JPS6310755B2 - - Google Patents

Info

Publication number
JPS6310755B2
JPS6310755B2 JP56147933A JP14793381A JPS6310755B2 JP S6310755 B2 JPS6310755 B2 JP S6310755B2 JP 56147933 A JP56147933 A JP 56147933A JP 14793381 A JP14793381 A JP 14793381A JP S6310755 B2 JPS6310755 B2 JP S6310755B2
Authority
JP
Japan
Prior art keywords
coke
ammonia
tower
heating tower
combustion furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56147933A
Other languages
Japanese (ja)
Other versions
JPS5852388A (en
Inventor
Masaharu Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56147933A priority Critical patent/JPS5852388A/en
Publication of JPS5852388A publication Critical patent/JPS5852388A/en
Publication of JPS6310755B2 publication Critical patent/JPS6310755B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、コークス熱媒体循環流動床による重
質油を原料とするオレフインの製造方法におい
て、原料重質油より副生するアンモニア及び高温
コークスで、窒素酸化物を還元除去する方法に関
する。 反応塔及び加熱塔間にコークス熱媒体循環流動
床を形成し、反応塔で重質油を熱分解してオレフ
インを製造する方法(以下コークス熱媒体法とい
う)において、熱分解原料油に原油又はその蒸留
残渣油などの重質油が用いられる。これら重質油
は窒素含有量が多く0.05〜1.0重量%含まれてい
る。そのため分解により副生する重質油中の窒素
含有量は多く約0.1〜2.0重量%である。コークス
熱媒体法ではこの分解重質油の加熱塔の外部燃焼
炉の燃料として使用しているためいわゆるフユエ
ルNOXが非常に多く発生する。また分解ガス中
には原料油窒素に基因する分解生成アンモニアが
かなり含まれ、アンモニア生成収率は一例として
原料油窒素の10〜20%である。生成アンモニアは
いわゆるプロセス凝縮水中に大部分溶解し、凝縮
水スチームストリツパーで除去され、アンモニア
含有酸性ガスは燃焼炉で燃焼処理される。しかし
アンモニアが燃焼するほとんどNOXが生成する。
以上の過程で発生した窒素酸化物、すなわち外部
燃焼炉及び酸性ガス等燃焼炉で発生したものは脱
硝設備に大きい負荷となる。 しかして本発明は、このようなコークス熱媒体
法によるオレフインの製造方法において、原料油
重質油より分解副生するアンモニアをコークスの
加熱塔へ通入し、そこで高温コークス及び該還元
性アンモニアガスにより、加熱塔に付属する外部
燃焼炉より発生流入する窒素酸化物を還元除去
し、同時に該アンモニアを窒素酸化物還元反応に
消費することで、加熱塔排ガス等の再燃焼炉でア
ンモニアから燃焼生成する窒素酸化物を低減させ
る方法に関する。 すなわち、本発明を概説すれば、本発明は、反
応塔と加熱塔の二つのコークス粒子流動床を併設
し、該二塔間にコークス粒子を循環し、加熱塔に
おいて、それに付属する外部燃焼炉からの高温燃
焼ガスにより前記コークス粒子を加熱すると共
に、反応塔において、加熱されたコークス粒子を
熱媒体として重質油を熱分解してオレフインを製
造する場合に、原料重質油より副生するアンモニ
アを加熱塔へ通入し、そこで、高温コークス及び
該還元性アンモニアガスによつて、外部燃焼炉よ
り発生流入する窒素酸化物を還元除去する方法で
ある。 コークス熱媒体法においては、反応塔と加熱塔
の二つのコークス粒子流動床を併設し、該二塔間
にコークス粒子を循環し、加熱塔において燃料及
び必要に応じコークス粒子の一部を燃焼すること
により、前記コークス粒子を加熱すると共に、反
応塔において加熱されたコークス粒子を熱媒体と
して原油又はその蒸留残渣油等の重質油を約700
〜850℃の温度において水蒸気の共存下で熱分解
し、エチレン、プロピレン等のオレフインを製造
する。加熱塔の側方に設置した燃料を燃焼する外
部燃焼炉では熱分解による副生液状生成物の蒸留
残渣を燃焼する。 コークス熱媒体法では熱分解原料油に上記重質
油が使用され、これら原料油は窒素含有量が多
く、そのため外部燃焼炉燃料の副生液状生成物の
蒸留残渣の窒素含有量が高い。分析結果によると
その窒素含有量は約0.1〜2.0重量%で、外部燃焼
炉排ガスの窒素酸化物濃度も高く、400〜600ppm
(乾燥排ガスベース)である。外部燃焼炉の高温
排ガスは循環コークス流動床中に通入され、該コ
ークスを750〜850℃に加熱する。ここで、加熱塔
排ガス中の窒素酸化物は加熱塔通入燃焼排ガスの
窒素酸化物濃度より200〜500ppmと若干低減する
ことが確認された。高温コークスで窒素酸化物が
一部接触還元されることは、従来知られた事実で
あり〔例えば燃料協会誌第54巻第581号766〜773
頁(1975)〕、コークス熱媒体法においても高温コ
ークスにより一部接触還元による脱硝反応が起き
ている。 一物コークス熱媒体法では分解ガス中にアンモ
ニアがかなり存在する。例えば熱分解原料油とし
て窒素含有量0.4〜0.5重量%の減圧残油の場合、
反応塔への通入量100T/時で生成アンモニアは
100〜150Kg/時である。この副生アンモニアは第
一分留塔塔頂系で凝縮した、プロセス使用スチー
ム凝縮水にかなりのものが溶解する。凝縮水中に
溶解したアンモニアはシアン化水素、硫化水素な
どのガスと共にスチームストリツピングされ、そ
の後ガスは燃焼処理される。 ここにストリツピングアンモニアガス量は上記
の場合で50〜100Kg/時であり、そのアンモニア
含有ストリツピング排ガスを前記加熱塔へ通入す
るとアンモニア及び高温コークスにより加熱塔に
付属する外部燃焼炉から排出される窒素酸化物の
70〜98%が非常に有効に接触還元脱硝されること
を見出した。 またアンモニア含有スチームストリツピング排
ガスは燃焼処理されていたが、上記方法でアンモ
ニアが脱硝反応に使われ消費されるために、該再
燃焼炉でアンモニアから燃焼生成する窒素酸化物
が低減した。更にこれら排ガスを脱硝処理してい
る後続の脱硝触媒の負荷を低減させることができ
た。熱分解原料油が原油、常圧残油のような低窒
素含有量の場合は、後続排ガスの脱硝処理設備を
通さずに排出することが可能になつた。 次に添付図面に沿つて本発明を具体的に説明す
る。添付図面は本発明の一実施の態様及び比較例
を説明するための装置の系統図である。 1は反応塔、2は加熱塔であり、各塔でコーク
ス粒子の流動床が形成されており、且つ同コーク
ス粒子はライン16により二塔間を循環する。1
5は加熱塔の外部燃焼炉で、17は燃焼用空気の
供給ライン、18はその燃焼排ガスの加熱塔への
ラインである。原料重質油がライン3より反応塔
1に供給され、コークス粒子により熱分解され、
ライン4、サイクロン5、ライン7、急冷器8、
ライン10を経て、第一分留塔11に導入され
る。その塔底から得られる分解重質油はライン1
4から取出し、残留はライン13を経て外部燃焼
炉15に供給される。他方塔頂成分は分解ガス1
2、分解ガソリン32、凝縮水19に分離され、
該凝縮水は凝縮水ストリツパー31に導入され
る。 アンモニア含有排ガスは凝縮水ストリツパー3
1でストリツピングスチーム30によりストリツ
ピングされライン20で加熱塔2へ通入される。
外部燃焼炉15の燃焼排ガス18中の窒素酸化物
は循環流動高温コークス33と20から通入され
るアンモニア含有排ガスで脱硝されて加熱塔から
サイクロン21を経てライン23を通り排出され
る。他方、サイクロン21で分離されたコークス
は、デイツプレツグ22を経て流動床に戻る。ア
ンモニア含有排ガス20かこれまでライン29か
ら再燃焼炉24で燃焼処理され、窒素酸化物発生
源になつていた。しかし本発明では、アンモニア
は加熱塔2で脱硝反応で消費され、未反応アンモ
ニアが再燃焼炉で燃焼処理される。したがつて外
部燃焼炉15で発生流入した窒素酸化物は脱硝さ
れ、再燃焼炉でも発生窒素酸化物が減少するので
再燃焼炉24の燃焼排ガス28の窒素酸化物は非
常に少ないものとなる。なお、再燃焼炉24の2
6はポイラーの供給水、27はその発生スチー
ム、25は燃焼用ガスである。また、9は急冷器
8における急冷油の供給ライン、6はサイクロン
5で分離されたコークス粒子の反応塔への戻入ラ
インである。 次に本発明の実施例を示すが、本発明はこれら
に限定されるものではない。 実施例 1 添付図面に示すように構成された装置の反応塔
1へ中東産常圧残油を供給し温度750℃、希釈ス
チームと原料油の重量比1.0の条件で熱分解した
ところ、分解ガス49重量%、副生軽質油(沸点80
〜200℃)11重量%、副生残渣(沸点200℃以上)
32重量%及びコークス8重量%を生成した。この
副生残渣の70%を、加熱塔の側方に設置した外部
燃焼炉に供給し、副生残渣に対し20重量%の噴霧
用スチームを吹込み、理論空気量で燃焼させた。
また加熱塔下部、上記燃焼ガス導入口より下部に
設けたノズル20より凝縮水ストリツパー31で
ストリツピングされた53℃、270Kg/時のガスを
790℃の加熱塔へ通入した。そのストリツピング
ガスの組成は次のとおりであつた。 H2S 69% HCN 4 NH3 21 その他 6 外部燃焼炉、加熱塔及び再燃焼炉出口の各窒素
酸化物量を、後記表―1に以下の各例の結果と一
緒にまとめて示す。 実施例 2 実施例1において反応塔への供給原料油に窒素
含有量0.58重量%の減圧残油を供給した以外の操
作は同様にして行つた。その時の各点における窒
素酸化物量の結果を表―1に示す。 比較列 1 実施例1において凝縮水ストリツピング排ガス
を全量再燃焼炉でライン29より導入して燃焼処
理した以外の操作は全く同一に行つた。この場合
の各点における窒素酸化物の結果を表―1に示
す。 比較例 2 実施例2において凝縮水ストリツピング排ガス
を全量再燃焼炉でライン29より導入して燃焼処
理した以外の操作は全く同一に行つた。この場合
の各点における窒素酸化物の結果を表―1に示
す。
The present invention relates to a method for producing olefins using heavy oil as a raw material using a coke heating medium circulation fluidized bed, in which nitrogen oxides are reduced and removed using ammonia and high-temperature coke produced as by-products from the raw material heavy oil. In a method (hereinafter referred to as coke heating medium method) in which a coke heating medium circulating fluidized bed is formed between a reaction tower and a heating tower and heavy oil is thermally decomposed in the reaction tower to produce olefins, crude oil or crude oil is added to the pyrolysis feedstock oil. Heavy oil such as distillation residue oil is used. These heavy oils have a high nitrogen content, ranging from 0.05 to 1.0% by weight. Therefore, the nitrogen content in heavy oil produced as a by-product of decomposition is often about 0.1 to 2.0% by weight. In the coke heat transfer method, this cracked heavy oil is used as fuel for the external combustion furnace of the heating tower, so a large amount of so-called fuel NOx is generated. Furthermore, the cracked gas contains a considerable amount of ammonia produced by decomposition based on the nitrogen in the feedstock, and the ammonia production yield is, for example, 10 to 20% of the nitrogen in the feedstock. The ammonia produced is largely dissolved in the so-called process condensate water and removed in a condensate steam stripper, and the ammonia-containing acid gas is combusted in a combustion furnace. However, when ammonia is burned, almost NOX is produced.
Nitrogen oxides generated in the above process, that is, those generated in the external combustion furnace and acid gases in the combustion furnace, place a large load on the denitrification equipment. Accordingly, the present invention provides a method for producing olefin using such a coke heat transfer method, in which ammonia, which is a byproduct of decomposition from raw material heavy oil, is passed through a coke heating tower, where high-temperature coke and the reducing ammonia gas are By reducing and removing the nitrogen oxides generated and flowing in from the external combustion furnace attached to the heating tower, and at the same time consuming the ammonia in the nitrogen oxide reduction reaction, the heating tower exhaust gas, etc. is combusted from ammonia in the re-combustion furnace. The present invention relates to a method for reducing nitrogen oxides. That is, to summarize the present invention, the present invention provides two fluidized beds of coke particles, a reaction tower and a heating tower, circulates coke particles between the two towers, and in the heating tower, an external combustion furnace attached thereto is installed. When producing olefin by heating the coke particles with high-temperature combustion gas from the feedstock and pyrolyzing heavy oil using the heated coke particles as a heat medium in a reaction tower, the coke particles are produced as a by-product from the raw material heavy oil. This is a method in which ammonia is passed through a heating tower, where nitrogen oxides generated and flowing from an external combustion furnace are reduced and removed by high-temperature coke and the reducing ammonia gas. In the coke heat transfer method, two coke particle fluidized beds, a reaction tower and a heating tower, are installed, the coke particles are circulated between the two towers, and the fuel and, if necessary, part of the coke particles are combusted in the heating tower. By heating the coke particles, the heated coke particles in the reaction tower are used as a heat medium to heat heavy oil such as crude oil or its distillation residue oil to approximately 700 ml.
It is thermally decomposed in the presence of water vapor at a temperature of ~850°C to produce olefins such as ethylene and propylene. An external combustion furnace that burns fuel installed on the side of the heating tower burns the distillation residue, which is a liquid byproduct of thermal decomposition. In the coke heat transfer method, the above-mentioned heavy oils are used as pyrolysis feedstocks, and these feedstocks have a high nitrogen content, so that the distillation residue of the by-product liquid product of external combustion furnace fuel has a high nitrogen content. According to the analysis results, the nitrogen content is approximately 0.1 to 2.0% by weight, and the nitrogen oxide concentration in the external combustion furnace exhaust gas is also high, 400 to 600 ppm.
(based on dry exhaust gas). The hot exhaust gas of the external combustion furnace is passed into the circulating coke fluidized bed and heats the coke to 750-850°C. Here, it was confirmed that the nitrogen oxide concentration in the heating tower exhaust gas was slightly lower by 200 to 500 ppm than the nitrogen oxide concentration in the combustion exhaust gas passing through the heating tower. It is a well-known fact that some nitrogen oxides are catalytically reduced in high-temperature coke [for example, Japan Fuel Association Journal, Vol. 54, No. 581, 766-773].
(1975)], also in the coke heat transfer method, denitrification reactions occur partially through catalytic reduction using high-temperature coke. In the single coke heat transfer method, a considerable amount of ammonia is present in the cracked gas. For example, in the case of vacuum residue with a nitrogen content of 0.4 to 0.5% by weight as a pyrolysis feedstock,
The amount of ammonia produced when the flow rate to the reaction tower is 100T/hour is
100-150Kg/hour. A considerable amount of this by-product ammonia is dissolved in the steam condensed water used in the process, which is condensed in the top system of the first fractionating column. The ammonia dissolved in the condensed water is steam stripped with gases such as hydrogen cyanide and hydrogen sulfide, and the gases are then combusted. Here, the amount of stripping ammonia gas is 50 to 100 kg/hour in the above case, and when the ammonia-containing stripping exhaust gas is passed through the heating tower, ammonia and high-temperature coke are discharged from the external combustion furnace attached to the heating tower. of nitrogen oxides
It was found that 70-98% of the nitrogen content was very effectively denitrified by catalytic reduction. Further, although the ammonia-containing steam stripping exhaust gas was subjected to combustion treatment, in the above method, ammonia was used and consumed in the denitrification reaction, so the amount of nitrogen oxides produced by combustion from ammonia in the reburning furnace was reduced. Furthermore, it was possible to reduce the load on the subsequent denitrification catalyst that denitrates these exhaust gases. If the pyrolysis feedstock has a low nitrogen content, such as crude oil or atmospheric residual oil, it has become possible to discharge the subsequent exhaust gas without passing it through a denitrification treatment facility. Next, the present invention will be specifically described with reference to the accompanying drawings. The accompanying drawing is a system diagram of an apparatus for explaining an embodiment of the present invention and a comparative example. 1 is a reaction column, and 2 is a heating column. A fluidized bed of coke particles is formed in each column, and the coke particles are circulated between the two columns via a line 16. 1
5 is an external combustion furnace of the heating tower, 17 is a combustion air supply line, and 18 is a line for supplying the combustion exhaust gas to the heating tower. Raw material heavy oil is supplied to the reaction tower 1 from line 3, and is thermally decomposed by coke particles.
line 4, cyclone 5, line 7, quencher 8,
It is introduced into a first fractionator 11 via a line 10. The cracked heavy oil obtained from the bottom of the tower is line 1
4 and the residue is fed via line 13 to an external combustion furnace 15. On the other hand, the top component is cracked gas 1
2. Separated into cracked gasoline 32 and condensed water 19,
The condensed water is introduced into a condensed water stripper 31. Condensed water stripper 3 for ammonia-containing exhaust gas
1, it is stripped by a stripping steam 30 and passed through a line 20 to a heating tower 2.
Nitrogen oxides in the combustion exhaust gas 18 of the external combustion furnace 15 are denitrified by the ammonia-containing exhaust gas introduced from the circulating high-temperature coke 33 and 20, and are discharged from the heating tower via a cyclone 21 and a line 23. On the other hand, the coke separated by the cyclone 21 passes through the dipleg 22 and returns to the fluidized bed. The ammonia-containing exhaust gas 20 was previously combusted in the reburning furnace 24 from the line 29 and became a source of nitrogen oxides. However, in the present invention, ammonia is consumed in the denitrification reaction in the heating tower 2, and unreacted ammonia is burned in the reburning furnace. Therefore, the nitrogen oxides generated and flowing into the external combustion furnace 15 are denitrified, and the nitrogen oxides generated in the reburning furnace are also reduced, so that the amount of nitrogen oxides in the combustion exhaust gas 28 of the reburning furnace 24 becomes extremely small. In addition, 2 of the reburning furnace 24
6 is water supplied to the boiler, 27 is the generated steam, and 25 is combustion gas. Further, 9 is a supply line for the quenching oil in the quencher 8, and 6 is a line for returning the coke particles separated by the cyclone 5 to the reaction tower. Next, examples of the present invention will be shown, but the present invention is not limited thereto. Example 1 Atmospheric residual oil produced in the Middle East was supplied to the reaction column 1 of the apparatus configured as shown in the attached drawing, and thermally decomposed at a temperature of 750°C and a weight ratio of diluted steam to feedstock oil of 1.0. 49% by weight, by-product light oil (boiling point 80
~200℃) 11% by weight, by-product residue (boiling point 200℃ or higher)
32% by weight and 8% by weight coke. 70% of this by-product residue was supplied to an external combustion furnace installed on the side of the heating tower, and 20% by weight of steam for atomization was blown into the by-product residue to combust it with the theoretical amount of air.
In addition, 270 kg/hour of gas at 53°C, stripped by a condensed water stripper 31, is supplied from a nozzle 20 installed at the bottom of the heating tower below the combustion gas inlet.
It passed through a heating tower at 790°C. The composition of the stripping gas was as follows. H 2 S 69% HCN 4 NH 3 21 Others 6 The amounts of nitrogen oxides at the outlet of the external combustion furnace, heating tower, and reburning furnace are summarized in Table 1 below, along with the results of each example below. Example 2 The same procedure as in Example 1 was carried out except that vacuum residual oil with a nitrogen content of 0.58% by weight was supplied as the feedstock oil to the reaction column. Table 1 shows the results of the amount of nitrogen oxides at each point. Comparison Column 1 The same operations as in Example 1 were carried out except that the entire amount of the condensed water stripping exhaust gas was introduced into the reburning furnace through line 29 and subjected to combustion treatment. Table 1 shows the results of nitrogen oxides at each point in this case. Comparative Example 2 The same operations as in Example 2 were carried out except that the entire amount of the condensed water stripping exhaust gas was introduced into the reburning furnace through line 29 and subjected to combustion treatment. Table 1 shows the results of nitrogen oxides at each point in this case.

【表】 上記表―1の各数値から明らかなように、本発
明によれば、外部燃焼炉から加熱塔に導入される
排ガス中のNOX量を従来法の30%以下に低減す
ることができた。したがつて、その効果は顕著な
ものである。
[Table] As is clear from the values in Table 1 above, according to the present invention, the amount of NOX in the exhaust gas introduced from the external combustion furnace to the heating tower can be reduced to 30% or less of the conventional method. Ta. Therefore, the effect is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は、本発明の一実施の態様及び比較例
を説明するための装置の系統図である。 1:反応塔、2:加熱塔、12:分解ガス、1
5:外部燃焼炉、19:プロセス凝縮水、20:
ストリツピング酸性ガス、24:再燃焼炉、2
9:酸性ガス燃焼ライン、31:凝縮水ストリツ
パー。
The accompanying drawing is a system diagram of an apparatus for explaining an embodiment of the present invention and a comparative example. 1: Reaction tower, 2: Heating tower, 12: Cracking gas, 1
5: External combustion furnace, 19: Process condensate water, 20:
Stripping acid gas, 24: Reburning furnace, 2
9: Acid gas combustion line, 31: Condensed water stripper.

Claims (1)

【特許請求の範囲】[Claims] 1 反応塔と加熱塔の二つのコークス粒子流動床
を併設し、該二塔間にコークス粒子を循環し、加
熱塔において、それに付属する外部燃焼炉からの
高温燃焼ガスにより前記コークス粒子を加熱する
と共に、反応塔において、加熱されたコークス粒
子を熱媒体として重質油を熱分解してオレフイン
を製造する場合に、原料重質油より副生するアン
モニアを加熱塔へ通入し、そこで、高温コークス
及び該還元性アンモニアガスによつて、外部燃焼
炉より発生流入する窒素酸化物を還元除去する方
法。
1. Two coke particle fluidized beds, a reaction tower and a heating tower, are installed, the coke particles are circulated between the two towers, and the coke particles are heated in the heating tower by high-temperature combustion gas from an external combustion furnace attached to the heating tower. At the same time, when producing olefins by thermally decomposing heavy oil using heated coke particles as a heat medium in a reaction tower, ammonia, which is produced as a by-product from the raw material heavy oil, is passed through the heating tower, where it is heated to a high temperature. A method of reducing and removing nitrogen oxides generated and flowing from an external combustion furnace using coke and the reducing ammonia gas.
JP56147933A 1981-09-21 1981-09-21 Method of removing nitrogen oxides from exhaust gas Granted JPS5852388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56147933A JPS5852388A (en) 1981-09-21 1981-09-21 Method of removing nitrogen oxides from exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56147933A JPS5852388A (en) 1981-09-21 1981-09-21 Method of removing nitrogen oxides from exhaust gas

Publications (2)

Publication Number Publication Date
JPS5852388A JPS5852388A (en) 1983-03-28
JPS6310755B2 true JPS6310755B2 (en) 1988-03-09

Family

ID=15441345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56147933A Granted JPS5852388A (en) 1981-09-21 1981-09-21 Method of removing nitrogen oxides from exhaust gas

Country Status (1)

Country Link
JP (1) JPS5852388A (en)

Also Published As

Publication number Publication date
JPS5852388A (en) 1983-03-28

Similar Documents

Publication Publication Date Title
US4336160A (en) Method and apparatus for cracking residual oils
US4331533A (en) Method and apparatus for cracking residual oils
US4134824A (en) Integrated process for the partial oxidation-thermal cracking of crude oil feedstocks
EP0162251B1 (en) Process for the recovery and recycle of effluent gas from the regeneration of particulate matter with oxygen and carbon dioxide
AU2020264359A1 (en) Thermolytic fragmentation of sugars
US4274942A (en) Control of emissions in FCC regenerator flue gas
US4388218A (en) Regeneration of cracking catalyst in two successive zones
US7932204B2 (en) Method of regenerating catalyst in a fluidized catalytic cracking unit
US4988430A (en) Supplying FCC lift gas directly from product vapors
US20080152552A1 (en) System and method of recycling spent catalyst in a fluid catalytic cracking unit
US20090158662A1 (en) System and method of increasing synthesis gas yield in a fluid catalytic cracking unit
JP2014521789A5 (en)
EP0420967A4 (en) Heavy oil catalytic cracking process and apparatus
JPH03505601A (en) Heavy oil catalytic cracking method and equipment
US4447333A (en) Process for the elimination of ammonia in coke plant waste waters
EP1935966A1 (en) System and method of reducing carbon dioxide emissions in a fluid catalytic cracking unit
CA1117985A (en) Process for the production of olefins
EP2072605A1 (en) System and method of producing heat in a fluid catalytic cracking unit
JPS5946140A (en) Method of regenerating granular substance by oxygen and carbon dioxide
US20110297584A1 (en) Systems and methods for processing a catalyst regenerator flue gas
EP1556462B1 (en) Process for fluid catalytic cracking of hydrocarbon feedstocks with high levels of basic nitrogen
JP2001512172A (en) Fluid catalytic cracking of heavy feedstock using stripped catalyst for feedstock preheating and regenerator temperature control
JPS6310755B2 (en)
JPS63159496A (en) Method and apparatus for treating raw gas
US4370222A (en) FCC Regeneration