JPS6310828B2 - - Google Patents

Info

Publication number
JPS6310828B2
JPS6310828B2 JP55025571A JP2557180A JPS6310828B2 JP S6310828 B2 JPS6310828 B2 JP S6310828B2 JP 55025571 A JP55025571 A JP 55025571A JP 2557180 A JP2557180 A JP 2557180A JP S6310828 B2 JPS6310828 B2 JP S6310828B2
Authority
JP
Japan
Prior art keywords
photoconductive layer
photoconductive
layer
light
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55025571A
Other languages
Japanese (ja)
Other versions
JPS56122078A (en
Inventor
Kyoshi Tanigawa
Masao Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2557180A priority Critical patent/JPS56122078A/en
Publication of JPS56122078A publication Critical patent/JPS56122078A/en
Publication of JPS6310828B2 publication Critical patent/JPS6310828B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/06Eliminating residual charges from a reusable imaging member
    • G03G21/08Eliminating residual charges from a reusable imaging member using optical radiation

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電子写真用複合感光体の除電方法に関
し、詳しくはピリリウム系染料と電気絶縁性重合
体とで形成される共晶錯体を一方の光導電層とし
た複合感光体を繰り返し使用しても残留電位があ
らわれることなく、良好な画像特性が得られるよ
うにした電子写真用複合感光体の除電方法に関す
る。 導電性基体上に共晶錯体を主体とした光導電層
を設けた電子写真用感光体は公知である。通常、
こうした感光体はアルミニウム基板上にピリリウ
ム系染料(ピリリウム、チアピリリウム、セレナ
ピリリウムなど)および電気絶縁性重合体(アル
キリデンジアリーレン部分を有する電気絶縁性樹
脂)で形成される共晶錯体を光導電層として形成
したものである。 ところで、かかる共晶錯体感光体は光感度にお
いて、正帯電の場合の方が負帯電の場合よりも高
感度である。しかしながら、残留電位においては
正帯電の場合の方が負帯電の場合よりも大きな電
位を示し、これが結果的に地汚れの原因となると
いう欠陥をもつている。 一方、上記の単層の光導電層をもつた感光体と
相違して、各々異なつた波長の光に感度を有する
2つの光導電層をアルミニウム板等の導電性基体
上に積層した電子写真用複合感光体を使用し、こ
れに一次帯電、一次帯電とは異極性の二次帯電を
行なつて又はこうした一次帯電を施した後あるい
はそれと同時に一方の光導電層が導体化しうる波
長の光の均一露光を行なつてから二次帯電を施
し、各光導電層に互いに異なる極性の電荷を維持
せしめ、次いで、黒色部及び有彩色部を有する原
稿を介して画像露光することにより、原稿の各色
部に対応する表面電位が異極性となつた静電潜像
を感光体に出現させこれを異極性異色トナーで逐
次現像し、、このトナー像を受像紙(例えば普通
紙)に転写し定着して2色コピーを得るという、
新たな電子写真方法が脚光を浴びている。 この2色電子写真法で使用される感光体の代表
的なものの1つは、アルミニウム基板上に上記の
性質をもつた2つの光導電層が設けられ、この光
導電層の一方が共晶錯体を主成分とした形態のも
のである。ところがこの複合感光体にあつても、
繰り返し画像特性において内部にキヤリアが蓄積
されいわゆる残留電位となり、画質が不良となる
傾向がみられる。この画質不良の直接の原因に大
きく影響しているのは、除電時の露光不足であ
る。従つて、これを防止するためには除電時の露
光(クリーニング光)の光量を増加させることが
考えられるが、そうした場合には今度は感光体自
体が劣化するといつた不都合がみられる。 本発明の目的は、上記のごとき共晶錯体感光層
を一方の光導電層とした電子写真用複合感光体で
それ自体の劣化の心配もなく、残留電位がなく良
好な複写物が得られる除電方法を提供することに
ある。本発明の他の目的は、とくに繰り返し画像
特性にすぐれた電子写真用複合感光体の除電方法
を提供することにある。 すなわち本発明の電子写真用複合感光体の除電
方法は可視光領域の一部有彩色光に対し感度を有
し他の有彩色光を透過する第二光導電層と、その
第二光導電層を透過する有彩色光に対し感度を有
する第一光導電層とが透明導電性基体上に第一光
導電層、必要により設けられる中間層、第二光導
電層の順で積層され、かつ、この2つの光導電層
の一方はピリリウム系染料と電気絶縁性重合体と
で形成された共晶錯体および光導電性化合物を主
成分としたものであつて、これに正又は負の一次
コロナ帯電を施した後一次帯電の極性とは異なる
極性の二次コロナ帯電を施すプロセスにより、あ
るいは同様に一次コロナ帯電を施した後又はそれ
と同時に、第一光導電層乃至は第二光導電層を導
体化しうる有彩色光の均一露光を行ない、続いて
同様な二次コロナ帯電を施すプロセスにより前記
各光導電層に互いに異なる極性の電荷を維持せし
め、次いで黒色部及び有彩色部を有する原稿を介
して画像露光した時にその各色部に対応する表面
電位が異極性として表われる複合感光体の除電
を、この感光体の表面、裏面の両方からクリーニ
ング光を照射することにより行なうことを特徴と
する電子写真用感光体の除電方法。 である。 以下に、本発明方法を添付の図面に基づきなが
らさらに詳細に説明する。第1図および第2図は
本発明方法で用いられる複合感光体の二例の断面
図であり、そこに付された番号で1′,1″は感光
体、2は透明導電性基体、3は光導電層、31′
は第一光導電層、32′は第二光導電層を表わし
ている。 ここでの透明導電性基体2は、体積抵抗1010Ω
cm以下の導電性を有しかつ可視光領域で透明なも
のであり、具体的には酸化インジウム、酸化ス
ズ、酸化インジウム−酸化スズをコーテイングし
たプラスチツクフイルム、ガラスなどがあげられ
るが、Alをコーテイングしたものはここでの基
体としては不適である。コーテイングされた
In2O3、SnO2、In2O3−SnO2の厚さは0.1〜0.01μ
m程度である。 第1図に示した光導電層3は、前述のように、
ピリリウム系染料(ピリリウム、チアピリリウ
ム、セレナピリリウムなど)、電気絶縁性重合体
(アルキリデンジアリーレン部分を有する電気絶
縁性樹脂)および光導電性化合物を主成分として
つくられており、ピリリウム系染料と電気絶縁性
重合体とで共晶錯体が形成されている。 ピリリウム系染料は次の一般式を有するもので
ある。 上式においてRa、Rb、Rc、Rd及びReは夫々、 (a) 水素原子 (b) アルキル基、代表的にはメチル、エチル、プ
ロピル、イソプロピル、ブチル、t−ブチル、
アミル、イソアミル、ヘキシル、オクチル、ノ
ニル、ドデシルなどのC1〜C15のアルキル基 (c) メトキシ、エトキシ、プロポキシ、ブトキ
シ、アミロキシ、ヘキソキシ、オクトキシなど
のアルコキシ基 (d) フエニル、4−ジフエニル、4−エチルフエ
ニル、4−プロピルフエニルなどのアルキルフ
エニル類;4−エトキシフエニル、4−メトキ
シフエニル、4−アミロキシフエニル、2−ヘ
キソキシフエニル、2−メトキシフエニル、
3,4−ジメトキシフエニルなどのアルコキシ
フエニル類;2−ヒドロキシエトキシフエニ
ル、3−ヒドロキシエトキシフエニルなどのβ
−ヒドロキシアルコキシフエニル類;4−ヒド
ロキシフエニル、2,4−ジクロロフエニル、
3,4−ジブロモフエニル、4−クロロフエニ
ル、3,4−ジクロロフエニルなどのハロフエ
ニル類;アジドフエニル、ニトロフエニル、4
−ジエチルアミノフエニル、4−ジメチルアミ
ノフエニルなどのアミノフエニル類;ナフチ
ル、スチリル、メトキシスチリル、ジエトキシ
スチリル、ジメチルアミノスチリル、1−ブチ
ル−4−p−ジメチルアミノフエニル−1,3
−ブタジエニル、β−エチル−4−ジメチルア
ミノスチリル等のビニル置換アリール基のよう
な置換アリール基を含めたアリール基 を表わし、Xは硫黄、酸素又はセレン原子であ
り、またZ-はパークロレート、フルオロボレー
ト、沃化物、塩化物、臭化物、硫酸塩、過沃化
物、p−トルエンスルホネート、ヘキサフルオロ
ホスフエートなどの陰イオン官能基である。更に
Ra、Rb、Rc、Rd及びReは共同してピリリウム核
に融合したアリール環を完成するに必要な原子で
あつてもよい。 このようなピリリウム系染料の代表例を下記に
示す。
The present invention relates to a method for eliminating static electricity from a composite photoreceptor for electrophotography, and more specifically, the present invention relates to a method for eliminating static electricity from a composite photoreceptor for electrophotography, and more specifically, even if a composite photoreceptor in which one photoconductive layer is made of a eutectic complex formed from a pyrylium dye and an electrically insulating polymer is used repeatedly. The present invention relates to a method for eliminating static electricity from a composite photoreceptor for electrophotography, which allows good image characteristics to be obtained without residual potential appearing. 2. Description of the Related Art Electrophotographic photoreceptors in which a photoconductive layer mainly composed of a eutectic complex is provided on a conductive substrate are known. usually,
These photoreceptors have a photoconductive layer on an aluminum substrate, and a eutectic complex formed from a pyrylium dye (pyryllium, thiapyrylium, selenapyrylium, etc.) and an electrically insulating polymer (an electrically insulating resin having an alkylidene diarylene moiety). It was formed as follows. Incidentally, such a eutectic complex photoreceptor has higher photosensitivity when positively charged than when negatively charged. However, the residual potential shows a larger potential in the case of positive charging than in the case of negative charging, which has the drawback of causing background smearing. On the other hand, unlike the above-mentioned photoconductor having a single photoconductive layer, two photoconductive layers, each sensitive to light of different wavelengths, are laminated on a conductive substrate such as an aluminum plate for use in electrophotography. A composite photoreceptor is used, and it is subjected to primary charging, secondary charging with a polarity different from the primary charging, or after or simultaneously with such primary charging, one of the photoconductive layers is charged with light of a wavelength at which it can become a conductor. After performing uniform exposure, secondary charging is performed to maintain charges of different polarities in each photoconductive layer, and then image exposure is performed through the original having black areas and chromatic areas, so that each color of the original is An electrostatic latent image with surface potentials of different polarities corresponding to the areas appears on the photoreceptor, this is sequentially developed with different color toners of different polarity, and this toner image is transferred to image receiving paper (for example, plain paper) and fixed. to obtain a two-color copy.
A new electrophotographic method is in the spotlight. One of the typical photoreceptors used in this two-color electrophotography method has two photoconductive layers having the above properties on an aluminum substrate, and one of the photoconductive layers is made of a eutectic complex. The main component is However, even with this composite photoreceptor,
In repeated image characteristics, carriers are accumulated inside, resulting in a so-called residual potential, which tends to result in poor image quality. The direct cause of this poor image quality is the lack of exposure during static electricity removal. Therefore, in order to prevent this, it is conceivable to increase the amount of exposure light (cleaning light) during charge removal, but in such a case, there is a problem that the photoreceptor itself may deteriorate. An object of the present invention is to provide a static neutralization system for an electrophotographic composite photoreceptor in which the above-mentioned eutectic complex photosensitive layer is used as one of the photoconductive layers, and which eliminates the risk of deterioration of the photoreceptor itself, has no residual potential, and provides good copies. The purpose is to provide a method. Another object of the present invention is to provide a method for removing static electricity from a composite photoreceptor for electrophotography which has particularly excellent repeatable image characteristics. That is, the method for removing static electricity from a composite photoreceptor for electrophotography according to the present invention includes a second photoconductive layer that is sensitive to some chromatic light in the visible light region and transmits other chromatic light, and the second photoconductive layer. a first photoconductive layer sensitive to chromatic light transmitted through the transparent conductive substrate, the first photoconductive layer, an optional intermediate layer, and a second photoconductive layer being laminated in this order, and One of these two photoconductive layers is mainly composed of a photoconductive compound and a eutectic complex formed of a pyrylium dye and an electrically insulating polymer, and is charged with a positive or negative primary corona charge. The first photoconductive layer or the second photoconductive layer is made into a conductor by a process of applying secondary corona charging with a polarity different from the polarity of the primary charging, or after or simultaneously with the primary corona charging. A process of uniformly exposing each photoconductive layer to chromatic light that can be chromatic, followed by a similar secondary corona charging process to maintain charges of different polarities on each of the photoconductive layers, and then exposing the original having black and chromatic areas to An electronic device characterized in that static electricity is removed from a composite photoreceptor whose surface potentials corresponding to each color portion appear as different polarities when imagewise exposed to light by irradiating cleaning light from both the front and back surfaces of the photoreceptor. Method for removing static electricity from photographic photoreceptors. It is. The method of the present invention will be explained in more detail below with reference to the accompanying drawings. 1 and 2 are cross-sectional views of two examples of composite photoreceptors used in the method of the present invention, and the numbers 1' and 1'' are the photoreceptors, 2 is the transparent conductive substrate, and 3 is the photoreceptor. is a photoconductive layer, 31'
32' represents the first photoconductive layer, and 32' represents the second photoconductive layer. The transparent conductive substrate 2 here has a volume resistance of 10 10 Ω.
It has conductivity of less than cm and is transparent in the visible light range, and examples include indium oxide, tin oxide, plastic film coated with indium oxide-tin oxide, and glass. These materials are not suitable as substrates here. coated
The thickness of In2O3 , SnO2 , In2O3 −SnO2 is 0.1~0.01μ
It is about m. As mentioned above, the photoconductive layer 3 shown in FIG.
It is made mainly from pyrylium dyes (pyryllium, thiapyrylium, selenapyrylium, etc.), electrically insulating polymers (electrically insulating resins with alkylidene diarylene moieties), and photoconductive compounds. A eutectic complex is formed with the insulating polymer. Pyrylium dye has the following general formula. In the above formula, R a , R b , R c , R d and R e each represent (a) a hydrogen atom (b) an alkyl group, typically methyl, ethyl, propyl, isopropyl, butyl, t-butyl,
C1 - C15 alkyl groups such as amyl, isoamyl, hexyl, octyl, nonyl, dodecyl, etc. (c) Alkoxy groups such as methoxy, ethoxy, propoxy, butoxy, amyloxy, hexoxy, octoxy, etc. (d) Phenyl, 4-diphenyl, Alkylphenyls such as 4-ethylphenyl and 4-propylphenyl; 4-ethoxyphenyl, 4-methoxyphenyl, 4-amyloxyphenyl, 2-hexoxyphenyl, 2-methoxyphenyl,
Alkoxyphenyls such as 3,4-dimethoxyphenyl; β such as 2-hydroxyethoxyphenyl and 3-hydroxyethoxyphenyl
-Hydroxyalkoxyphenyl; 4-hydroxyphenyl, 2,4-dichlorophenyl,
Halophenyls such as 3,4-dibromophenyl, 4-chlorophenyl, 3,4-dichlorophenyl; azidophenyl, nitrophenyl, 4
-Aminophenyls such as diethylaminophenyl and 4-dimethylaminophenyl; naphthyl, styryl, methoxystyryl, diethoxystyryl, dimethylaminostyryl, 1-butyl-4-p-dimethylaminophenyl-1,3
- represents an aryl group including substituted aryl groups such as vinyl-substituted aryl groups such as butadienyl, β-ethyl-4-dimethylaminostyryl, X is a sulfur, oxygen or selenium atom, and Z - is perchlorate, Anionic functional groups such as fluoroborate, iodide, chloride, bromide, sulfate, periodide, p-toluenesulfonate, hexafluorophosphate. Furthermore
R a , R b , R c , R d and R e may be atoms necessary to jointly complete the aryl ring fused to the pyrylium nucleus. Representative examples of such pyrylium dyes are shown below.

【表】 クロレート
[Table] Chlorate

【表】 ークロレート
特に有用なピリリウム染料は下記一般式を有す
るものである。 式中R1及びR2はC1〜C5のアルキル基及びC1
C5のアルコキシ基から選ばれた1つの置換基を
有する置換フエニル基のようなアリール基であ
り、R3はアルキル部分がC1〜C5のアルキルアミ
ノ置換フエニル基で、ジアルキルアミノ置換及び
ハロアルキルアミノ置換フエニル基でもよい。X
は酸素又は硫黄原子、Z-は前述の通りである。 電気絶縁性重合体としては主鎖(繰返し単位)
中に下記式で示されるアルキリデンジアリーレン
部分を有するものが特に有用である。 式中R4及びR5は夫々、水素原子、トリフルオ
ロメチルのような置換アルキル基を含むメチル、
エチル、プロピル、イソプロピル、ブチル、t−
ブチル、ベンチル、ヘキシル、ヘプチル、オクチ
ル、ノニル、デシルなどのアルキル基、ハロゲ
ン、C1〜C5のアルキル基のような置換基を有す
る置換アリール基を含むフエニル及びナフチルな
どのアリール基であり、またR4とR5とは共同し
てシクロヘキシルのようなシクロアルカン類及び
ノルボルニルのようなポリシクロアルカン類を含
む環式炭化水素基を形成するに必要な炭素原子で
あつてもよい。R6及びR7は水素、C1〜C5のアル
キル基又はクロル、ブロム、沃素などのハロゲン
であり、またR8
Table - Chlorate Particularly useful pyrylium dyes are those having the general formula: In the formula, R 1 and R 2 are C 1 to C 5 alkyl groups and C 1 to
It is an aryl group such as a substituted phenyl group having one substituent selected from a C5 alkoxy group, and R3 is an alkylamino-substituted phenyl group whose alkyl moiety is C1 to C5 , dialkylamino-substituted and haloalkyl. An amino-substituted phenyl group may also be used. X
is an oxygen or sulfur atom, and Z - is as described above. As an electrically insulating polymer, the main chain (repeat unit)
Particularly useful are those having an alkylidene diarylene moiety represented by the following formula. In the formula, R 4 and R 5 each represent a hydrogen atom, methyl containing a substituted alkyl group such as trifluoromethyl,
Ethyl, propyl, isopropyl, butyl, t-
Aryl groups such as phenyl and naphthyl, including alkyl groups such as butyl, bentyl, hexyl, heptyl, octyl, nonyl, decyl, substituted aryl groups having substituents such as halogen, C1 - C5 alkyl groups, Furthermore, R 4 and R 5 may be carbon atoms necessary to jointly form a cyclic hydrocarbon group including cycloalkanes such as cyclohexyl and polycycloalkanes such as norbornyl. R 6 and R 7 are hydrogen, a C 1 to C 5 alkyl group, or a halogen such as chloro, bromine, iodine, and R 8 is

【式】【formula】 【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】 及び【formula】 as well as

【式】よりなる群から選択さ れた2価の基である。 また下記式の繰返し単位からなる疎水性炭酸塩
重合体類(ポリカーボネート)も有用で好ましい
ものである。 式中、R9はハロ置換フエニレン基類及びアル
キル置換フエニレン基類を含むフエニレン基であ
り、またR4及びR5は前述の通りである。これら
の重合体はUSP3028365号、同3317466号に開示
されている。好ましくは、ビスフエノールAから
製造されるような、繰返し単位にアルキリデンジ
アリーレン部分を含有しジフエニルカーボネート
と2,2−ビス(4−ヒドロキシフエニル)プロ
パンとの間のエステル交換によつて生成した重合
体を含むポリカーボネート類が有用である。この
ような重合体はUSP2999750号、同3038874号、
同3038880号、同3106544号、同3106545号、同
3106546号等に開示されている。いずれにしても
フイルム形成性ポリカーボネート樹脂類は広範囲
に使用できる。特に約0.5〜1.8の固有粘度を有す
るものを使用すると、満足し得る結果が得られ
る。 電気絶縁性重合体の具体例は下記の通りであ
る。番 号 重合体材料 1 ポリ(3,3′−エチレンジオキシフエニ
レンチオカーボネート) 2 ポリ(4,4′−イソプロピリデンジフエ
ニレンカーボネート) 3 ポリ(4,4′−イソプロピリデンフエニ
レンチオカーボネート) 4 ポリ(2,2−ブタンビス−4−フエニ
レンカーボネート) 5 ポリ〔4,4′−イソプロピリデンビス
(2−メチルフエニレン)カーボネート〕 6 ポリ〔4,4′−メチレンビス(2−メチ
ルフエニレン)カーボネート〕 また、光導電性化合物としては下記の一般式 (但し、R10、R11、R12およびR13は水素、アル
キル基又はフエニル基、アルキル基換フエニル
基、ハロ置換フエニル基、アルキルアミノ置換フ
エニル基、ジアルキルアミノフエニル置換、ハロ
アルキルアミノ置換のごときアリール基あるいは
チオニル基、ピコニル基のような複素環である。) で表わされるポリアリールアルカン誘導体が好ま
しく、これの代表的としては次のようなものがあ
げられる。 (1) 1,3−ジフエニル−2−p−ジエチルアミ
ノフエニル−テトラヒドロイミダゾール (2) ビス(p−(N,N−ジベンジル)アミノフ
エニル)メタン (3) 1−ビス(p−(N,N−ジベンジル)アミ
ノフエニル)プロパン (4) 4,4′−ビス(ジエチルアミノ)−2,2′−
ジメチルトリフエニルメタン (5) 4,4′−ビス(ジエチルアミノ)−2,2′−
ジメチル−2″−クロルトリフエニルメタン (6) α,α−ビス(2−メチル−4−ジエチルア
ミノフエニル)−2−メチルチオフエン (7) α,α−ビス(2−メチル−4−ジエチルア
ミノフエニル)−2−ピコリン (8) α,α−ビス(2−メチル−4−ジエチルア
ミノフエニル)−2−メチルフラン (9) α,α−ビス(2−メチル−4−ジエチルア
ミノフエニル)−2−メチルピロール (10) α,α−ビス(2−メチル−4−ジエチルア
ミノフエニル)−2−メチルインドール (11) α,α−ビス(2−メチル−4−ジエチルア
ミノフエニル)−2−メチルベンゾチオフエン (12) α,α−ビス(2−メチル−4−ジエチルア
ミノフエニル)−2−メチルベンゾフラン (13) 4,4′,4″−トリス(ジエチルアミノ)−
2,2′−ジメチルトリフエニルメタン これらの光導電性化合物は、光導電層(感光
層)3中にあつて光照射によつて感光層内で発生
した導電性キヤリヤー移動媒体として働き、感光
層の表面電荷の減少をもたらすものとして有効で
ある。 こうした本発明方法における複合感光体1′は
ピリリウム系染料、電気絶縁性重合体および光導
電性化合物を適当な溶媒例えな塩化メチレン、ク
ロロホルム、二塩化メチレン、1,1,2−トリ
クロロエタン(これらの混合溶媒を含む)又はこ
れにの溶媒にメタノール、エタノール、テトラヒ
ドロフラン、トルエン、ベンゼン等を添加した混
合溶媒に溶解し、これを透明導電性基体2上に塗
布乾燥して第一光導電層31′とし、この上にさ
らに第二光導電層32′を形成することによつて
製造することができる。また、第2図に示した複
合感光体1″はこの第一光導電層31′と第二光導
電層32′との間に中間層4を設けることによつ
て製造することができる。 第一光導電層31′の厚さは5〜30μmくらい
が適当である。各成分の割合は、染料2〜5重量
%、電気絶縁性重合体30〜80重量%、光導電性化
合物20〜50重量%程度である。 これら第1図、第2図に示した複合感光体1′,
1″は勿論カールソンプロセスに適用することも
できるが、本来の2色画像形成法に適用されるこ
とから、第二光導電層32′は赤色光に感度が乏
しいか感度がなく、青色光に感度をもつ光半導体
で構成されていることが望ましい。従つて、第二
光導電層32′は具体的には (イ) 電荷移動錯体(CT)よりなるもの:ここで
の電荷移動物質としては可視光に対して透明か
着色していても色のうすいもので、例えばポリ
ビニルカルバゾール、ポリアリールアルカンな
どとTNF(トリニトロフルオレノン)との電荷
移動錯体。 (ロ) 電荷移動層(CTL)/CdS、CTL/Se又は
CTL/有機顔料分散系などよりなるもの:こ
こではCdS層、Se層又は有機顔料分散層で発生
した電荷がCTLに良好に注入される。 (ハ) アゾ顔料(ジスアゾ顔料、トリスアゾ顔料)
を樹脂結着剤中に分散したもの (ニ) Cu−CdS:CdS含量は1〜92重量%程度で、
Cuで増感したCdSを樹脂結着剤中に分散した
もの。 (ホ) ZnO色素増感分散系:例えばフルオレセイン
で増感された酸化亜鉛 などがあげられる。この第二光導電層32′が単
層で形成される場合には蒸着層、スパツタリング
層でない方が望ましい。そうした層構成が採られ
ると得られた感光体は可撓性に乏しいものとなる
ためである。 中間層4は電荷のリークを阻止する上で有効で
ある。この中間層4は(イ)SiO、SiO2、Al2O3
MgO、MgF2等の白色あるいは透明な高抵抗無機
化合物を蒸着、スパツタリングなどで設けたも
の、(ロ)ポリエステル、ポリカーボネート、ポリア
ミド、アクリル樹脂、塩化ビニル樹脂、ポリ塩化
ビニリデン、ポリスチレン、スチレン−ブタジエ
ン共重合体、ブチラール樹脂、ホルマール樹脂、
フエノール樹脂、ポリウレタン樹脂、エポキシ樹
脂、メラミン樹脂、シリコン樹脂、ポリイミド樹
脂、セルロース樹脂、ポリアミノ酸などの薄膜、
などによつて形成される。 また、中間層4はこれらの中に、前述のよう
に、第一光導電層31′へ入射する光の波長を制
御するため、適当な顔料、染料が添加されてよ
い。ここでの染料、顔料としては赤色系のものが
望ましく、従つて顔料としてはインジゴ、チオイ
ンジゴ等のインジゴ顔料、ピラゾロンレツド等の
アゾ顔料、インダンスレンブルー等のアントラキ
ノン顔料、キナクリドン顔料などの有機顔料:硫
酸銅、フエロシアン化カリウム、(金属)フタロ
シアニン、重クロム酸バリウム、硫酸コバルト、
炭酸コバルト、トリクロルモリブデン、フエリシ
アン化カリウム、セレン粉末、ヨウ化スズ、ベン
ガラ、銀朱、コバルトブルーなどの無機顔料のご
ときがあげられる。また染料としてはオーラミン
等のジフエニルメタン染料、クリスタルバイオレ
ツト、マラカイトグリーン等のトリフエニルメタ
ン染料、フルオレセイン、ローズベンガル、ロー
ダミンB等のキサンテン染料、アクリジンオレン
ジ等のアクリジン染料、フエノサフラニン、メチ
レンバイオレツト等のアジン染料、フエノチアジ
ン、メチレンブルー等のチアジン染料が1,3,
5−トリフエニルピリリウムパークロレート等の
ピリリウム塩、1,3,5−トリフエニルチアピ
リリウムパークロレート等のチアピリリウム塩の
ごときがあげられる。 こうした本発明における感光体1′(又は1″)
は、透明導電性基体2上に共晶錯体及び光導電性
化合物を主体とした第一光導電層31′を設けた
後、必要により約1〜5μm厚の中間層を設け、
さらにこの上に前記(イ)ないし(ホ)のごとき第二光導
電層32′を設ければよい。中間層4は蒸着法、
スパツタリング法あるいは樹脂分散(溶解)塗布
法などによつて形成される。また、第二光導電層
32′はこれと同様な手段によつて形成でき、そ
の厚さは10〜50μm程度が適当である。 なお、第二光導電層32′を設けるにあたつて
結着剤が使用される場合の結着剤材料としてはポ
リエチレン、ポリスチレン、ポリブタジエン、ス
チレン−ブタジエン共重合体、アクリル酸エステ
ル又はメタクリル酸エステルの重合体及び共重合
体、ポリエステル、ポリアミド、ポリカーボネー
ト、エポキシ樹脂、ウレタン樹脂、シリコン樹
脂、アルキツド樹脂、セルロース系樹脂やポリ−
N−ビニルカルバゾール及びその誘導体(例えば
カルバゾール骨核に塩素、臭素などのハロゲン、
メチル基、アミノ基などの置換基を有するもの)、
ポリビニルピレン、ポリビニルアントラセン、ピ
レン−ホルムアルデヒド縮重合体及びその誘導体
(例えばピレン骨核に臭素などのハロゲン、ニト
ロ基などの置換基を有するもの)、ポリ−γ−カ
ルバゾリルエチル−L−グルタメート、スチロー
ル樹脂、塩素化ポリエチレン、アセタール樹脂、
メラミン樹脂などがあげられる。 この結着剤には可塑剤を併用することができ
る。可塑剤としてはジブチルフタレート、ジオク
チルフタレートなど一般に樹脂の可塑剤として使
用されているものがそのまま使用できる。その使
用量は結着剤に対し0〜30重量%が適当である。 また、ここで使用される有機溶媒は勿論結着剤
を溶解させることではならず、例えばトルエン、
テトラヒドロフラン、1,2−ジクロルエタン、
塩化メチレン、ベンゼン、メタノールなどが適用
される。 上記の第2図、第3図は共晶錯体感光層を第一
光導電層31′としているが、この共晶錯体層を
第二光導電層32′とした複合感光体も本発明方
法に適用できるものである。この場合、前記の第
二光導電層32′の素材がそのまま第一光導電層
として使用できるが、中間層4が設けられこれに
赤色光を吸収する着色剤(例えば銅フタロシアニ
ン、メチレンブルーなど)が添加されていれば、
下層の第一光導電層はパンクロマチツクの性質を
もつていてもかまわない。 前述のとおり、共晶錯体層を光導電層とした感
光体は可成りの残留電位が認められる。そこで、
本発明者らは残留電位の除去とクリーニング光と
の関係を詳細に検討したところ、複合感光体にお
いても残留電位消去の問題はプラス帯電乃至はプ
ラス電荷の場合にあることをつきとめた。 このため、本発明方法ではクリーニング光によ
る残留電位の消去を光電子放射現象(金属の表面
に光をあてると電子がでてくる現象)によつて解
決している。すなわち、第一光導電層31′が共
晶錯体層である複合感光体にあつては、感光体裏
面からクリーニング光をあてることによつて、第
一光導電層31′は導電性となるためそこに充電
されていた正電荷が透明導電性基体2方向に流れ
るようになり、同時に基体2からでてきた電子に
より移動しきれない正電荷が中和されるようにな
る。光導電層3に負電荷が充電されている場合に
このクリーニング光が照射されると、負電荷は導
体化された第一光導電層31′を良好に移動し透
明導電性基体2へと流れる。ここに、正負いずれ
の電荷が感光体1に残留電位として存在していて
も、感光体の裏面側(基前2側)からクリーニン
グ光を照射することによつて残留電位をなくすこ
とができる。 共晶錯体層を第二光導電層32′として用いた
複合感光体1′,1″においても上記のごとき傾向
がみられクリーニング光照射の効果が発揮され
る。もつとも、複合感光体にあつてはそれぞれの
光導電層31′,32′をクリーニング光で照射し
た方が効果があがることが確かめられた。即ち、
光導電層31′,32′は異なる感光波長域を有
し、透明導電性基体2側からのみ又は感光体表面
からのみクリーニング光を照射する場合、両光導
電層の感光波長を含む例えば白色光等の光を用い
る必要があるが、片側からの照射では、照射側と
は反対側の光導電層の残留電荷を除去するには照
射量を多くしなければならない。そうすると、照
射側の光導電層には多量の光が照射されることに
なり、この光導電層の特性を一時的に劣化せし
め、次の画像形成工程での帯電電荷量等を低下さ
せる。従つて、本発明方法で使用されているごと
きの複合感光体においては、両側より各光導電層
に必要な量のクリーニング光を照射することが有
利である。 このように、本発明は共晶錯体及び光導電性化
合物を主体とした光導電層を有する複合感光体の
良好な除電方法であり、これによれば地肌汚れが
ないコピーが得られるようになる。 ここで、共晶錯体及び光導電性化合物を主体と
した光導電層の除電効果を調べることにする。 導電性物質をコーテイングしたプラスチツクフ
イルム(透明導電性基体)上に 4−p−ジメチルアミノフエニル−2,6−ジフ
エニルチアピリリウムパークロレート 0.2g 4,4′−ビス(ジエチルアミノ)−2,2′−ジメ
チルトリフエニルメタン 2g ポリカーボネート樹脂(パンライトK−1300、帝
人KK製) 3g ジクロルメタン 80g の組成からなる溶液をドクターブレート法により
塗布し、80℃で2分間乾燥して約8μm厚の光導
電層を形成した。 こうしてつくられた感光体を試験的にペーパー
アナライザー(川口電機KK製)で暗中帯電、暗
減衰、光減衰、感光体表面からのクリーニング光
照射、の各工程を順次行なつた結果、第3図およ
び表−1のようになつた。なお、第3図において
実線は負帯電の場合、破線は正帯電の場合を示し
ている。
[Formula] is a divalent group selected from the group consisting of: Hydrophobic carbonate polymers (polycarbonates) comprising repeating units of the following formula are also useful and preferred. In the formula, R 9 is a phenylene group including halo-substituted phenylene groups and alkyl-substituted phenylene groups, and R 4 and R 5 are as described above. These polymers are disclosed in USP 3,028,365 and USP 3,317,466. Preferably, a compound containing an alkylidene diarylene moiety in the repeating unit, such as produced from bisphenol A, is produced by transesterification between diphenyl carbonate and 2,2-bis(4-hydroxyphenyl)propane. Polycarbonates containing such polymers are useful. Such polymers are disclosed in USP2999750, USP3038874,
Same No. 3038880, No. 3106544, No. 3106545, Same No.
It is disclosed in No. 3106546 etc. In any case, film-forming polycarbonate resins can be used in a wide variety of ways. Satisfactory results are obtained especially when using those having an intrinsic viscosity of about 0.5 to 1.8. Specific examples of the electrically insulating polymer are as follows. No. Polymer Material 1 Poly(3,3'-ethylenedioxyphenylenethiocarbonate) 2 Poly(4,4'-isopropylidene diphenylene carbonate) 3 Poly(4,4'-isopropylidene phenylenethiocarbonate) ) 4 Poly(2,2-butanebis-4-phenylene carbonate) 5 Poly[4,4'-isopropylidene bis(2-methylphenylene) carbonate] 6 Poly[4,4'-methylenebis(2-methylphenylene) carbonate] In addition, the following general formula is used as a photoconductive compound: (However, R 10 , R 11 , R 12 and R 13 are hydrogen, alkyl groups, phenyl groups, alkyl group-substituted phenyl groups, halo-substituted phenyl groups, alkylamino-substituted phenyl groups, dialkylaminophenyl-substituted, haloalkylamino-substituted Polyarylalkane derivatives represented by the following are preferred, and typical examples thereof include the following. (1) 1,3-diphenyl-2-p-diethylaminophenyl-tetrahydroimidazole (2) Bis(p-(N,N-dibenzyl)aminophenyl)methane (3) 1-bis(p-(N,N- dibenzyl)aminophenyl)propane(4) 4,4'-bis(diethylamino)-2,2'-
Dimethyltriphenylmethane (5) 4,4'-bis(diethylamino)-2,2'-
Dimethyl-2″-chlorotriphenylmethane (6) α,α-bis(2-methyl-4-diethylaminophenyl)-2-methylthiophene (7) α,α-bis(2-methyl-4-diethylaminophenyl) enyl)-2-picoline(8) α,α-bis(2-methyl-4-diethylaminophenyl)-2-methylfuran(9) α,α-bis(2-methyl-4-diethylaminophenyl)- 2-Methylpyrrole (10) α,α-bis(2-methyl-4-diethylaminophenyl)-2-methylindole(11) α,α-bis(2-methyl-4-diethylaminophenyl)-2- Methylbenzothiophene (12) α,α-bis(2-methyl-4-diethylaminophenyl)-2-methylbenzofuran (13) 4,4′,4″-tris(diethylamino)-
2,2'-Dimethyltriphenylmethane These photoconductive compounds are present in the photoconductive layer (photosensitive layer) 3 and act as a conductive carrier transport medium generated within the photosensitive layer by light irradiation, and the photoconductive layer It is effective in reducing the surface charge of . The composite photoreceptor 1' in the method of the present invention is prepared by combining the pyrylium dye, the electrically insulating polymer, and the photoconductive compound in a suitable solvent such as methylene chloride, chloroform, methylene dichloride, 1,1,2-trichloroethane (these The first photoconductive layer 31' is coated on the transparent conductive substrate 2 and dried to form a first photoconductive layer 31'. It can be manufactured by further forming a second photoconductive layer 32' thereon. Further, the composite photoreceptor 1'' shown in FIG. 2 can be manufactured by providing an intermediate layer 4 between the first photoconductive layer 31' and the second photoconductive layer 32'. The appropriate thickness of the photoconductive layer 31' is about 5 to 30 μm.The proportions of each component are 2 to 5% by weight of the dye, 30 to 80% by weight of the electrically insulating polymer, and 20 to 50% of the photoconductive compound. The composite photoreceptor 1', shown in FIGS. 1 and 2, is about % by weight.
1'' can of course be applied to the Carlson process, but since it is applied to the original two-color image forming method, the second photoconductive layer 32' has poor or no sensitivity to red light and is not sensitive to blue light. It is desirable that the second photoconductive layer 32' is made of a sensitive photosemiconductor.Specifically, the second photoconductive layer 32' is made of (a) a charge transfer complex (CT): the charge transfer substance here is It is transparent to visible light or has a faint color even if it is colored, such as a charge transfer complex of polyvinylcarbazole, polyarylalkane, etc. and TNF (trinitrofluorenone). (2) Charge transfer layer (CTL) / CdS , CTL/Se or
Composed of CTL/organic pigment dispersion system, etc.: Here, charges generated in the CdS layer, Se layer, or organic pigment dispersion layer are well injected into the CTL. (c) Azo pigment (disazo pigment, trisazo pigment)
Dispersed in a resin binder (d) Cu-CdS: CdS content is about 1 to 92% by weight,
Cu-sensitized CdS dispersed in a resin binder. (e) ZnO dye-sensitized dispersion system: Examples include zinc oxide sensitized with fluorescein. When the second photoconductive layer 32' is formed as a single layer, it is preferably not a vapor deposited layer or a sputtered layer. This is because if such a layer structure is adopted, the resulting photoreceptor will have poor flexibility. The intermediate layer 4 is effective in preventing charge leakage. This intermediate layer 4 is made of (a) SiO, SiO 2 , Al 2 O 3 ,
White or transparent high-resistance inorganic compounds such as MgO and MgF 2 are applied by vapor deposition or sputtering, (b) polyester, polycarbonate, polyamide, acrylic resin, vinyl chloride resin, polyvinylidene chloride, polystyrene, styrene-butadiene, etc. polymer, butyral resin, formal resin,
Thin films of phenolic resin, polyurethane resin, epoxy resin, melamine resin, silicone resin, polyimide resin, cellulose resin, polyamino acid, etc.
It is formed by etc. Furthermore, as described above, an appropriate pigment or dye may be added to the intermediate layer 4 in order to control the wavelength of light incident on the first photoconductive layer 31'. The dyes and pigments used here are preferably red, and therefore, the pigments include indigo pigments such as indigo and thioindigo, azo pigments such as pyrazolone red, anthraquinone pigments such as indanthrene blue, and organic pigments such as quinacridone pigments. Pigments: copper sulfate, potassium ferrocyanide, (metal) phthalocyanine, barium dichromate, cobalt sulfate,
Examples include inorganic pigments such as cobalt carbonate, trichloromolybdenum, potassium ferricyanide, selenium powder, tin iodide, red iron, silver vermilion, and cobalt blue. Dyes include diphenylmethane dyes such as auramine, triphenylmethane dyes such as crystal violet and malachite green, xanthene dyes such as fluorescein, rose bengal and rhodamine B, acridine dyes such as acridine orange, phenosafranin, methylene violet, etc. Thiazine dyes such as azine dyes, phenothiazine, and methylene blue are 1, 3,
Examples include pyrylium salts such as 5-triphenylpyrylium perchlorate, and thiapyrylium salts such as 1,3,5-triphenylthiapyrylium perchlorate. Photoreceptor 1' (or 1'') in the present invention
After providing a first photoconductive layer 31' mainly composed of a eutectic complex and a photoconductive compound on a transparent conductive substrate 2, an intermediate layer having a thickness of about 1 to 5 μm is provided if necessary,
Furthermore, a second photoconductive layer 32' as described in (a) to (e) above may be provided on this. The intermediate layer 4 is formed using a vapor deposition method.
It is formed by a sputtering method or a resin dispersion (dissolution) coating method. Further, the second photoconductive layer 32' can be formed by a similar method, and its thickness is suitably about 10 to 50 .mu.m. In addition, when a binder is used in providing the second photoconductive layer 32', examples of the binder material include polyethylene, polystyrene, polybutadiene, styrene-butadiene copolymer, acrylic ester, or methacrylic ester. Polymers and copolymers, polyester, polyamide, polycarbonate, epoxy resin, urethane resin, silicone resin, alkyd resin, cellulose resin and polycarbonate
N-vinylcarbazole and its derivatives (for example, halogens such as chlorine and bromine in the carbazole core,
(having substituents such as methyl group or amino group),
Polyvinylpyrene, polyvinylanthracene, pyrene-formaldehyde condensation polymers and derivatives thereof (for example, those having substituents such as halogen such as bromine or nitro group in the pyrene core), poly-γ-carbazolylethyl-L-glutamate, Styrene resin, chlorinated polyethylene, acetal resin,
Examples include melamine resin. A plasticizer can be used in combination with this binder. As the plasticizer, those commonly used as plasticizers for resins, such as dibutyl phthalate and dioctyl phthalate, can be used as they are. The appropriate amount to be used is 0 to 30% by weight based on the binder. Moreover, the organic solvent used here is of course not intended to dissolve the binder, for example, toluene,
Tetrahydrofuran, 1,2-dichloroethane,
Methylene chloride, benzene, methanol, etc. are applicable. 2 and 3 above, the eutectic complex photosensitive layer is used as the first photoconductive layer 31', but a composite photoreceptor using this eutectic complex layer as the second photoconductive layer 32' can also be applied to the method of the present invention. It is applicable. In this case, the material of the second photoconductive layer 32' can be used as it is as the first photoconductive layer, but an intermediate layer 4 is provided and a coloring agent (for example, copper phthalocyanine, methylene blue, etc.) that absorbs red light is added to the intermediate layer 4. If added,
The underlying first photoconductive layer may have panchromatic properties. As mentioned above, a photoreceptor having a eutectic complex layer as a photoconductive layer has a considerable residual potential. Therefore,
The inventors of the present invention have investigated in detail the relationship between removal of residual potential and cleaning light, and have found that even in composite photoreceptors, the problem of erasing residual potential occurs in the case of positive charge or positive charge. Therefore, in the method of the present invention, erasing of residual potential by cleaning light is solved by a photoelectron emission phenomenon (a phenomenon in which electrons are emitted when a metal surface is irradiated with light). That is, in the case of a composite photoreceptor in which the first photoconductive layer 31' is a eutectic complex layer, the first photoconductive layer 31' becomes conductive by applying cleaning light from the back surface of the photoreceptor. The positive charges that had been charged there will now flow in the direction of the transparent conductive substrate 2, and at the same time, the positive charges that cannot be moved will be neutralized by the electrons coming out of the substrate 2. When the photoconductive layer 3 is negatively charged and is irradiated with this cleaning light, the negative charges move well through the conductive first photoconductive layer 31' and flow to the transparent conductive substrate 2. . Here, even if either positive or negative charge exists as a residual potential on the photoconductor 1, the residual potential can be eliminated by irradiating cleaning light from the back side (front side 2) of the photoconductor. The above-mentioned tendency is also observed in the composite photoreceptors 1' and 1'' in which the eutectic complex layer is used as the second photoconductive layer 32', and the effect of cleaning light irradiation is exhibited. It was confirmed that the effect is better when each photoconductive layer 31', 32' is irradiated with cleaning light.
The photoconductive layers 31' and 32' have different photosensitive wavelength ranges, and when irradiating cleaning light only from the side of the transparent conductive substrate 2 or only from the surface of the photoreceptor, for example, white light that includes the photosensitive wavelength of both photoconductive layers is used. However, when irradiating from one side, the amount of irradiation must be increased to remove the residual charge on the photoconductive layer on the side opposite to the irradiated side. In this case, the photoconductive layer on the irradiation side is irradiated with a large amount of light, which temporarily deteriorates the characteristics of the photoconductive layer and reduces the amount of charge etc. in the next image forming step. Therefore, in composite photoreceptors such as those used in the method of the present invention, it is advantageous to irradiate each photoconductive layer with the required amount of cleaning light from both sides. As described above, the present invention is a good method for removing static electricity from a composite photoreceptor having a photoconductive layer mainly composed of a eutectic complex and a photoconductive compound, and according to this method, copies without background stains can be obtained. . Here, we will investigate the static elimination effect of a photoconductive layer mainly composed of a eutectic complex and a photoconductive compound. 0.2 g of 4-p-dimethylaminophenyl-2,6-diphenylthiapyrylium perchlorate 4,4'-bis(diethylamino)-2, on a plastic film (transparent conductive substrate) coated with a conductive substance. A solution consisting of 2'-dimethyltriphenylmethane 2g, polycarbonate resin (Panlite K-1300, manufactured by Teijin KK) 3g, and dichloromethane 80g was applied using a doctor blast method, dried at 80°C for 2 minutes, and then exposed to a layer of about 8μm thick. A conductive layer was formed. The thus-prepared photoconductor was experimentally subjected to each step of dark charging, dark attenuation, light attenuation, and cleaning light irradiation from the photoconductor surface using a paper analyzer (manufactured by Kawaguchi Denki KK). The results are shown in Figure 3. and as shown in Table 1. In addition, in FIG. 3, the solid line shows the case of negative charging, and the broken line shows the case of positive charging.

【表】 この実験では、感光体に正帯電を施した場合に
は10万ルツクス程度のクリーニング光を照射して
も電位減衰が起らないのが確められた。 そこで、とくに正帯電の場合、残留電位がある
試料を裏返えしにして透明導電性基体側からクリ
ーニング光を照射(川口電機KK製のペーパーア
ナライザーでは感光体の表面及び裏面からの光照
射は同時にできない)した後、再びペーパーアナ
ライザーでの正常な測定に戻し、残留表面電位を
測定したところ初期に残存していた残留電位は0
ボルトとなつていた。 比較のために、残留電位が残つている試料を裏
返えしにして透明導電性基体側からクリーニング
光を照射できるようにし、しかしここではクリー
ニング光を照射しないで、本来クリーニング光を
照射する時間の間暗中に放置した後、再びペーパ
ーアナライザーでの正常な測定にもどし、残留表
面電位を測定したところ初期に残存していた残留
電位はそのままの値で残存していた。 さらに他の比較のために、基体の導電性物質を
アルミニウム(膜厚約9.0μm)に代えた以外は同
様にして製造した感光体を、上記と同じような試
験操作を行なつたところ表−2のごとき結果が得
られた。
[Table] In this experiment, it was confirmed that when the photoreceptor was positively charged, no potential decay occurred even when irradiated with cleaning light of about 100,000 lux. Therefore, especially in the case of positive charging, the sample with residual potential is turned over and the cleaning light is irradiated from the transparent conductive substrate side (with Kawaguchi Electric KK's Paper Analyzer, light irradiation from the front and back sides of the photoreceptor is done at the same time). After that, I returned to normal measurement using the paper analyzer and measured the residual surface potential, and found that the initial residual potential was 0.
It had become a bolt. For comparison, the sample with residual potential was turned over so that the cleaning light could be irradiated from the transparent conductive substrate side. After leaving it in the dark, the paper analyzer was returned to normal measurement and the residual surface potential was measured, and the initial residual potential remained at the same value. For further comparison, a photoreceptor manufactured in the same manner except that the conductive material of the substrate was replaced with aluminum (film thickness approximately 9.0 μm) was subjected to the same test operations as above. The following results were obtained.

【表】 実施例 酸化インジウムを約0.005μm厚にコーテイング
したプラスチツクシート(透明導電性基体)上に 4−p−ジメチルアミノフエニル−2,6−ジフ
エニルチアピリリウムパークロレート 0.2g 4,4′−ビス(ジエチルアミノ)−2,2′−ジメ
チルトリフエニルメタン 2g ポリカーボネート樹脂(パンライトK−1300)
2.8g ジクロルメタン 60g の組成からなる溶液をドクターブレード法により
塗布し、80℃で15分間乾燥して約29μm厚の第一
光導電層を形成した。この上に約1μm厚のポリ
エステル樹脂層(中間層)を設けた。さらに、こ
の中間層上に約2μm厚のセレン蒸着層(電荷発
生層)を設け、次いでビス(p−N,N−ジベン
ジル)アミノフエニルプロパンとポリカーボネー
ト樹脂(パンライトK−1300)との1:1重量比
よりなる約11μm厚の電荷移動層を設けて第二光
導電層を形成した。 こうしてつくられた複合感光体にR−60フイル
ター(赤色フイルター、保谷硝子KK製)を通し
て裏面より均一照射しながら−6.5KVの一次コロ
ナ帯電を表面から行なつた。次いで、暗中で+
5.0KVの二次コロナ帯電を表面から行なつた後、
画像露光を施した。これを正帯電赤色トナー、負
帯電黒色トナーで逐次現像し、受像紙(普通紙)
に転写し定着したところ良好な2色画像複写物が
得られた。 一方、上記の帯電(一次帯電、二次帯電)、画
像露光を行なつた後、感光体の表面から白色光
(100000ルツクス・秒)をクリーニング光として
照射し、同時に裏面からも白色光(100000ルツク
ス・秒)をクリーニング光として照射した。こう
した帯電−画像露光−クリーニングの操作を繰り
返した。その結果、100回の繰り返し操作によつ
ても残留電位はみられず、また感光体の劣化がな
くいつまでも満足すべきコピーが得られた。 比較のために、裏面からのクリーニング光の照
射を省略したところ、感光体は繰り返しコピーを
行なうにつれて徐々に画像が悪化していくのが認
められた。また、裏面からのクリーニング光の照
射を省略し表面からのクリーニング光の照射を
200000ルツクス・秒と強めたところ、やはり同様
な結果が認められた。
[Table] Example 0.2 g of 4-p-dimethylaminophenyl-2,6-diphenylthiapyrylium perchlorate on a plastic sheet (transparent conductive substrate) coated with indium oxide to a thickness of about 0.005 μm 4,4 '-Bis(diethylamino)-2,2'-dimethyltriphenylmethane 2g Polycarbonate resin (Panlite K-1300)
A solution consisting of 2.8 g dichloromethane and 60 g was applied by a doctor blade method and dried at 80° C. for 15 minutes to form a first photoconductive layer with a thickness of about 29 μm. On top of this, a polyester resin layer (intermediate layer) having a thickness of about 1 μm was provided. Furthermore, a selenium vapor deposition layer (charge generation layer) with a thickness of about 2 μm is provided on this intermediate layer, and then a layer of bis(p-N,N-dibenzyl)aminophenylpropane and polycarbonate resin (Panlite K-1300) is formed. A second photoconductive layer was formed by providing a charge transfer layer having a thickness of about 11 μm and having a weight ratio of :1. The thus prepared composite photoreceptor was uniformly irradiated from the back side through an R-60 filter (red filter, manufactured by Hoya Glass KK), and primary corona charging of -6.5 KV was performed from the front side. Then in the dark +
After performing secondary corona charging of 5.0KV from the surface,
Image exposure was performed. This is sequentially developed with positively charged red toner and negatively charged black toner, and image receiving paper (plain paper) is
When the image was transferred and fixed, a good two-color image copy was obtained. On the other hand, after performing the above-mentioned charging (primary charging, secondary charging) and image exposure, white light (100,000 lux/sec) is irradiated from the surface of the photoconductor as cleaning light, and at the same time, white light (100,000 lux/second) is irradiated from the back surface. Lux/sec) was irradiated as a cleaning light. These operations of charging, image exposure, and cleaning were repeated. As a result, no residual potential was observed even after repeated operations 100 times, and satisfactory copies could be obtained for a long time without any deterioration of the photoreceptor. For comparison, when the cleaning light irradiation from the back side was omitted, it was found that the image on the photoreceptor gradually deteriorated as copies were repeatedly made. In addition, the cleaning light irradiation from the back side is omitted and the cleaning light irradiation from the front side is used instead.
When the intensity was increased to 200,000 lux·sec, similar results were observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明方法に適用される
電子写真用感光体の断面図、第3図は単層感光体
の電子写真特性を示すグラフである。 1′,1″……感光体、2……透明導電性基体、
3……光導電層、4……中間層、31′……第一
光導電層、32′……第二光導電層。
1 and 2 are cross-sectional views of an electrophotographic photoreceptor applied to the method of the present invention, and FIG. 3 is a graph showing the electrophotographic characteristics of a single-layer photoreceptor. 1', 1''...Photoreceptor, 2...Transparent conductive substrate,
3... Photoconductive layer, 4... Intermediate layer, 31'... First photoconductive layer, 32'... Second photoconductive layer.

Claims (1)

【特許請求の範囲】[Claims] 1 可視光領域の一部有彩色光に対し感度を有し
他の有彩色光を透過する第二光導電層と、その第
二光導電層を透過する有彩色光に対し感度を有す
る第一光導電層とが透明導電性基体上に第一光導
電層、必要により設けられる中間層、第二光導電
層の順で積層され、かつ、この2つの光導電層の
一方はピリリウム系染料と電気絶縁性重合体とで
形成された共晶錯体および光導電性化合物を主成
分としたものであつて、これに正又は負の一次コ
ロナ帯電を施した後一次帯電の極性とは異なる極
性の二次コロナ帯電を施すプロセスにより、ある
いは同様に一次コロナ帯電を施した後又はそれと
同時に、第一光導電層乃至は第二光導電層を導体
化しうる有彩色光の均一露光を行ない、続いて同
様に二次コロナ帯電を施すプロセスにより前記各
光導電層に互いに異なる極性の電荷を維持せし
め、次いで黒色部及び有彩色部を有する原稿を介
して画像露光した時にその各色部に対応する表面
電位が異極性として表われる複合感光体の除電
を、この感光体の表面、裏面の両方からクリーニ
ング光を照射することにより行なうことを特徴と
する電子写真用複合感光体の除電方法。
1. A second photoconductive layer that is sensitive to some chromatic light in the visible light range and transmits other chromatic light, and a first photoconductive layer that is sensitive to chromatic light that passes through the second photoconductive layer. A photoconductive layer is laminated on a transparent conductive substrate in the order of a first photoconductive layer, an optional intermediate layer, and a second photoconductive layer, and one of the two photoconductive layers is coated with a pyrylium dye. It is mainly composed of a eutectic complex formed with an electrically insulating polymer and a photoconductive compound, and after being subjected to positive or negative primary corona charging, it is charged with a polarity different from that of the primary charging. By the process of applying secondary corona charging, or similarly after or simultaneously with applying primary corona charging, uniform exposure to chromatic light capable of making the first photoconductive layer or the second photoconductive layer conductive is carried out, followed by Similarly, by the process of applying secondary corona charging, each of the photoconductive layers is made to maintain charges of different polarity, and then when an image is exposed through an original having a black part and a chromatic part, the surface potential corresponding to each color part is 1. A method for eliminating static electricity from a composite photoconductor for electrophotography, characterized in that static elimination of the composite photoconductor, which appears as different polarities, is carried out by irradiating cleaning light from both the front and back surfaces of the photoconductor.
JP2557180A 1980-02-29 1980-02-29 Destaticizing method for electrophotographic photoreceptor Granted JPS56122078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2557180A JPS56122078A (en) 1980-02-29 1980-02-29 Destaticizing method for electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2557180A JPS56122078A (en) 1980-02-29 1980-02-29 Destaticizing method for electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPS56122078A JPS56122078A (en) 1981-09-25
JPS6310828B2 true JPS6310828B2 (en) 1988-03-09

Family

ID=12169609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2557180A Granted JPS56122078A (en) 1980-02-29 1980-02-29 Destaticizing method for electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPS56122078A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123873U (en) * 1983-02-08 1984-08-21 沖電気工業株式会社 electrostatic image forming device
JP4901312B2 (en) * 2006-06-02 2012-03-21 株式会社リコー Image forming apparatus and image forming method
JP4657153B2 (en) * 2006-06-06 2011-03-23 株式会社リコー Image forming apparatus and image forming method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226230A (en) * 1975-08-22 1977-02-26 Mitsubishi Electric Corp Electrophotographic recording device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226230A (en) * 1975-08-22 1977-02-26 Mitsubishi Electric Corp Electrophotographic recording device

Also Published As

Publication number Publication date
JPS56122078A (en) 1981-09-25

Similar Documents

Publication Publication Date Title
US4047948A (en) Composite layered imaging member for electrophotography
US3567450A (en) Photoconductive elements containing substituted triarylamine photoconductors
US4081274A (en) Composite layered photoreceptor
US3658520A (en) Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US4415639A (en) Multilayered photoresponsive device for electrophotography
US4053311A (en) Poly-n-vinylcarbazole image transport layer plasticized by bis(4-diethylamino-2-methylphenyl)phenylmethane
US4047949A (en) Composite layered imaging member for electrophotography
JPH023984B2 (en)
GB2141249A (en) Multilayered photoresponsive device
GB1588318A (en) Photoconductive composition
US4078925A (en) Composite layered photoreceptor
US3554745A (en) Electrophotographic composition and element
JPS593741B2 (en) Photosensitive materials for electrophotography
JPS6310828B2 (en)
EP0146123B1 (en) Novel squarylium compound and photoreceptor containing same
US4626485A (en) Substituted squarium compounds, process for preparing the same and electrophotographic photoreceptors containing the same
US4329416A (en) Methods for preparing plural layer organic electrophotographic elements
JP2898685B2 (en) Electrophotographic photoreceptor
JP2833222B2 (en) Electrophotographic photoreceptor
JPS63292137A (en) Electrophotographic sensitive body
JPS63292141A (en) Electrophotographic sensitive body
SU463275A3 (en) Electrophotographic element
JPS6215863B2 (en)
JPS639224B2 (en)
JPS639226B2 (en)