JPS63106805A - Hybrid control device for position and force for direct movement multi-freedom robot - Google Patents

Hybrid control device for position and force for direct movement multi-freedom robot

Info

Publication number
JPS63106805A
JPS63106805A JP25160586A JP25160586A JPS63106805A JP S63106805 A JPS63106805 A JP S63106805A JP 25160586 A JP25160586 A JP 25160586A JP 25160586 A JP25160586 A JP 25160586A JP S63106805 A JPS63106805 A JP S63106805A
Authority
JP
Japan
Prior art keywords
force
robot
deviation
speed
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25160586A
Other languages
Japanese (ja)
Inventor
Hisaaki Hirabayashi
平林 久明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25160586A priority Critical patent/JPS63106805A/en
Publication of JPS63106805A publication Critical patent/JPS63106805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To attain a force control of a robot in an advancing direction by setting the restoring force restored to a designated path and a viscous force returned to a designated speed in response to a deviation when an external force is eliminated and a robot is restored to the designated path and the designated speed. CONSTITUTION:A deviation between an object position R(s) and a position C(s) of an end effector of a robot is taken and the deviation is used for an input to a controller of a transfer function G(s) expressed in equation I, where (k) is a spring constant (the spring force is active as a restoration force), (m) is a mass constant, C is a viscous constant, kv, N, Km represent constants being values of the hardware and Km/S(1+ TmS) is a transfer function of a motor. In using a controller having the transfer function G(s) above, a force proportional to the deviation between the object position R(s) and the end effector position C(s) is exerted as a restoration force restoring the robot to the object position and in exerting an external force F(s) to the robot, the robot is operated in the direction and a force proportional to the speed of the robot is exerted as the viscous force in the opposite direction. Thus, the force control is applied in a direction in parallel with the advancing direction and also in the advancing direction at the same time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は産業用ロボットや自動機械等の制御装置に係り
、特に、直劾形多自由度ロボットの位置゛と力のハイブ
リッド制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for industrial robots, automatic machines, etc., and particularly to a hybrid control device for position and force of a rectangular multi-degree-of-freedom robot.

〔従来の技術〕[Conventional technology]

直劾形多自由度ロボットの一例を第4図に示す。゛多自
由度ロボットエは、エンドエフェクタ(ロボットハンド
)8を備えると共に、該エンドエフェクタ8に加わる外
力を検出する力センサ2と、口。
Figure 4 shows an example of a straight-shaped multi-degree-of-freedom robot. The multi-degree-of-freedom robot includes an end effector (robot hand) 8, a force sensor 2 for detecting an external force applied to the end effector 8, and a mouth.

ボット駆動部の各所に配置されエンドエフェクタ・8の
位置を検出するロータリエンコーダ等でなる位置センサ
9とを備えている。そして、ロボット1の制御装置7は
、エンドエフェクト8を制御するために、力センサ2か
らのカフィードバック信・号Fと、位置センサ9からの
位置フィードバック。
It is provided with position sensors 9 such as rotary encoders arranged at various locations on the bot drive unit to detect the position of the end effector 8. The control device 7 of the robot 1 receives a force feedback signal/signal F from the force sensor 2 and position feedback from the position sensor 9 in order to control the end effect 8 .

信号Xと、目標位置(目標軌跡として与えられる)「と
から速度指令値妥を生成し、これをロボット1に出力す
るようになっている。
A speed command value is generated from the signal X and the target position (given as a target trajectory), and this is output to the robot 1.

従来の位置と力のハイブリット制御方式は、第。The conventional position and force hybrid control method is

5図に示すように、目標位置が直線11で与えられた場
合s 1つの方向、例えば進行方向と平行な方。
As shown in Fig. 5, if the target position is given by a straight line 11, s in one direction, for example, the one parallel to the direction of travel.

向Xにのみ位置制御を行ない、力制御はこれと垂直な方
向、例えばX方向に対してのみ行なうよう。
Position control is performed only in the X direction, and force control is performed only in a direction perpendicular to this direction, for example, in the X direction.

になっている。It has become.

尚、従来の位置と力のハイブリッド制御に関連゛するも
のとして、トランザクション オブ ザ 。
In addition, as something related to the conventional hybrid control of position and force, there is a transaction of the.

エイ ニス エム イー(Transactions 
of the A SMF)1981年6月号、 30
3−2巻123〜133頁があ゛る。
Transactions
of the A SMF) June 1981 issue, 30
Volume 3-2, pages 123-133.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、どの方向に対しても力と位置・の両者
を同時に制御するものではない。つまり、1・第5図に
示すように、X方向分力が力13となる力・14ヲエン
ドエフエクトに一定時間加えると、エン・ドエフェクト
の軌跡は破線12で示す様になり、力・制御はX方向に
しか働かない。より精確な制御を。
The above-mentioned prior art does not control both force and position simultaneously in any direction. In other words, as shown in Figure 1 and Figure 5, if you apply force 14 for a certain period of time to the end effect whose X-direction component becomes force 13, the locus of the end effect will become as shown by the broken line 12, and the force -Control only works in the X direction. More precise control.

行なう場合は、第6図に示すように、エンドエフ1エク
トに力14が加わったとき、軌跡12′で示す様に。
In this case, as shown in FIG. 6, when a force 14 is applied to the end effect 1, as shown by a locus 12'.

X方向のみならずX方向にも力制御を行なう必要。It is necessary to perform force control not only in the X direction but also in the X direction.

がある。しかし、従来は、この様な点について配。There is. However, in the past, such matters were not considered.

慮がなされていない。No consideration was given.

本発明の目的は、進行方向と平行な方向のみな、。The purpose of the present invention is only in the direction parallel to the direction of travel.

らず、同時に進行方向へも力制御を行なう位置と力のハ
イブリッド制御装置を提供することにある。′〔問題点
を解決するための手段〕 上記目的は、位置を検出する手段と、外力を検゛出する
手段とを備える直劾形多自由度ロボットにおいて、ロボ
ットに外力が加わって核外力に倣っ・てロボットの動作
が指定経路、指定速度から外れた場合、外力がなくなっ
た後は元の指定経路、指・定速度に戻る手段と、外力が
加わった時にロボットの復元力及び粘性力の大きさをソ
フトウェア上のパラメータとして設定する手段と、前記
指定速。
The object of the present invention is to provide a hybrid position and force control device that simultaneously controls force in the traveling direction as well as in the traveling direction. ′ [Means for solving the problem] The above purpose is to provide a rectangular multi-degree-of-freedom robot that is equipped with a means for detecting position and a means for detecting external force. If the robot's motion deviates from the specified path and specified speed, there will be a means to return to the original specified path and specified speed after the external force is removed, and a means to control the restoring force and viscous force of the robot when an external force is applied. means for setting the size as a parameter on software; and the specified speed.

度の大きさが一定の場合に定常偏差を小さくする。Reduce the steady-state deviation when the magnitude of the degree is constant.

手段を備えることで、達成される。This can be achieved by having the means.

〔作用〕[Effect]

外力が外れてロボットが指定経路、指定速度に戻る場合
、指定経路に戻るときの復元力及び指定。
When the external force is removed and the robot returns to the specified path and speed, the restoring force and specification when returning to the specified path.

速度に戻るときの粘性力の大きさが偏差に応じて設定さ
れるため、ロボットの進行方向への力制御。
The magnitude of the viscous force when returning to speed is set according to the deviation, so force control in the direction of robot movement.

も可能となる。is also possible.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図乃至第3図を゛参照し
て説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 3.

第1図は本発明の第1実施例に係るハイブリッ。FIG. 1 shows a hybrid according to a first embodiment of the present invention.

ド制御装置の構成図である。第1図において、目゛標位
置R(slと、ロボットのエンドエフェクタの位置Cf
slとの偏差をとり、この偏差を、伝達関数()(81
’の制御装置への入力としている。ここに、kはバ・ネ
定数(バネ力が復元力として働く)、mは質量1・・定
数、Cは粘性定数、kV * N r Kinはハード
の値で。
FIG. 2 is a configuration diagram of a control device. In FIG. 1, the target position R (sl) and the robot end effector position Cf
sl, and convert this deviation into a transfer function () (81
' is used as an input to the control device. Here, k is the spring constant (the spring force acts as a restoring force), m is the mass 1 constant, C is the viscosity constant, and kV * N r Kin is the hard value.

ある定数を示し、また図中ブロック内に記された。A constant is indicated and is also written within a block in the figure.

Km/8 (1+Tm8 )はモータの伝達関数である
Km/8 (1+Tm8) is the motor transfer function.

斯かる伝達関数G(slを有する制御装置gを使用する
We use a controller g with such a transfer function G(sl).

と、目標位置也花エンドエフェクタ位#q、)との偏!
And the bias between the target position Yahana end effector position #q,)!
.

差に比例した力がロボットを目標位置に戻そうと。A force proportional to the difference attempts to return the robot to the target position.

する復元力として働く。また、ロボットに外力Fist
 。
Acts as a restoring force. In addition, external force Fist is applied to the robot.
.

が加わると、その方向にロボットは動く。さらに、。When added, the robot moves in that direction. moreover,.

ロボットの速度に比例した力が速度と反対方向に。A force proportional to the robot's speed is in the opposite direction.

粘性力として働く。Acts as viscous force.

、4 。, 4.

ここで、目標位置が一定速度vrで移動した場合、。Here, if the target position moves at a constant speed vr.

即ちランプ入力(R(sl=vr/S2)が働いた場合
の定゛常偏差(この場合は、定常速度偏差となる)は、
In other words, the steady deviation (in this case, the steady speed deviation) when the ramp input (R (sl=vr/S2)) is applied is:
.

最終値定理より(1)式で求まる。It can be found using equation (1) from the final value theorem.

上記第1実施例は、1人力信号、1出力信号の例である
が、これを多次元、例えば2次元(第6・図で示す例)
に拡張するには以下の様にする。
The above first embodiment is an example of one human input signal and one output signal, but this can be multi-dimensional, for example two-dimensional (6th example shown in the figure).
To extend it, do the following:

第6図に示す進行方向に平行方向をX軸、垂直方向をy
軸とすると、職)は次の様にペクトで表示。
The parallel direction to the direction of travel shown in Figure 6 is the X axis, and the perpendicular direction is the y axis.
When used as an axis, job) is displayed in pect as follows.

される。be done.

同様にQsl 、Ffslも2次元ベクトルで表示され
る。
Similarly, Qsl and Ffsl are also displayed as two-dimensional vectors.

また、第1図にスカシで表示されている各々の伝。In addition, each story is shown in swatches in Figure 1.

連関数及び定数は、以下の様に対角マトリックス表示に
拡張される。
Continuous functions and constants are extended to a diagonal matrix representation as follows.

このように拡張した場合、fi1式の定常偏差はX。When expanded in this way, the steady-state deviation of the fi1 formula is X.

軸方向即ち進行方向にのみ現われる、これは、主。This appears only in the axial direction, that is, in the direction of travel.

にこの方向にほぼ一定速度で動いているために、。Because it is moving at an almost constant speed in this direction.

粘性抵抗C(>0)の影響による。Due to the influence of viscous resistance C (>0).

(1)式で表わした定数偏差を示す式の中で、ソフト上
のパラメータとして変えることができるのは、k、Cの
みである。vyは目標値の移動速度で、変えることがで
きず、kr+Km、Nはハードの値であり変えられない
In the equation (1) representing the constant deviation, only k and C can be changed as parameters on the software. vy is the target value of moving speed and cannot be changed, and kr+Km and N are hard values and cannot be changed.

また、Cを小さく、あるいはkを大きくすれば、゛定常
偏差が小さくなることは(1)式で明らかである゛が、
C,には、ロボットに実行させる力作業に最゛適となる
よう決めたものであり、変えることは適。
Also, it is clear from equation (1) that if C is made smaller or k is made larger, the steady-state deviation becomes smaller, but
C. has been determined to be optimal for the physical work the robot is required to perform, and it is not appropriate to change it.

切でない。It's not painful.

第2図は、定常偏差を更に小さくするために補・償を加
えた本発明の第2実施例に係る制御装置の゛構成図であ
る。本実施例では、第1実施例の構成・に加え、2点鎖
線で示すような補償を加えであるdこの補償を等価変換
すると、ブロック21で示される補償(1+工錐s (
1+恵s))を挿入したことと同。
FIG. 2 is a block diagram of a control device according to a second embodiment of the present invention in which compensation is added to further reduce the steady-state deviation. In this embodiment, in addition to the configuration of the first embodiment, compensation as shown by the two-dot chain line is added. When this compensation is equivalently transformed, the compensation (1 + drill s (
Same as inserting 1 + Megumi s)).

k       C 等となる。k C etc.

斯かる制御系に、前述と同じR(sl=v r/s”な
るう。
In such a control system, there is the same R (sl=v r/s") as described above.

ンプ入力を加えると(即ち目標位置をV、なる速度。When the pump input is applied (that is, the target position is V, the velocity becomes V).

で等速に動かすと)、その時の定常偏差は(9)式で示
される。
), the steady-state deviation at that time is shown by equation (9).

、 7 。, 7.

従って、(9)式によると C,=、高評        °゛°°°顛    ゛
のとき、 釦5PXsl = 0         ・・・・・・
σ珍     ゛となり、定常偏差は理論上塔となる。
Therefore, according to equation (9), when C,=, high reputation °゛°°°顛 ゛, button 5PXsl = 0...
The steady deviation becomes a tower in theory.

実際には、01式の値は、実験的に定める。この・値に
すれば、定常偏差は零にはならないまでも、・大幅に減
少させることができ、この結果目標位置・を曲線上に移
動させても、ロボットのエンドエフ・エクタは、曲線か
ら離れる量が大幅に少くなる。l・・次に、この様な制
御系を備える多自由度ロボッ。
In reality, the value of equation 01 is determined experimentally. By setting this value, the steady-state deviation can be significantly reduced, although it may not become zero, and as a result, even if the target position is moved on the curve, the robot's end effect and effect will deviate from the curve. quantity is significantly reduced. l...Next, a multi-degree-of-freedom robot equipped with such a control system.

トの実際の動作を第3図を参照しながら説明する。The actual operation of the machine will be explained with reference to FIG.

本実施例では、パリ取り用のロボットに適用して。In this embodiment, it is applied to a robot for deburring.

いる。There is.

パリ取りの目的は、パリによる表面の凹凸、よ、。The purpose of removing paris is to remove the unevenness of the surface due to paris.

り正確に言えば凸部を削り、表面を平坦にするこ。To be more precise, it means cutting away the convex parts and making the surface flat.

とである。That is.

実際には、曲線42で示すようなパリによる凹凸。In reality, it is unevenness due to Paris as shown by curve 42.

面を平坦にする際に、目標位置の移動軌跡44に示。When flattening the surface, the movement trajectory 44 of the target position is shown.

すように厳密な直線にする必要はなく、点線招に、。It doesn't have to be a strict straight line, just a dotted line.

示したように、多少のうねりがあっても、全体と。As shown, even if there is some waviness, the whole thing.

して平坦になっていれば良い。但し、曲線42のよ゛う
に、かなり大きい凹、凸に対しても、加工を中。
It is good if it becomes flat. However, as shown in curve 42, even fairly large concavities and convexities can be processed during machining.

断させることなく適度に倣い、大きい凸部は、大・きく
削り、小さい凸部は小さく削り、結果として凹凸面を滑
らかにすることが要求されている。  ・パリ取りロボ
ットは、第4図に示した様なロボ・ットlのエンドフェ
クタ8として、回転形バイト・を取付けたロボットであ
り、この回転形バイト8・を、第3図に矢線Aで示す様
に反時計方向に回転させながら、X方向に移動させるこ
とでパリを取。
It is required to follow the pattern appropriately without cutting, to sharpen large protrusions, and to reduce small protrusions to make the uneven surface smooth.・The deburring robot is a robot equipped with a rotary cutting tool 8 as the end effector 8 of the robot l as shown in FIG. Remove the paris by rotating it counterclockwise and moving it in the X direction as shown.

る。Ru.

第3図は、目標位置がa1→a、→a8 と移動し、そ
In Figure 3, the target position moves from a1 to a and then to a8.

れに従ってバイト8がb1→b、→b、と移動している
According to this, byte 8 moves from b1 to b and then b.

状態を表わしている。進行方向に平行な方向をX軸、垂
直な方向をy軸とおき、figで示された。
represents the state. The direction parallel to the direction of travel is the X-axis, and the direction perpendicular to the direction is the y-axis, as shown in fig.

記号は力を表わすベクトル量とする。The symbol is a vector quantity representing force.

まず、バイト8がblに在る場合の力のバランス。First, the balance of force when bite 8 is in bl.

を考える。本制御方式では、目標値との偏差i。think of. In this control method, the deviation i from the target value.

に比例した復元力(バネ力)が町に向って働く。A restoring force (spring force) proportional to the amount acts toward the town.

この復元力のX成分がfkx、1であり、X成分が f
ky、1である。また、移動速度に比例した力(粘。
The X component of this restoring force is fkx,1, and the X component is f
ky is 1. Also, a force (viscosity) proportional to the moving speed.

性力)が速度(この場合はX軸の正方向に動いて゛いる
)と反対方向に働く。これがfax、1である。。
The force (force) acts in the opposite direction to the velocity (in this case, it is moving in the positive direction of the X axis). This is fax 1. .

これ等の、fkx、1 、fky、1とfCX、1 と
の合力がf3,1であり、この方f82.  とバイト
8への反力 ・gr、1とが釣合っている。また、バイ
ト8の回転力“(トルク)と摩擦によるトルクgi、、
とが釣合って。
The resultant force of these fkx,1, fky,1 and fCX,1 is f3,1, which is f82. and the reaction force to bite 8 ・gr, 1 are balanced. In addition, the rotational force of the cutting tool 8 (torque) and the torque gi due to friction,
In balance.

いる。尚、ここでは定常状態とし、またX軸方向゛の速
度は微小で粘性力は小さいので考慮していな1・・い。
There is. Note that here it is assumed to be a steady state, and the velocity in the X-axis direction is minute and the viscous force is small, so it is not taken into account.

y軸方向を考えると、b1点とb1点のy座標が同・じ
(即ち直線44とす、点及び1u線44とす5点の距離
が・同じ)であるため、y軸方向のバネ力、fky 、
1と。
Considering the y-axis direction, the y-coordinates of point b1 and point b1 are the same (that is, the distance between the straight line 44 and the point and the 1u line 44 and 5 points is the same), so the spring in the y-axis direction power, fky,
1 and.

fly 、5は同じ大きさである。才たす8点のy座標
は。
fly, 5 have the same size. The y coordinate of the 8 points is .

b、点、b1点より大きいので、y軸方向のバネ力 。Since point b is larger than point b1, the spring force in the y-axis direction.

’kY+2はfky 、1やfky、3より大きい。’kY+2 is larger than fky, 1 or fky, 3.

またb1点とす7点ではX軸方向へは一定速度で動。Also, points b1 and 7 move at a constant speed in the X-axis direction.

いているので、X軸方向の粘性力、fcx、1 、 f
CX、2 。
Therefore, the viscous force in the X-axis direction, fcx,1, f
CX, 2.

は等しい。are equal.

また、53点のように、進行方向に大きなパリが゛ある
時は、53点のX軸方向の速度が低下するが、。
Also, when there is a large gap in the direction of travel like point 53, the speed of point 53 in the X-axis direction decreases.

目標点a、は以前と同じ速度で進むので偏差a3+’)
3゛は大きくなる。この時、b1点とす8点のX成分は
同。
Target point a moves at the same speed as before, so deviation a3+')
3 is getting bigger. At this time, the X components of point b1 and point 8 are the same.

じであるため、”S+”mのX成分は、「肩のX成分よ
り大きくなる、従ってfkx、5はfkx、1より大・
きくなる。
Since the
I hear it.

このように、b点が高いパリの上に来ると(即・ちb点
のX成分が大きくなると)よりパリへの押し付は力が大
きくなり、多くのパリを取ることになる。逆に、低いパ
リの」二に来ると、少くパリを。
In this way, when point b comes above a high paris (that is, when the X component of point b becomes large), the force of pressing against the paris increases, and more paris are removed. On the other hand, when you come to "lower Paris", you get less Paris.

取ることになる。I will take it.

また、進行方向に、大きなパリがある時は、進。Also, when there is a large Paris in the direction of travel, move forward.

行方向に大きな力が働き、多くのパリを取るように働く
A large force acts in the direction of the line, and it acts as if it takes a lot of pressure.

以上のようにして、本制御方式では、単純に■。As described above, in this control method, simply ■.

のように直線軌跡さえ与えておけば、位置と力の。As long as you give a straight line trajectory like , you can calculate the position and force.

ハイブリッド制御で、パリの大きさに応じた適切。Hybrid control suitable for the size of Paris.

なパリ取りを行い、表面を平坦にすることができ。The surface can be flattened by deburring.

る。Ru.

、11゜ 以上説明した様に、上記各実施例によれば、力。, 11° As explained above, according to each of the above embodiments, the force.

と位置のハイブリット制御が口丁能となる。また、゛第
2実施例の場合(この場合、2次元に拡張した。
The hybrid control of position and position becomes the function of the mouth. Furthermore, in the case of the second embodiment (in this case, it was expanded to two dimensions).

場合を考える。また進行方向が必ずしも、X軸ま゛たは
y軸に平行でない場合を考える)、IF5)に、あるス
カラ量Cvを掛けているので、特別な計算なし・にベク
トルRfslの進行方向にのみ補償をかけること・がで
きる。一般には、進行方向は一定でないので、・補償を
かけるたびに、進行方向を知る為に特別な・計算を必要
とするが、本方式では、ベクトルR15lを1.1使用
しているので、石1が進行方向を示しており、。
Consider the case. Also, considering the case where the direction of travel is not necessarily parallel to the Can multiply. In general, since the direction of travel is not constant, a special calculation is required to know the direction of travel each time compensation is applied, but in this method, 1.1 vector R15l is used, so 1 indicates the direction of travel.

上記の計算時間を削減することができるという2゜次的
効果がある。
A secondary effect is that the above calculation time can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、進行方向と平行な方向のみな1らず、
同時に進行方向へも力制御を行なうことが。
According to the present invention, not only the direction parallel to the traveling direction but also the
At the same time, force control can also be performed in the direction of travel.

できる位置と力のハイブリット制御が可能となる。Hybrid control of position and force is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係るハイブリッ。 ト制御装置のブロック線図、第2図は本発明の第、12
 . 2実施例に係るハイブリット制御装置のブロック゛線図
、第3図は本発明をパリ取りロボットに適用゛した場合
の動作説明図、第4図は多自由度ロボッ。 ト制御の説明図、第5図は従来の制御方式の説明図、第
6図は本発明の課題説明図である。 1・・・ロボット     2・・・力センサ8・・・
エンドエフェクタ 9・・・位tセンサk・・バネ定数
     C・・・粘性定数m・・・質量定数
FIG. 1 shows a hybrid according to a first embodiment of the present invention. The block diagram of the control device, FIG. 2 is the 12th block diagram of the present invention.
.. A block diagram of a hybrid control device according to the second embodiment, FIG. 3 is an explanatory diagram of the operation when the present invention is applied to a deburring robot, and FIG. 4 is a diagram of a multi-degree-of-freedom robot. FIG. 5 is an explanatory diagram of the conventional control system, and FIG. 6 is an explanatory diagram of the problems faced by the present invention. 1...Robot 2...Force sensor 8...
End effector 9... position t sensor k... spring constant C... viscosity constant m... mass constant

Claims (1)

【特許請求の範囲】[Claims] 1、位置を検出する手段と、外力を検出する手段とを備
える直動形多自由度ロボットにおいて、ロボットに外力
が加わって該外力に倣ってロボットの動作が指定経路、
指定速度から外れた場合、外力がなくなった後は元の指
定経路、指定速度に戻る手段と、外力が加った時にロボ
ットの復元力及び粘性力の大きさをソフトウェア上のパ
ラメータとして設定する手段と、前記指定速度の大きさ
が一定の場合に定常偏差を小さくする手段を備えること
を特徴とする直動形多自由度ロボットの位置と力のハイ
ブリッド制御装置。
1. In a linear motion multi-degree-of-freedom robot equipped with a means for detecting a position and a means for detecting an external force, when an external force is applied to the robot, the robot moves along a specified path in accordance with the external force.
If the robot deviates from the specified speed, there is a means to return to the original specified path and specified speed after the external force is removed, and a means to set the magnitude of the robot's restoring force and viscous force as parameters on the software when external force is applied. A hybrid position and force control device for a linear-acting multi-degree-of-freedom robot, comprising means for reducing a steady-state deviation when the specified speed is constant.
JP25160586A 1986-10-24 1986-10-24 Hybrid control device for position and force for direct movement multi-freedom robot Pending JPS63106805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25160586A JPS63106805A (en) 1986-10-24 1986-10-24 Hybrid control device for position and force for direct movement multi-freedom robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25160586A JPS63106805A (en) 1986-10-24 1986-10-24 Hybrid control device for position and force for direct movement multi-freedom robot

Publications (1)

Publication Number Publication Date
JPS63106805A true JPS63106805A (en) 1988-05-11

Family

ID=17225306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25160586A Pending JPS63106805A (en) 1986-10-24 1986-10-24 Hybrid control device for position and force for direct movement multi-freedom robot

Country Status (1)

Country Link
JP (1) JPS63106805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165508A (en) * 1990-10-30 1992-06-11 Toshiba Corp Control method for robot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627404A (en) * 1979-08-10 1981-03-17 Ishikawajima Harima Heavy Ind Co Ltd Servo unit
JPS603010A (en) * 1983-06-20 1985-01-09 Hitachi Ltd Control system of robot
JPS60151713A (en) * 1984-01-19 1985-08-09 Chiyuushiyou Kigyo Shinko Jigyodan Controller for cast finishing robot
JPS60205716A (en) * 1984-03-30 1985-10-17 Agency Of Ind Science & Technol Hybrid controller of manipulator
JPS6145304A (en) * 1984-08-09 1986-03-05 Fujitsu Ltd Robot control system
JPS61201304A (en) * 1985-03-04 1986-09-06 Matsushita Electric Ind Co Ltd Method for controlling position of robot

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627404A (en) * 1979-08-10 1981-03-17 Ishikawajima Harima Heavy Ind Co Ltd Servo unit
JPS603010A (en) * 1983-06-20 1985-01-09 Hitachi Ltd Control system of robot
JPS60151713A (en) * 1984-01-19 1985-08-09 Chiyuushiyou Kigyo Shinko Jigyodan Controller for cast finishing robot
JPS60205716A (en) * 1984-03-30 1985-10-17 Agency Of Ind Science & Technol Hybrid controller of manipulator
JPS6145304A (en) * 1984-08-09 1986-03-05 Fujitsu Ltd Robot control system
JPS61201304A (en) * 1985-03-04 1986-09-06 Matsushita Electric Ind Co Ltd Method for controlling position of robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165508A (en) * 1990-10-30 1992-06-11 Toshiba Corp Control method for robot

Similar Documents

Publication Publication Date Title
US6275778B1 (en) Location-force target path creator
JPH0549284A (en) Method of controlling speed of synchronous type ac servo-motor
CN102085663A (en) Remote operating system and method
JP3283650B2 (en) Robot controller
Hayashibara et al. Design of a power assist system with consideration of actuator's maximum torque
JPS6347058A (en) Control device for robot
JP2003216243A (en) Robot controller
JPS63106805A (en) Hybrid control device for position and force for direct movement multi-freedom robot
JP4134369B2 (en) Robot control device
JP2960232B2 (en) Robot control device
JP3215841B2 (en) Articulated polishing robot using sliding mode decoupling control
JPH0245806A (en) Control device for position and force of multi-free working machine
JP2682977B2 (en) Robot control method and device
Yamada et al. Development of a telerobotics system for construction robot using virtual reality
JPH058187A (en) Robot
JPS5828024B2 (en) Copying method and device
JP3089027B2 (en) Robot profiling control device
JP2718687B2 (en) Control device for position and force of multi-degree-of-freedom work machine
JPH0769734B2 (en) Manipulator device
KR0155281B1 (en) Interpolation method of multi-robot
Pagilla et al. Mechatronic design and control of a robot system interacting with an external environment
JP4577619B2 (en) Object gripping method for articulated multi-fingered hands
JP3001211B2 (en) Copying control device for arbitrary surface
JPH03184789A (en) Force controlling system for robot
JP2831662B2 (en) Control method of bilateral master-slag manipulator