JPS63107799A - Removing method for scale of reduction well for geothermal plant - Google Patents
Removing method for scale of reduction well for geothermal plantInfo
- Publication number
- JPS63107799A JPS63107799A JP61253250A JP25325086A JPS63107799A JP S63107799 A JPS63107799 A JP S63107799A JP 61253250 A JP61253250 A JP 61253250A JP 25325086 A JP25325086 A JP 25325086A JP S63107799 A JPS63107799 A JP S63107799A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- well
- pipe
- temp
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 230000005514 two-phase flow Effects 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 22
- 239000000377 silicon dioxide Substances 0.000 abstract description 11
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 238000011084 recovery Methods 0.000 description 9
- 239000000084 colloidal system Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000003584 silencer Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は地熱プラント用還元井のスケール除去方法に係
り、特に、還元井に付着したシリカを主成分とするスケ
ールを除去するに好適な地熱プラント用還元井のスケー
ル除去方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for removing scale from a reinjection well for a geothermal plant, and particularly relates to a method for removing scale from a reinjection well for a geothermal plant, and in particular, a geothermal plant suitable for removing scale mainly composed of silica adhering to a reinjection well. This invention relates to a method for removing scale from reinjection wells for plants.
従来、地熱プラントの地熱発電システムにおいては、地
熱流体(地熱二相流)を生産井から取り出し、この地熱
二相流を第1次セパレータで蒸気と熱水とに分離し、こ
の蒸気を蒸気タービンに送給して蒸気タービンの駆動に
よって発電機を作動し、熱エネルギーを電力に変換する
ことがおこなわれていた。一方熱水は高温高圧のまま還
元井から地中へ還元されていた。ところが、熱水を高温
高圧のまま還元井へ戻したのでは、熱回収効率を高める
ことができないところから、近年、熱水を減圧して蒸気
を生成するフラッシュ処理をおこない、この蒸気を蒸気
タービンへ送給し、一方蒸気を生成して低温になった熱
水を還元井より地中へ還元して熱回収効率を高めること
がおこなわれている。Conventionally, in a geothermal power generation system of a geothermal plant, geothermal fluid (geothermal two-phase flow) is extracted from a production well, this geothermal two-phase flow is separated into steam and hot water by a primary separator, and this steam is sent to a steam turbine. The steam turbine was then driven by a generator to convert the thermal energy into electricity. On the other hand, the hot water was being returned to the ground from the reinjection well at high temperature and pressure. However, returning the hot water to the reinjection well at high temperature and high pressure does not improve the heat recovery efficiency, so in recent years, flash processing has been carried out to reduce the pressure of the hot water and generate steam, and this steam is used in steam turbines. At the same time, steam is generated and the low-temperature hot water is returned to the ground through a reinjection well to increase heat recovery efficiency.
しかしながら、低温熱水が還元井に供給されると還元井
中の熱水の温度が低温になり、熱水中に溶解しているシ
リカ成分が多量に析出して還元井に付着し、還元井がシ
リカを主成分とするスケールによって短時間のうちに閉
塞するという不具合が生じた。However, when low-temperature hot water is supplied to the reinjection well, the temperature of the hot water in the reinjection well becomes low, and a large amount of silica components dissolved in the hot water precipitates and adheres to the reinjection well. A problem occurred in that the scale that was mainly composed of silica caused blockage in a short period of time.
本発明は、従来の課題に鑑みてなされたものであり、そ
の目的は、還元井に付着したスケールを溶解して除去す
ることができる地熱プラント用還元弁のスケール除去方
法を提供することにある。The present invention has been made in view of the conventional problems, and its purpose is to provide a method for removing scale from a reinjection valve for a geothermal plant, which can dissolve and remove scale attached to a reinjection well. .
前記目的を達成するために、本発明は、地熱二相流から
分離した熱水を磁場に導き、該磁場を通過した熱水を還
元井へ還元し、該還元井へ高温熱水を間欠的に注入する
地熱プラント用還元井のスケール除去方法を採用したも
のである。In order to achieve the above object, the present invention introduces hot water separated from a geothermal two-phase flow into a magnetic field, returns the hot water that has passed through the magnetic field to a reinjection well, and intermittently supplies high-temperature hot water to the reinjection well. This method is used to remove scale from injection wells used in geothermal plants.
磁場に熱水を通すと、熱水中のシリカコロイド粒子がイ
オン結合する。この結合はシロキサン結合よりも弱く、
高温になると分離、再溶解しやすくなる。このことから
熱水を磁場に通してがら還元井へ還元し、還元井へ高温
熱水を間欠的に注入することによって還元井内に付着し
たシリカスケールを溶解除去することができる。When hot water is passed through a magnetic field, the silica colloid particles in the hot water form ionic bonds. This bond is weaker than the siloxane bond;
At high temperatures, it becomes easier to separate and redissolve. Therefore, by passing hot water through a magnetic field and returning it to the reinjection well, and intermittently injecting high-temperature hot water into the reinjection well, it is possible to dissolve and remove the silica scale attached to the reinjection well.
以下1本発明の実施例を図面に基づいて詳細に説明する
。EMBODIMENT OF THE INVENTION Below, one embodiment of the present invention will be described in detail based on the drawings.
第1図には1本発明が適用された実施例の構成が示され
ている。第1図において、生産井1oの地熱二相流はパ
イプ12を介して第1次セパレータ14に送給されるよ
うになっている。第1次セパレータ14に導入された地
熱二相流は蒸気と高温高圧熱水とに分離される。そして
蒸気はパイプ16を介して熱回収装置18に送給され、
高温高圧熱水はパイプ20を介して熱回収装置18に送
給されるようになっている。パイプ16の管路途中には
バルブ22が配設されており、パイプ20の管路途中に
はバルブ24、磁場処理装置26が配設されている。ま
たパイプ16の管路途中にはパイプ28を介してサイレ
ンサ30が接続されている。なおパイプ28の管路途中
にはバルブ32が配設されている。またパイプ20の管
路途中にはパイプ34が配設されており、このパイプ3
4は還元井36と連通ずるようになっている。そしてこ
のパイプ34の管路途中にはバルブ38が配設されてい
る。FIG. 1 shows the configuration of an embodiment to which the present invention is applied. In FIG. 1, the geothermal two-phase flow from the production well 1o is fed through a pipe 12 to a primary separator 14. The geothermal two-phase flow introduced into the primary separator 14 is separated into steam and high-temperature, high-pressure hot water. The steam is then sent to the heat recovery device 18 via the pipe 16,
The high-temperature, high-pressure hot water is supplied to the heat recovery device 18 via a pipe 20. A valve 22 is disposed in the middle of the pipe 16, and a valve 24 and a magnetic field processing device 26 are disposed in the middle of the pipe 20. Further, a silencer 30 is connected to the pipe 16 through a pipe 28. Note that a valve 32 is provided in the middle of the pipe 28. Further, a pipe 34 is disposed in the middle of the pipe 20, and this pipe 3
4 communicates with the reinjection well 36. A valve 38 is provided in the middle of the pipe 34.
熱回収装置18は蒸気タービン、発電機、減圧装置など
を有し、パイプ16から導入された蒸気によって蒸気タ
ービンを駆動し、蒸気タービンの駆動によって発電機を
作動して熱エネルギーを電力に変換するように構成され
ている。またさらにパイプ2oがら導入された高温高圧
熱水を減圧装置で減圧し、蒸気と低温熱水とに分離する
フラッシュ処理をおこない、この処理によって生成され
た蒸気を蒸気タービンへ送給し、低温熱水をパイプ40
を介して還元井36へ排出するように構成されている。The heat recovery device 18 includes a steam turbine, a generator, a pressure reducing device, etc., and the steam introduced from the pipe 16 drives the steam turbine, and the drive of the steam turbine operates the generator to convert thermal energy into electricity. It is configured as follows. Furthermore, the pressure of the high-temperature, high-pressure hot water introduced through pipe 2o is reduced using a pressure reducing device, and a flash process is performed to separate it into steam and low-temperature hot water. pipe water 40
The water is configured to discharge to a reinjection well 36 via a.
このパイプ4oの管路途中にはバルブ42と磁気処理装
置44が配設されている。A valve 42 and a magnetic processing device 44 are disposed in the middle of the pipe 4o.
磁気処理装置26.44はパイプ20.40の熱水通路
中に磁場を形成し、熱水中のシリカコロイド粒子をイオ
ン結合させるように構成されている。The magnetic treatment device 26.44 is configured to create a magnetic field in the hot water passage of the pipe 20.40 to ionically bond the silica colloid particles in the hot water.
以上の構成において、熱回収装置18を通常の状態で運
転するときには、バルブ12,24,42を開き、バル
ブ32.38を閉じる。そして第1次セパレータ14か
ら排出される蒸気によって蒸気タービンを駆動するとと
もに、高温高圧熱水から得られた蒸気により蒸気タービ
ンを駆動し、熱エルルギーを電力に変換する処理をおこ
なう。また低温熱水はパイプ40を介して還元井36へ
戻し、地熱二相流のくみ上げによって地盤沈下が生じる
のを防止することとしている。また還元井36へ送給さ
れる低温熱水は磁場を通過したことによってシリカコロ
イド粒子がイオン結合した状態で還元井36内に付着す
る。In the above configuration, when the heat recovery device 18 is operated under normal conditions, the valves 12, 24, and 42 are opened and the valves 32 and 38 are closed. The steam discharged from the primary separator 14 drives a steam turbine, and the steam obtained from the high-temperature, high-pressure hot water drives the steam turbine, thereby converting thermal energy into electric power. Furthermore, the low-temperature hot water is returned to the reinjection well 36 via the pipe 40 to prevent ground subsidence caused by pumping up the geothermal two-phase flow. Furthermore, the low-temperature hot water fed to the reinjection well 36 passes through a magnetic field, so that the silica colloid particles adhere to the inside of the reinjection well 36 in an ionically bonded state.
次に、還元井36内に付着したシリカスケールを溶解除
去するため、定期点検等で熱回収装置18を停止する短
期間、バルブ22,24.42を閉じ、バルブ32.3
8を開く。これにより蒸気をパイプ16.28、サイレ
ンサ30を介して大気中に放出する。一方高温高圧熱水
はパイプ34を介して還元井36へ注入する。還元井3
6に高温高圧熱水が注入されると、通常運転中に還元井
36で析出して還元井36の壁面などに付着したシリカ
スケールが分離するとともに再溶解し。Next, in order to dissolve and remove the silica scale attached to the reinjection well 36, the valves 22, 24, and 42 are closed for a short period of time when the heat recovery device 18 is stopped for periodic inspection, etc., and the valves 32, 3, and 32 are closed.
Open 8. This releases the steam through the pipes 16, 28 and the silencer 30 into the atmosphere. On the other hand, high-temperature, high-pressure hot water is injected into the reinjection well 36 via the pipe 34. Reduction well 3
When high-temperature, high-pressure hot water is injected into the well 6, the silica scale that has precipitated in the reinjection well 36 and adhered to the walls of the reinjection well 36 during normal operation is separated and redissolved.
還元井36中のスケールを溶解除去することができる。The scale in the reinjection well 36 can be dissolved and removed.
このことから、高温高圧熱水がらも熱回収し、高い熱回
収効率を有する地熱プラントであっても、還元井36が
短期間で閉塞するのを防止することかでき、還元井36
の長寿命化を図ることができる。Therefore, even in a geothermal plant that recovers heat from high-temperature, high-pressure hot water and has high heat recovery efficiency, it is possible to prevent the reinjection well 36 from clogging in a short period of time.
It is possible to extend the service life of the
以上説明したように、本発明によれば、磁場を通過した
熱水を還元井へ供給するとともに還元井へ高温熱水を間
欠的に注入するようにしたため、還元井に付着したスケ
ールを容易に溶解除去することができ、高温高圧熱水か
らも熱回収し高い熱ることでかできる。
−As explained above, according to the present invention, hot water that has passed through a magnetic field is supplied to the reinjection well, and high-temperature hot water is intermittently injected into the reinjection well, so scale attached to the reinjection well can be easily removed. It can be dissolved and removed, and it can also be removed by recovering heat from high-temperature, high-pressure hot water and heating it to a high temperature.
−
第1図は本発明が適用された実施例の構成図である。
1・・・生産井、 14・・・第1次セパレータ。
18・・・熱回収装置、26.44・・・磁気処理装置
、36・・・還元井。FIG. 1 is a block diagram of an embodiment to which the present invention is applied. 1... Production well, 14... Primary separator. 18...Heat recovery device, 26.44...Magnetic treatment device, 36...Reduction well.
Claims (1)
過した熱水を還元井へ還元し、該還元井へ高温熱水を間
欠的に注入することを特徴とする地熱プラント用還元井
のスケール除去方法。A reduction method for a geothermal plant characterized by introducing hot water separated from a geothermal two-phase flow into a magnetic field, returning the hot water that has passed through the magnetic field to a reduction well, and intermittently injecting high-temperature hot water into the reduction well. How to descale a well.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61253250A JPS63107799A (en) | 1986-10-24 | 1986-10-24 | Removing method for scale of reduction well for geothermal plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61253250A JPS63107799A (en) | 1986-10-24 | 1986-10-24 | Removing method for scale of reduction well for geothermal plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63107799A true JPS63107799A (en) | 1988-05-12 |
Family
ID=17248653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61253250A Pending JPS63107799A (en) | 1986-10-24 | 1986-10-24 | Removing method for scale of reduction well for geothermal plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63107799A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02241599A (en) * | 1989-03-15 | 1990-09-26 | Kyowa Kucho Kk | Method and apparatus for prevention and removal of scale of hot spring water |
JPH02254259A (en) * | 1989-03-27 | 1990-10-15 | Hisaka Works Ltd | Method and device for supplying geothermal water |
JPH03186398A (en) * | 1989-12-14 | 1991-08-14 | Tadao Hirokawa | Scale attachment protection device of hot water pipe in spa water pumping-up system |
JPH06288615A (en) * | 1993-04-05 | 1994-10-18 | Inax Corp | Domestic heat recovery apparatus for waste hot water |
-
1986
- 1986-10-24 JP JP61253250A patent/JPS63107799A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02241599A (en) * | 1989-03-15 | 1990-09-26 | Kyowa Kucho Kk | Method and apparatus for prevention and removal of scale of hot spring water |
JPH02254259A (en) * | 1989-03-27 | 1990-10-15 | Hisaka Works Ltd | Method and device for supplying geothermal water |
JPH03186398A (en) * | 1989-12-14 | 1991-08-14 | Tadao Hirokawa | Scale attachment protection device of hot water pipe in spa water pumping-up system |
JPH06288615A (en) * | 1993-04-05 | 1994-10-18 | Inax Corp | Domestic heat recovery apparatus for waste hot water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2772618A1 (en) | Power generating facility | |
EP1010864A3 (en) | Apparatus and methods for supplying auxiliary steam in a combined cycle system | |
WO1998046872A1 (en) | Combined cycle power generating plant and method of supplying cooling steam for gas turbine in same | |
JPS63107799A (en) | Removing method for scale of reduction well for geothermal plant | |
JP2000297657A (en) | Electric power storage type gas turbine generator facility | |
CN112178620A (en) | Condensed water energy utilization device of high-pressure heater of thermal power plant | |
CN105781642A (en) | Steam boiler system with power generation function and work method thereof | |
CN104746551B (en) | Two filtration recoils are from removing contamination water fetching device and working method thereof | |
EP0083652A1 (en) | Energy-saving pressure reducer. | |
JP2002317607A (en) | Power generation system using micro water turbine | |
CN209761508U (en) | System for driving and reducing station power consumption rate of waste incineration power plant by water feeding pump | |
CN208380646U (en) | A kind of purge system suitable for supercritical carbon dioxide Brayton cycle | |
JPH04190001A (en) | Method of clean-up in steam power plant | |
JPH10331607A (en) | Exhaust heat recovery boiler blowing device and a boiler blowing-out method | |
JPS63131901A (en) | Method of recovering heat of reaction | |
CN212614922U (en) | Steel slag water waste heat recycling power generation system | |
CN204511528U (en) | A kind of residual heat and energy reclaims the dock of cogeneration unit and unloaded cooling unit | |
JPS5823211A (en) | Waste heat recovery power plant | |
CN217976348U (en) | Reheating saturated steam combined heat and power generation turbo generator unit | |
CN214303971U (en) | Air compression system for cooling water boiling type circulating power generation equipment | |
CN219494069U (en) | Pressure energy recovery system of deaerator heating steam | |
CN213492161U (en) | Circulating water system of power plant | |
CN114087047B (en) | CCPP power plant fuel gas backflow energy recovery system and method | |
JP2009019578A (en) | On-line cleaning method for gas compressor of gas turbine | |
JPH1193696A (en) | Method for cleaning steam cooling system of compound power plant |