JPS63107457A - Capacitor-input type rectification and smoothing circuit - Google Patents

Capacitor-input type rectification and smoothing circuit

Info

Publication number
JPS63107457A
JPS63107457A JP25123186A JP25123186A JPS63107457A JP S63107457 A JPS63107457 A JP S63107457A JP 25123186 A JP25123186 A JP 25123186A JP 25123186 A JP25123186 A JP 25123186A JP S63107457 A JPS63107457 A JP S63107457A
Authority
JP
Japan
Prior art keywords
capacitor
rectifier
impedance element
voltage
smoothing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25123186A
Other languages
Japanese (ja)
Inventor
Jiro Togawa
戸川 治朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatsu Electric Co Ltd
Original Assignee
Iwatsu Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatsu Electric Co Ltd filed Critical Iwatsu Electric Co Ltd
Priority to JP25123186A priority Critical patent/JPS63107457A/en
Publication of JPS63107457A publication Critical patent/JPS63107457A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Abstract

PURPOSE:To reduce the ripple of charging current, by connecting a smoothing capacitor on the output stage of a rectifier through a resistance or an impedance element such as an inductance, etc. CONSTITUTION:Between a pair of DC power lines 3 through a current limiting impedance element 7 composed of resistances a capacitor-input type rectification and smoothing circuit connects a smoothing capacitor 5, to which a diode 8 is connected in parallel. In this connection, the diode 8 is connected in the turning-ON direction when the charging voltage of the capacitor 5 is higher than the output voltage of a rectifier. The capacitor 5 is charged from a rectifier 2 through an impedance element 7, while a capacitor terminal voltage is impressed to a load circuit 6. At this moment, no discharge current of the capacitor 5 flows through the impedance element 7, so that unnecessary power loss and the voltage drop is restricted to occur.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、スイッチングレギュレータ等の直流電源とし
て好適なコンデンサインプット型整流平滑回路に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a capacitor input type rectifying and smoothing circuit suitable as a DC power source for a switching regulator or the like.

[従来の技術とその問題点] 従来の代表的なコンデンサインプット型整流平滑回路は
、第3図に示す如く、交流電源1に仝波整流器2を接続
し、この整流器2の一対の出力ライン3.4間に平滑用
コンデンサ5を接続することによって構成されている。
[Prior art and its problems] As shown in FIG. 3, a typical conventional capacitor input type rectifying and smoothing circuit connects a high frequency rectifier 2 to an AC power source 1, and connects a pair of output lines 3 of this rectifier 2. .4 by connecting a smoothing capacitor 5 between them.

なお、一対の出力ライン3,4に接続されている負荷回
l!36は、例えばスイッチングレギュレータを含む回
路である。
Note that the load circuit l! connected to the pair of output lines 3 and 4! 36 is a circuit including, for example, a switching regulator.

第3図の回路で交流電源1から正弦波交流電圧を供給す
ると、整流器2から第4図(A)に示す全波整流電圧が
得られる。第4図(B)に示すコンデンサ5の充電電流
は、第4図(C)に示すコンデンサ5の充電電圧よりも
第4図(A)の整流器2のの出力電圧が高くなるt1〜
t2期間、七3〜t4期間において流れる。コンデンサ
5の充電電圧が整流器2の出力電圧よりも高くなるt2
〜七3期間ではコンデンサ5が放電する。
When a sinusoidal AC voltage is supplied from the AC power supply 1 in the circuit shown in FIG. 3, a full-wave rectified voltage shown in FIG. 4(A) is obtained from the rectifier 2. The charging current of the capacitor 5 shown in FIG. 4(B) starts from t1 when the output voltage of the rectifier 2 of FIG. 4(A) is higher than the charging voltage of the capacitor 5 shown in FIG. 4(C).
It flows during the t2 period and the 73rd to t4 period. t2 when the charging voltage of the capacitor 5 becomes higher than the output voltage of the rectifier 2
73 period, the capacitor 5 is discharged.

ところで、整流器2の出力段にコンデンサ5が直接に接
続されているため、コンデンサ5には、この充電電圧よ
りも整流器出力電圧が高くなるt1〜t2、t3〜t4
期間に大きなピーク値の充電電流がながれる。コンデン
サ5に電流が流れると、内部損失で発熱し、寿命の低下
を招く、内部損失は電流の実効値に対応して生じ、第4
図(B)に示す如く充電電流のピーク値が大きければ、
実効値及び内部損失も大きくなる。このため、平滑用コ
ンデンサ5として、許容リップル電流耐量の大きな大容
量で外形寸法の大きなコンデンサを使用しなければなら
ず、機器の小型化を阻害する大きな要因となっている。
By the way, since the capacitor 5 is directly connected to the output stage of the rectifier 2, the capacitor 5 is charged at times t1 to t2 and t3 to t4, at which the rectifier output voltage is higher than this charging voltage.
A charging current with a large peak value flows during this period. When current flows through the capacitor 5, it generates heat due to internal loss, which shortens its life.The internal loss occurs in response to the effective value of the current, and the fourth
If the peak value of the charging current is large as shown in Figure (B),
The effective value and internal loss also increase. Therefore, as the smoothing capacitor 5, it is necessary to use a large capacitor with a large allowable ripple current withstand capacity and a large external dimension, which is a major factor that hinders miniaturization of the device.

そこで、本発明の目的は、平滑コンデンサの充電電流の
リップルを低減し、コンデンサの小型化を容易に達成す
ることができるコンデンサインプット型整流平滑回路を
提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a capacitor input type rectifying and smoothing circuit that can reduce ripples in the charging current of a smoothing capacitor and easily downsize the capacitor.

[問題点を解決するための手段] 上記問題点を解決し、上記目的を達成するための本発明
は、実施例を示す第1図の符号を参照して説明すると、
交流電源1に接続された整流器2と、前記整流器2の出
力段に並列に電流制限インピーダンス素子を介して接続
された平滑用コンデンサ5と、前記コンデンサ5の充電
電圧が前記整流器2の出力電圧よりも高いときにオンに
なる向きを有して前記インピーダンス索子7に並列に接
続されたダイオード8とから成るコンデンサインプット
型整流平滑回路に係わるものである。
[Means for Solving the Problems] The present invention for solving the above problems and achieving the above objects will be described with reference to the reference numerals in FIG. 1 showing the embodiments.
A rectifier 2 connected to the AC power source 1; a smoothing capacitor 5 connected in parallel to the output stage of the rectifier 2 via a current limiting impedance element; and a charging voltage of the capacitor 5 that is higher than the output voltage of the rectifier 2. This circuit relates to a capacitor input type rectifying and smoothing circuit comprising a diode 8 connected in parallel to the impedance wire 7 and turned on when the impedance is high.

[作用] 上記発明では、平滑用コンデンサ5が抵抗又はインダク
タンス等のインピーダンス素子7を介して接続されてい
るので、コンデンサインプット型であるにも拘らず、ピ
ーク値の大きな充電電流が流れず、且つ充電電圧も整流
器出力電圧に対して比較的低くなる。この結果、比較的
長い時間を要してコンデンサ5の充電が行われ、逆に放
電期間は雉くなる。コンデンサ5の充電期間には整流器
出力電圧が負荷回路6に直接に印加されるため、負荷回
路6に供給する電圧のリップルは必然的に大きくなるが
、例えばDC/DCコンバータ等に対しては十分適用可
能である。
[Function] In the above invention, since the smoothing capacitor 5 is connected via the impedance element 7 such as a resistor or inductance, a charging current with a large peak value does not flow even though it is a capacitor input type. The charging voltage will also be relatively low relative to the rectifier output voltage. As a result, it takes a relatively long time to charge the capacitor 5, and the discharging period becomes short. Since the rectifier output voltage is directly applied to the load circuit 6 during the charging period of the capacitor 5, the ripple of the voltage supplied to the load circuit 6 inevitably becomes large, but it is sufficient for, for example, a DC/DC converter. Applicable.

[実施例コ 次に、第1図に示す本発明の実施例に係わるコンデンサ
インプット型整流平滑回路を説明する。
Embodiment Next, a capacitor input type rectifying and smoothing circuit according to an embodiment of the present invention shown in FIG. 1 will be explained.

但し、符号1〜6で示すものは、第3図と実質的に同一
であるので、その説明を省略する。
However, since those indicated by reference numerals 1 to 6 are substantially the same as those in FIG. 3, their explanation will be omitted.

第1図では、一対の直流電源ライン3.4間に、抵抗か
ら成る電流制限用インピーダンス素子7を介して平滑用
コンデンサ5が接続され、このインピーダンス素子7に
並列にダイオード8が接続されている。なお、ダイオー
ド8は、コン、デンサ5の充電電圧が整流器出力電圧よ
りも高くなった時にオンになる向きに接続されている。
In FIG. 1, a smoothing capacitor 5 is connected between a pair of DC power lines 3.4 via a current limiting impedance element 7 made of a resistor, and a diode 8 is connected in parallel to this impedance element 7. . Note that the diode 8 is connected in such a direction that it turns on when the charging voltage of the capacitor 5 becomes higher than the rectifier output voltage.

今、整流器2から第2図(A)に示す正弦波の全波整流
電圧が発生しているとすれば、コンデンサ5はインピー
ダンス素子7を介して充電されるため、整流器出力電圧
のピーク値よりも大部低く充電される。第2図(C)の
実線はコンデンサ5の充電−電圧を示し、点線は整流器
出力電圧を示す。
Now, if the rectifier 2 is generating a full-wave rectified sine wave voltage as shown in Figure 2 (A), the capacitor 5 is charged via the impedance element 7, so the peak value of the rectifier output voltage is lower than the peak value of the rectifier output voltage. Also, most of them are charged low. The solid line in FIG. 2C shows the charging voltage of the capacitor 5, and the dotted line shows the rectifier output voltage.

これ笠の関係から明らかな如く、t1〜t2期間、t3
〜t4期間で整流器出力電圧がコンデンサ5の充電電圧
よりも高くなり、第2図(B)に示す如く黄電電流が流
れる。一方、コンデンサ5の充電電E、が整流器出力電
圧寄りも低くなる。t2〜t3期間ではダイオード8が
オンになり、インピーダンス素子7を介さない放電回路
が形成され、負荷回路6にコンデンサ端子電圧が印加さ
れる。
As is clear from the relationship between t1 and t2, t3
During the period from t4 to t4, the rectifier output voltage becomes higher than the charging voltage of the capacitor 5, and a yellow current flows as shown in FIG. 2(B). On the other hand, the charging voltage E of the capacitor 5 also becomes lower toward the rectifier output voltage. During the period t2 to t3, the diode 8 is turned on, a discharge circuit not passing through the impedance element 7 is formed, and the capacitor terminal voltage is applied to the load circuit 6.

この時、コンデンサ8の放電電流がインピーダンス素子
7を介して流れないので、不要な電力損失及び電圧降下
の発生が制限される。
At this time, since the discharge current of the capacitor 8 does not flow through the impedance element 7, the occurrence of unnecessary power loss and voltage drop is restricted.

この回路では、コンデンサ5の充電電流のリップルが第
2図(B)に示す如く低減されるので、コンデンサ5を
小容量で且つ外形寸法の小さいものにすることができる
。インピーダンス素子の色を大きくし、且つコンデンサ
5の容量を小さくすれば、充電期間が長くなり、逆に放
電期間が短くなるために、負荷回路6に供給する電圧の
リップルが大きくなる。従って、負荷回路6の要求に適
合する平滑作用が生じるようにインピーダンス素子7の
値及びコンデンサ5の容量を決定する。負荷回路6が、
例えばトランスの1次巻tへとスイッチング素子とを直
列に接続し、トランスの2次巻線に整流平滑回路を接続
した棺遣のスイッチングレギュレータを含む回路の場合
には、電源電圧のリップルが大きくても、出力電圧のリ
ップルが小さければ問題がない。このなめ第1図の整流
平滑回路は、DC/DCコンバータの電源部分として好
適である。
In this circuit, since the ripple in the charging current of the capacitor 5 is reduced as shown in FIG. 2(B), the capacitor 5 can be made to have a small capacity and a small external dimension. If the color of the impedance element is increased and the capacitance of the capacitor 5 is decreased, the charging period becomes longer and the discharging period becomes shorter, so that the ripple of the voltage supplied to the load circuit 6 becomes larger. Therefore, the value of the impedance element 7 and the capacitance of the capacitor 5 are determined so as to produce a smoothing effect that meets the requirements of the load circuit 6. The load circuit 6 is
For example, in the case of a circuit that includes a switching regulator in which a switching element is connected in series to the primary winding t of a transformer, and a rectifying and smoothing circuit is connected to the secondary winding of the transformer, the ripple in the power supply voltage is large. However, there is no problem as long as the output voltage ripple is small. The rectifying and smoothing circuit shown in FIG. 1 is suitable as a power supply section of a DC/DC converter.

なお、スイッチングレギュレータのオン・オフ動作によ
る高い過渡電圧を吸収する必要がある場合には、電解コ
ンデンサのように有効寿命を持たない、小型の乾式フィ
ルムコンデンサやセラミックコンデンサをライン3.4
間に補助的に接続すればよい [変形例] 本発明は上述の実施例に限定されるものでなく、変形可
能なものである。例えば、インピーダンス素子7を抵抗
とダイオードの直列回路とし、ここを通る放電回路が形
成されることを完全に阻止してもよい。
If it is necessary to absorb high transient voltages caused by the on/off operation of a switching regulator, use a small dry film capacitor or ceramic capacitor that does not have a useful life like an electrolytic capacitor (Line 3.4).
[Modification] The present invention is not limited to the above-described embodiment, but can be modified. For example, the impedance element 7 may be a series circuit of a resistor and a diode to completely prevent a discharge circuit from being formed through it.

[発明の効果] 上述から明らかな如く、本発明によれば、平滑用コンデ
ンサから負荷へ放電する期間を短くすることができ、コ
ンデンサの充電電流のリップルを低減でき、コンデンサ
の小容量化及び小型化か可能になる。また、インピーダ
ンス素子にダイオードが並列に接続され、放電電流はイ
ンピーダンス素子を通らないでダイオードを通って流れ
るので、電力損失の増大を抑えることができる。
[Effects of the Invention] As is clear from the above, according to the present invention, the period during which the smoothing capacitor discharges to the load can be shortened, the ripple of the charging current of the capacitor can be reduced, and the capacitor can be made smaller and smaller. become possible. Furthermore, since a diode is connected in parallel to the impedance element and the discharge current flows through the diode without passing through the impedance element, an increase in power loss can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係わる整流平滑回路を示す回
路図、 第2図は第1図の各部の状態を示す波形図、第3図は従
来の整流平滑回路を示す回路図、第4図は第3図の各部
の状態を示す回路図である。 1・・・交流電源、2・・・整流器、5・・・平滑用コ
ンデ ンサ、6・・・負荷、7・・・インピーダンス素子、8
・・・ダイオード。
FIG. 1 is a circuit diagram showing a rectifying and smoothing circuit according to an embodiment of the present invention, FIG. 2 is a waveform diagram showing the states of each part in FIG. 1, and FIG. 3 is a circuit diagram showing a conventional rectifying and smoothing circuit. FIG. 4 is a circuit diagram showing the state of each part in FIG. 3. 1... AC power supply, 2... Rectifier, 5... Smoothing capacitor, 6... Load, 7... Impedance element, 8
···diode.

Claims (2)

【特許請求の範囲】[Claims] (1)交流電源(1)に接続された整流器(1) Rectifier connected to AC power supply (1) (2)と、 前記整流器(2)の出力段に並列に電流制限インピーダ
ンス素子(7)を介して接続された平滑用コンデンサ(
5)と、 前記コンデンサ(5)の充電電圧が前記整流器(2)の
出力電圧よりも高い時にオンになる向きを有して前記イ
ンピーダンス素子(7)に並列に接続されたダイオード
(8)と から成るコンデンサインプット型整流平滑回路。
(2), and a smoothing capacitor () connected in parallel to the output stage of the rectifier (2) via a current limiting impedance element (7).
5); and a diode (8) connected in parallel to the impedance element (7) with a direction of turning on when the charging voltage of the capacitor (5) is higher than the output voltage of the rectifier (2). A capacitor input type rectifying and smoothing circuit consisting of.
JP25123186A 1986-10-22 1986-10-22 Capacitor-input type rectification and smoothing circuit Pending JPS63107457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25123186A JPS63107457A (en) 1986-10-22 1986-10-22 Capacitor-input type rectification and smoothing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25123186A JPS63107457A (en) 1986-10-22 1986-10-22 Capacitor-input type rectification and smoothing circuit

Publications (1)

Publication Number Publication Date
JPS63107457A true JPS63107457A (en) 1988-05-12

Family

ID=17219662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25123186A Pending JPS63107457A (en) 1986-10-22 1986-10-22 Capacitor-input type rectification and smoothing circuit

Country Status (1)

Country Link
JP (1) JPS63107457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018501769A (en) * 2015-01-14 2018-01-18 ユニバーシティ オブ プリマスUniversity Of Plymouth Electrical conversion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018501769A (en) * 2015-01-14 2018-01-18 ユニバーシティ オブ プリマスUniversity Of Plymouth Electrical conversion

Similar Documents

Publication Publication Date Title
JP3402031B2 (en) DC power supply
JPS63107457A (en) Capacitor-input type rectification and smoothing circuit
JPH0681498B2 (en) Snubber circuit
JP2007068284A (en) Resonance converter
JP3215273B2 (en) Switching power supply
JPH05176526A (en) Power supply device
JP3587907B2 (en) DC power supply
JP3231175B2 (en) Switching power supply
JPS6387176A (en) Rectifier circuit
JP3102985B2 (en) Switching power supply
JP3590152B2 (en) DC power supply
JPH05324107A (en) Power unit
JPH0231914Y2 (en)
JPH05236738A (en) Control method for switching power source
JPS5949792B2 (en) DC power circuit
JPH0715967A (en) Switching power supply
JPH06233535A (en) Rectifier snubber circuit
JP3081417B2 (en) Switching power supply
JPH08294278A (en) Switching power supply device
JP2547953Y2 (en) converter
JPH0416637Y2 (en)
JPS63249467A (en) Power source
JP2000197370A (en) Switching regulator device
JPH03190556A (en) Dc power supply circuit
JP2000041379A (en) Dc-dc power converter