-core channel
Hashemian et al. Using the noise analysis technique to detect response time problems in the sensing lines of nuclear plant pressure transmitters
Zhang et al. A multi-dimensional dataset for two-phase instability in low pressure natural circulation based on direct transient local measurement
JPS6255604B2 (en)
US3549489A (en) System for detecting sodium boiling in a reactor
Moreno et al. Nuclear power plant instabilities analysis
JPS63108297A (en) Fuel soundness monitor in nuclear reactor core
Kikuchi et al. Local boiling of sodium in downstream of local flow blockage in a simulated LMFBR fuel subassembly
Kalyanasundaram et al. Detection of simulated steam leak into sodium in steam generator of PFBR by argon injection using signal analysis techniques
Katona Possibility of use of noise analysis for identification of reactor conditions during accidents
JPS58155389A (en) Method and device for monitoring stability of reactor core channel
JPS628095A (en) Monitor device for loose part
Kostic Local steam transit time estimation in a boiling water reactor
Castro et al. Onset of nucleate boiling and onset of fully developed subcooled boiling using pressure transducers signals spectral analysis
Courbiere An acoustic method for characterizing the onset of cavitation in nozzles and pumps
JP2002341081A (en) Atomic reactor coolant purification system leakage detection system
Kikuchi et al. Incipient boiling of sodium in seven-pin bundle under forced convection conditions
JPH0550715B2 (en)
Endres et al. Experimental study of the propagation of a far-field disturbance in the turbulent flow through square array tube banks
JPH1010276A (en) Method and system for coolant flowrate measurement in reactor core
JP2001318184A (en) Output monitor for fast reactor
JP3780132B2 (en) Method and apparatus for measuring void reactivity coefficient