JPS631056B2 - - Google Patents

Info

Publication number
JPS631056B2
JPS631056B2 JP56075876A JP7587681A JPS631056B2 JP S631056 B2 JPS631056 B2 JP S631056B2 JP 56075876 A JP56075876 A JP 56075876A JP 7587681 A JP7587681 A JP 7587681A JP S631056 B2 JPS631056 B2 JP S631056B2
Authority
JP
Japan
Prior art keywords
light source
coagulation
optical system
cornea
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56075876A
Other languages
Japanese (ja)
Other versions
JPS57190559A (en
Inventor
Shinya Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Optical Co Ltd
Original Assignee
Tokyo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Optical Co Ltd filed Critical Tokyo Optical Co Ltd
Priority to JP56075876A priority Critical patent/JPS57190559A/en
Publication of JPS57190559A publication Critical patent/JPS57190559A/en
Publication of JPS631056B2 publication Critical patent/JPS631056B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は眼の内部に凝固体を形成するコアギユ
レータ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coagulator device for forming a coagulum within the eye.

従来のコアギユレータ装置は、光源としてアル
ゴンレーザーを使用し、該光源から光束が、コン
デンサーレンズ、オプテイカルフアイバー、焦点
調節光学系、ミラー、及び角膜部の屈折力を消去
するために患者眼に装着するコンタクトレンズを
介して患者眼の治療部位へ照射される。一方患者
眼の治療部位附近は、照明光学系によつて照明さ
れるとともに、観察光学系を介して術者によつて
観察される。この構成におけるコアギユレータ装
置の凝固面積の調節は上記焦点調節光学系によつ
てなされるが、第1図に示すような光源1、コン
デンサーレンズ(コリメータレンズ)2、結像レ
ンズ3からなる凝固光学系を例にあげれば、ほぼ
点に近い極小面積を凝固する場合は、角膜Cより
も奥にある治療部位Tに光源像を結像するように
調節する。他方、例えば半径rの円状部分を凝固
する場合は、結像レンズ3を患者眼に近い3′の
位置に移動して、治療部位Tよりもさらに奥の位
置Gに光源像を結像するように調整し、その結果
として治療部位Tに所定円状の凝固部を得る。こ
こで結像レンズ3から射出される凝固光束は、角
膜、水晶体、硝子体等の損傷や、熱によつて角膜
や水晶体の屈折率が変化するいわゆるサーマルブ
ルーミングを避けるために、その立体角ωが大き
いことが望ましい。しかし立体角ωを大きくする
と、治療部位の面積を大きくしたときすなわち治
療部位よりも奥の位置に光源像を結像するとき、
凝固光束が虹彩によつてけられるようになり、特
にこのけられ量は患者眼の眼底周縁部を凝固する
時や瞳孔の開き難い老人についての患者眼の時に
大きくなり不都合である。また、凝固光束が虹彩
に当ると危険であるばかりでなく、凝固光束のエ
ネルギー損失をもたらす。
Conventional coagulator devices use an argon laser as a light source, and the light beam from the light source is attached to the patient's eye to eliminate the refractive power of the condenser lens, optical fiber, focusing optics, mirror, and cornea. Irradiation is applied to the treatment area of the patient's eye through a contact lens. On the other hand, the vicinity of the treatment area of the patient's eye is illuminated by the illumination optical system and observed by the operator via the observation optical system. Adjustment of the coagulation area of the coagulator device in this configuration is performed by the above-mentioned focusing optical system, and the coagulation optical system consisting of a light source 1, a condenser lens (collimator lens) 2, and an imaging lens 3 as shown in FIG. For example, when coagulating a very small area that is almost a point, the light source image is adjusted to be focused on the treatment area T that is deeper than the cornea C. On the other hand, when coagulating a circular portion with a radius r, for example, the imaging lens 3 is moved to a position 3' close to the patient's eye, and the light source image is formed at a position G further back than the treatment area T. As a result, a predetermined circular coagulation area is obtained at the treatment area T. Here, the solidified light flux emitted from the imaging lens 3 has a solid angle of It is desirable that the value is large. However, when the solid angle ω is increased, when the area of the treatment area is increased, that is, when the light source image is formed at a position deeper than the treatment area,
The coagulated light beam is directed toward the iris, and this eclipse amount becomes particularly large when coagulating the peripheral part of the fundus of a patient's eye or when treating an elderly patient's eye with difficulty in opening the pupil, which is inconvenient. Furthermore, if the coagulated light beam hits the iris, it is not only dangerous but also results in energy loss of the coagulated light beam.

本発明は、上記従来のコアギユレータ装置の問
題を解消することを目的とするものであつて、そ
の構成上の特徴とするところは、NAを一定に保
ちながら実質上光軸上を移動可能な凝固光源を有
する光源系と、写像光学系とを有し、上記凝固光
源を実質上光軸上で移動させて、凝固光束が角膜
部の通過面積を変化させることなく治療部位への
到達面積を変えることである。
The present invention aims to solve the above-mentioned problems of the conventional coagulator device, and its structural features include a coagulator that can move substantially along the optical axis while keeping the NA constant. A light source system having a light source and a mapping optical system are provided, and the coagulation light source is moved substantially on the optical axis to change the area where the coagulation light beam reaches the treatment site without changing the area through which the coagulation light beam passes through the cornea. That's true.

従つて、本発明は以下の効果を有する。第1
に、凝固光源系の総出力を角膜上の凝固光束の通
過面積で割ることにより、角膜上の凝固光束のエ
ネルギー密度を算出することができ、角膜の安全
性が保証される。第2に、治療部位が眼底周辺部
において大きい面積である場合や、マニユピユレ
ータ等によつて凝固光束を移動させる場合におい
ても、凝固光束が虹彩等でけられない。従つて、
凝固光束エネルギーが有効に活用され、また凝固
光束が虹彩等を損傷する危険が少ない。第3に、
凝固面積が小さい場合に、凝固光束の収歛角度を
大きくとることができ、治療部位以外の凝固光束
のエネルギー密度を下げることができ、安全性が
高い。また、凝固面積が小さい場合においても、
凝固面積が大きい場合と同じく大きな立体角をと
ることができ、凝固光源のエネルギーを有効に利
用することができる。第4に、従来瞳孔径が小さ
く凝固手術が不可能であつた老人眼等において
も、角膜部における凝固光束の通過面積を小さく
することにより凝固手術が可能となつた。この場
合、当然角膜部におけるエネルギー密度は高くな
るが、その場合の角膜部におけるエネルギー密度
が上記のようにあらかじめ算出できるから安全の
範囲内で凝固治療を行うことができる。
Therefore, the present invention has the following effects. 1st
In addition, by dividing the total output of the coagulation light source system by the passage area of the coagulation light beam on the cornea, the energy density of the coagulation light beam on the cornea can be calculated, and the safety of the cornea is guaranteed. Second, even when the treatment area is a large area in the peripheral part of the fundus, or when the coagulation light beam is moved by a manipulator or the like, the coagulation light beam is not cut off by the iris or the like. Therefore,
The coagulation light flux energy is effectively utilized, and there is little risk of the coagulation light flux damaging the iris or the like. Thirdly,
When the coagulation area is small, the convergence angle of the coagulation light beam can be made large, the energy density of the coagulation light beam outside the treatment area can be lowered, and safety is high. Also, even when the solidification area is small,
As in the case where the coagulation area is large, a large solid angle can be obtained, and the energy of the coagulation light source can be used effectively. Fourth, coagulation surgery is now possible even in presbyopic eyes, for which coagulation surgery was previously impossible due to a small pupil diameter, by reducing the area through which the coagulation light flux passes through the cornea. In this case, the energy density in the corneal region naturally increases, but since the energy density in the corneal region in that case can be calculated in advance as described above, coagulation treatment can be performed within a safe range.

以下本発明の実施例を図について説明する。以
下の実施例においては、第1図に示すように、コ
ンタクトレンズが使用される場合、すなわち患者
眼の角膜部及び水晶体の屈折力がコンタクトレン
ズによつて補償されて前眼部の屈折力が0になつ
た場合について説明する。しかし本発明がコンタ
クトレンズなしで使用するように設計したものも
含むことはもちろんである。第1実施例を示す第
2図において、レンズ10は薄肉で焦点距離fで
あり、軸上光束のみについて考える。微小光源1
1がレンズ10によつて投影され、角膜部12を
通過して治療部位13に結像されている。微小光
源11は光軸上を一定距離を保つて移動する開口
絞り14を有し、微小光源11のNAは常に一定
である。次に、第2図において点線で示すよう
に、レンズ10が左方向にDだけ移動して10′
になり、微小光源11及び開口絞り14が左方向
にDLだけ移動して11′及び14′になり、他方
治療部位13に結像していた微小光源像15が右
方向にd2だけ移動して15′になつたとする。レ
ンズ10から微小光源11までの距離をS1、レン
ズ10から結像点15までの距離をSとし、レン
ズ10′から微小光源11′までの距離をS2、レン
ズ10′から結像点15′までの距離をS2′とする。
角膜部12と治療部位13との間隔をd1、治療部
位13と結像点15′との間隔をd2とする。さら
に光軸と角度u1をもつて微小光源11から射出さ
れた光線はレンズ10に光軸から高さh1の位置に
入射し、結像点15において光軸と角度u1′をも
つて交わり、また光軸と角度u2をもつて微小光源
11′から出射された光線はレンズ10′に光軸か
らの高さh2の位置に入射し、結像点15′におい
て光軸と角度u2′をもつて交わるものとする。上
記いずれの光線も角膜部位12を光軸からの高さ
Hの位置を通過する。上記符号を使用し、S2をパ
ラメータとして、DおよびDLを求める。
Embodiments of the present invention will be described below with reference to the drawings. In the following example, as shown in FIG. 1, when a contact lens is used, that is, the refractive power of the cornea and crystalline lens of the patient's eye is compensated by the contact lens, and the refractive power of the anterior segment is compensated for by the contact lens. A case where the value becomes 0 will be explained. However, it is understood that the present invention also includes those designed to be used without contact lenses. In FIG. 2 showing the first embodiment, the lens 10 is thin and has a focal length f, and only the axial light beam will be considered. Minute light source 1
1 is projected by a lens 10, passes through a corneal region 12, and is imaged onto a treatment site 13. The minute light source 11 has an aperture stop 14 that moves at a constant distance on the optical axis, and the NA of the minute light source 11 is always constant. Next, as shown by the dotted line in FIG.
, the minute light source 11 and aperture diaphragm 14 move to the left by DL to become 11' and 14', and on the other hand, the minute light source image 15 that was focused on the treatment area 13 moves to the right by d2 . Suppose that it becomes 15'. The distance from the lens 10 to the micro light source 11 is S 1 , the distance from the lens 10 to the imaging point 15 is S 2 , the distance from the lens 10' to the micro light source 11' is S 2 , and from the lens 10' to the imaging point 15 Let the distance to ′ be S 2 ′.
The distance between the corneal portion 12 and the treatment area 13 is d 1 , and the distance between the treatment area 13 and the imaging point 15' is d 2 . Furthermore, the light beam emitted from the minute light source 11 with an angle u 1 with the optical axis enters the lens 10 at a height h 1 from the optical axis, and at the imaging point 15 with an angle u 1 ' with the optical axis. The light rays emitted from the minute light source 11' intersect and have an angle u 2 with the optical axis, and enter the lens 10' at a height h 2 from the optical axis. Let them intersect at u 2 ′. All of the above light rays pass through the corneal region 12 at a height H from the optical axis. Using the above code and using S 2 as a parameter, find D and D L.

u1=H/d1 h1=S1′u1′ u1=u1′−h1/f S1=h1/u1 さらに h2=u2S2=u1S2 u2′=u2+h2/f=u1+h2/f S2′=h2/u2′ d2=H/u2′−d1 故に D=−(S2′−d2−S1′)=−〔S2f/S2+f−H/u1
′(1−S1′/f)(1+S2/f)+d1−S1′〕………
(1) DL=−S1+S2+D ………(2) ここで、微小光源11,11′の高さはレンズ
10,10′の焦点距離に比較して極めて小さい
から、微小光源11,11′の軸上点から射出さ
れる光線と軸外点から射出される光線とのずれは
極めて微少である。上記式(1)、(2)により微小光源
11、開口絞り14及びレンズ10を移動するこ
とにより、角膜部12を通過する光束の直径をほ
ぼ一定に保ちつつ治療部位の凝固面積を調節する
ことができる。
u 1 = H/d 1 h 1 = S 1 ′u 1 ′ u 1 = u 1 ′−h 1 /f S 1 = h 1 / u 1 , and h 2 = u 2 S 2 = u 1 S 2 u 2 ′=u 2 +h 2 /f=u 1 +h 2 /f S 2 ′=h 2 /u 2 ′ d 2 =H/u 2 ′−d 1 Therefore, D=−(S 2 ′−d 2 −S 1 ′)=−[S 2 f/S 2 +f−H/u 1
′(1−S 1 ′/f)(1+S 2 /f)+d 1 −S 1 ′]……
(1) D L = -S 1 +S 2 +D (2) Here, since the height of the minute light sources 11 and 11' is extremely small compared to the focal length of the lenses 10 and 10', , 11', the deviation between the light beam emitted from the on-axis point and the light beam emitted from the off-axis point is extremely small. By moving the minute light source 11, aperture diaphragm 14, and lens 10 according to the above equations (1) and (2), the coagulation area of the treatment area can be adjusted while keeping the diameter of the light beam passing through the corneal part 12 almost constant. Can be done.

第2実施例は、第3図A,Bに示すように、微
小光源20及び開口絞りを兼ねるコンデンサーレ
ンズ21を固定し、第1実施例のレンズ10に対
応する凸レンズ23、及び微小光源11を移動さ
せる代わりに設けられた凹レンズ22を移動する
ものである。すなわち第3図Aにおいて、微小光
源20及びコンデンサーレンズ21から射出され
た光束が凹レンズ22、凸レンズ23及び角膜部
24を通過して治療部位25に微小光源像26と
して結像している。次に、第3図Bに示すよう
に、凹レンズ22を所定距離だけ右方向に、また
凸レンズ23を第1実施例のレンズ10と同一距
離だけ左方向に移動して22′,23′に配置する
と、微小光源像26は26′に移動し、このとき
角膜部24における微小光源の写像光束は第3図
Aと同一となる。以上の結果、角膜部24におけ
る微小光源20からの凝固光束の通過面積を一定
にしたまま、治療部位25における凝固面積を調
節することができる。第1実施例の変形として、
凹レンズ22を凸レンズに凸レンズ23を凹レン
ズとすることや、これらの光学系をズーム光学系
とすることは本発明に含まれることはもちろんで
ある。
In the second embodiment, as shown in FIGS. 3A and 3B, a minute light source 20 and a condenser lens 21 that also serves as an aperture stop are fixed, and a convex lens 23 corresponding to the lens 10 of the first embodiment and a minute light source 11 are fixed. Instead of moving, the provided concave lens 22 is moved. That is, in FIG. 3A, the light beam emitted from the minute light source 20 and the condenser lens 21 passes through the concave lens 22, the convex lens 23, and the corneal part 24, and is focused on the treatment area 25 as a minute light source image 26. Next, as shown in FIG. 3B, the concave lens 22 is moved to the right by a predetermined distance, and the convex lens 23 is moved to the left by the same distance as the lens 10 of the first embodiment and placed at 22' and 23'. Then, the minute light source image 26 moves to 26', and at this time, the mapping light flux of the minute light source at the corneal portion 24 becomes the same as that in FIG. 3A. As a result of the above, it is possible to adjust the coagulation area in the treatment region 25 while keeping the passage area of the coagulation light beam from the micro light source 20 in the corneal portion 24 constant. As a modification of the first embodiment,
It goes without saying that the present invention includes the use of the concave lens 22 as a convex lens and the convex lens 23 as a concave lens, and the use of these optical systems as a zoom optical system.

第3実施例は、角膜部における凝固光束の通過
面積を調節することができる装置である。第4図
に示すように、第1実施例の微小光源11、開口
絞り14及びレンズ10からなる微小光源写像光
学系と、患者眼の角膜部12と治療部位13とを
リレーレンズ30で光学的に連結する。そしてレ
ンズ10とリレーレンズ30との間であつて角膜
部12と共役な位置に可変絞り31を配置し、さ
らにレンズ10と角膜部12との間の適所に反射
率の低い半透鏡32を斜設する。半透鏡32の反
射光軸上にモニター光学系33を配置する。以上
の構成において、微小光源11、開口絞り14及
びレンズ10を式(1)、(2)によつて移動することに
より、角膜部12における凝固光束の透過面積を
一定に保ちながら治療部位13の凝固面積を変え
ることができ、かつ可変絞り31を調節すること
により角膜部12における凝固光束の透過面積を
変えることができる。
The third embodiment is a device that can adjust the passage area of the coagulation light beam in the cornea. As shown in FIG. 4, the minute light source mapping optical system consisting of the minute light source 11, aperture diaphragm 14, and lens 10 of the first embodiment, the cornea part 12 of the patient's eye, and the treatment area 13 are optically connected by a relay lens 30. Connect to. A variable diaphragm 31 is placed between the lens 10 and the relay lens 30 at a position conjugate with the corneal portion 12, and a semi-transparent mirror 32 with low reflectance is placed at an appropriate position between the lens 10 and the corneal portion 12. Set up A monitor optical system 33 is placed on the reflection optical axis of the semi-transparent mirror 32. In the above configuration, by moving the minute light source 11, the aperture diaphragm 14, and the lens 10 according to equations (1) and (2), the treatment area 13 is The coagulation area can be changed, and by adjusting the variable aperture 31, the transmission area of the coagulation light beam in the corneal portion 12 can be changed.

次に、上述した微小光源の大きさとレンズの焦
点距離との関係について説明する。コアギユレー
タ装置は、第5図に示すように、高さyの光源4
0、レンズ41からなり、凝固光束は角膜部42
を通過して治療部位43に達する。光源40とレ
ンズ41との間隔をSとし、レンズ41と治療部
位43との間隔をS′とし、また角膜部42と治療
部位43との間隔をdとする。光源40の中心か
ら射出し光軸と角度u1,u2をなす光線は、第5図
Aに示すように、レンズ41の高さh1,h2の位置
に入射し、さらに角膜部42の高さH1,H2の位
置に入射し、さらに治療部位43の光軸上43′
に達する。他方、光源40の高さyの位置から射
出し光軸と角度u3,u4をなす光線は、第5図Bに
示すように、レンズ41の高さh3,h4の位置に入
射し、さらに角膜部42に高さH3,H4の位置に
入射し、さらに治療部位43に達する。以上の光
学系において、=1/fとすると、第5図Aに
示す軸上光線1,2については h1=Su1 u1′=u1+h1 Δh1=−u1′(S′−d) H1=h1+Δh1 また、第5図Bに示す軸外光線3,4については h3+y+Su3 u3′=u3+h3 Δh3=−u3′(S′−d) H3=h3+Δh3 ここで、光源40が微小でないことによる角膜部
42における光束通過面積の増加分ΔHは、角膜
部42の位置によつて異なる。第5図Cに示すよ
うに、角膜部42と治療部位43との間隔をd′と
するとき、ΔHは軸上光線1と軸外光線3とによ
つて決まるΔH13である。他方、第5図Dに示す
ように、角膜部42と治療部位43との間隔を
d″とするとき、ΔHは軸上光線2と軸外光線4と
によつて決まるΔH24である。光源40の発散角
をuとすれば、 ΔH13=|H1−H3|ただしu1=u2=u d=d′ ΔH24=|H2−H4|ただしu2=u4=−u d=d″ 上式より ΔH13=|〔y+su−{u+(y+su)} (S′−d′)〕−{su−(u+su)(S′ −d′)}|=|y−y(S′−d′)/f| =|y−y/f(S′−d′)| ΔH24=|〔y−su−{−u+(y−su)} (S′−d″)〕−{−su−(−u−su)(S′ −d″)}|=|y−y(S′−d″)| =|y−y(S′−d″)/f| 従つて ΔH=|y−y(S′−d)/f| =|y{1−(S′−d)/f}| となる。
Next, the relationship between the size of the minute light source mentioned above and the focal length of the lens will be explained. As shown in FIG. 5, the coagulator device includes a light source 4 at a height y.
0, consists of a lens 41, and the coagulating light beam is directed to the corneal part 42.
and reaches the treatment area 43. The distance between the light source 40 and the lens 41 is S, the distance between the lens 41 and the treatment area 43 is S', and the distance between the corneal part 42 and the treatment area 43 is d. The light rays emitted from the center of the light source 40 and making angles u 1 and u 2 with the optical axis are incident on the lens 41 at heights h 1 and h 2 , and further on the corneal part 42, as shown in FIG. 5A. The light is incident on the optical axis 43 ' of the treatment area 43 .
reach. On the other hand, the light rays emitted from the height y of the light source 40 and making angles u 3 and u 4 with the optical axis are incident on the lens 41 at heights h 3 and h 4 , as shown in FIG. 5B. Then, the light enters the corneal portion 42 at heights H 3 and H 4 and further reaches the treatment area 43 . In the above optical system, if = 1/f, for the axial rays 1 and 2 shown in Fig. 5A, h 1 = Su 1 u 1 ′ = u 1 + h 1 Δh 1 = −u 1 ′ (S′ -d ) H 1 = h 1 + Δh 1 Also, for the off-axis rays 3 and 4 shown in FIG. ) H 3 =h 3 +Δh 3 Here, the increase ΔH in the light beam passage area in the corneal portion 42 due to the light source 40 being not minute differs depending on the position of the corneal portion 42. As shown in FIG. 5C, when the distance between the corneal portion 42 and the treatment area 43 is d', ΔH is ΔH 13 determined by the axial ray 1 and the off-axis ray 3. On the other hand, as shown in FIG. 5D, the distance between the corneal part 42 and the treatment area 43 is
d'', ΔH is ΔH 24 determined by the on-axis ray 2 and the off-axis ray 4. If the divergence angle of the light source 40 is u, ΔH 13 = | H 1 − H 3 | where u 1 = u 2 = u d = d' ΔH 24 = | H 2 − H 4 | However, u 2 = u 4 = − u d = d″ From the above formula, ΔH 13 = | S'-d')]-{su-(u+su)(S'-d')}|=|y-y(S'-d')/f| =|y-y/f(S'-d ′) | ΔH 24 = | [y−su−{−u+(y−su)} (S′−d″)]−{−su−(−u−su)(S′ −d″)}|= |y−y(S′−d″)| =|y−y(S′−d″)/f| Therefore, ΔH=|y−y(S′−d)/f| =|y{1− (S'-d)/f}|

ところで角膜部を通過する凝固面積は、凝固光
束が虹彩にかからぬための条件、及び角膜部にお
ける凝固光束の密度を安全な範囲に留めるための
条件から 0.3≦H≦4 が得られる。従つて、角膜部を通過する凝固面積
の許容される変動量をα%とし、この変動量が光
源の大きさ2yによつてもたらされたものとする
と、 3α/1000≦ΔHnax≦4α/100 ここで ΔHnax=|y{1−(S′−d)/f}| が導びかれる。
By the way, the coagulation area passing through the cornea is determined to be 0.3≦H≦4 based on the conditions for the coagulation light flux not to hit the iris and the conditions for keeping the density of the coagulation light flux in the cornea within a safe range. Therefore, if the allowable variation in the coagulation area passing through the cornea is α%, and if this variation is caused by the light source size 2y, then 3α/1000≦ΔH nax ≦4α/ 100 Here, ΔH nax = |y{1-(S'-d)/f}| is derived.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコアギユレータ装置の凝固面積の調節
の原理図、第2図は本発明の第1実施例の光学
図、第3図は第2実施例の光学図、第4図は第3
実施例の光学図、第5図は凝固光源の大きさと焦
点距離の関係を示す光学図である。 10……レンズ、11……微小光源、12……
角膜部位、13……治療部位、14……開口絞
り、15……微小光源像、32……半透鏡、33
……モニター光学系。
Fig. 1 is a principle diagram of the coagulation area adjustment of the coagulator device, Fig. 2 is an optical diagram of the first embodiment of the present invention, Fig. 3 is an optical diagram of the second embodiment, and Fig. 4 is a diagram of the third embodiment.
FIG. 5, an optical diagram of the embodiment, is an optical diagram showing the relationship between the size of the coagulation light source and the focal length. 10...Lens, 11...Minimum light source, 12...
Corneal site, 13...Treatment area, 14...Aperture diaphragm, 15...Minimum light source image, 32...Semi-transparent mirror, 33
...Monitor optical system.

Claims (1)

【特許請求の範囲】 1 NAを一定に保ちながら実質上光軸上を移動
可能な凝固光源を有する光源系と、前記光源の大
きさに比して十分長い焦点距離を有し、その主点
位置が治療部位に対して移動可能な写像光学系と
を有し、上記凝固光源の実質上光軸上での移動と
前記写像光学系の主点の移動により凝固光束が角
膜部の通過面積を変化させることなく治療部位へ
の到達面積を変えることを特徴とするコアギユレ
ータ装置。 2 上記凝固光源の移動量DL、写像光学系の主
点の移動量をD、写像光学系の焦点距離をf、角
膜部の凝固光束の通過面積を半径Hの円、写像光
学系の射出側主点から治療部位までの距離をS1′、
角膜部から治療部位までの距離をd1、移動後の写
像光学系の入射側主点から凝固光源までの距離を
S2とするとき、 DL=−S1+S2+D の関係を有し、ここで D=−〔S2f/S2+f−H/u1′(1−S1′/f)(
1+S2/f)+d1−S1′〕 u1′=H/d1 S1=fS1′/f−S1′ の関係を有することを特徴とする特許請求の範囲
第1項記載のコアギユレータ装置。 3 上記光源系が、固定された凝固光源と、該凝
固光源の虚像を光軸上で移動させることができる
レンズ系とを有する特許請求の範囲第1項記載の
コアギユレータ装置。 4 上記写像光学系の焦点距離をfが、該写像光
学系の射出側主点から結像点までの距離をS′、角
膜部から結像点までの距離をd(すなわちd=d1
+d2)、凝固光源の大きさを2y、角膜部を通過す
る凝固用光束の変動許容量をα%とするとき 3α/1000ΔHnax4α/100、 ΔH=|y{1−(S′−d)/f}| となる関係を有することを特徴とする特許請求の
範囲第2項記載のコアギユレータ装置。 5 角膜と共役な位置に可変絞りを配した特許請
求の範囲第1項記載のコアギユレータ装置。
[Claims] 1. A light source system having a coagulation light source that can move substantially on the optical axis while keeping the NA constant, and a focal length that is sufficiently long compared to the size of the light source, and has a principal point thereof. a mapping optical system whose position is movable with respect to the treatment area, and the coagulation light beam changes the passage area of the cornea by moving the coagulation light source substantially on the optical axis and moving the principal point of the mapping optical system. A coagulator device that is characterized by changing the area that reaches the treatment area without changing it. 2. The amount of movement of the coagulation light source D L , the amount of movement of the principal point of the mapping optical system is D, the focal length of the mapping optical system is f, the area through which the coagulation light beam passes through the cornea is a circle with radius H, and the exit of the mapping optical system is The distance from the side principal point to the treatment area is S 1 ′,
The distance from the cornea to the treatment area is d 1 , and the distance from the input principal point of the mapping optical system to the coagulation light source after movement is
When S 2 , there is the relationship D L = −S 1 +S 2 +D, where D=−[S 2 f/S 2 +f−H/u 1 ′(1−S 1 ′/f)(
1+S 2 /f)+d 1 −S 1 ′] u 1 ′=H/d 1 S 1 =fS 1 ′/f−S 1 ′ Coagulator device. 3. The coagulator device according to claim 1, wherein the light source system includes a fixed coagulation light source and a lens system capable of moving a virtual image of the coagulation light source on an optical axis. 4 The focal length of the mapping optical system is f, the distance from the exit side principal point of the mapping optical system to the imaging point is S', and the distance from the cornea to the imaging point is d (that is, d=d 1
+ d2 ), when the size of the coagulation light source is 2y and the allowable variation of the coagulation light flux passing through the cornea is α%, 3α/1000ΔH nax 4α/100, ΔH=|y{1−(S′−d )/f}| The coagulator device according to claim 2, wherein the coagulator device has the following relationship. 5. The coagulator device according to claim 1, wherein a variable aperture is arranged at a position conjugate with the cornea.
JP56075876A 1981-05-20 1981-05-20 Coagulator apparatus Granted JPS57190559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56075876A JPS57190559A (en) 1981-05-20 1981-05-20 Coagulator apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56075876A JPS57190559A (en) 1981-05-20 1981-05-20 Coagulator apparatus

Publications (2)

Publication Number Publication Date
JPS57190559A JPS57190559A (en) 1982-11-24
JPS631056B2 true JPS631056B2 (en) 1988-01-11

Family

ID=13588910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56075876A Granted JPS57190559A (en) 1981-05-20 1981-05-20 Coagulator apparatus

Country Status (1)

Country Link
JP (1) JPS57190559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362140U (en) * 1989-10-19 1991-06-18

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1245726A (en) * 1984-01-19 1988-11-29 Francis A. L'esperance Laser incisional device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362140U (en) * 1989-10-19 1991-06-18

Also Published As

Publication number Publication date
JPS57190559A (en) 1982-11-24

Similar Documents

Publication Publication Date Title
JP3165144B2 (en) Binocular indirect mirror laser treatment system
US4724522A (en) Method and apparatus for modification of corneal refractive properties
EP0536951B1 (en) Apparatus for delivering a defocused laser beam having a sharp-edged cross-section
US5102409A (en) Method and apparatus for modification of corneal refractive properties
US5171242A (en) Combination lens system for retinal photocoagulator laser system
KR970003229B1 (en) Optical system for use in a surgical apparatus
US7252661B2 (en) Method and system for patient optical fixation
EP0790807B1 (en) Laser corneal sculpting system
US11272986B2 (en) Device for surgically correcting ametropia of an eye and method for creating control data therefor
EP0765648A2 (en) Ophthalmic surgery apparatus
JPH0351A (en) Laser medical treating device
WO1995019748A1 (en) Anti-astigmatic ophthalmic contact lens for use in performing laser surgery
JPS60114246A (en) Microscopical operation method and apparatus of ophthalmology
US3467099A (en) Method and apparatus for the coagulation of small areas of the retina of the eye
US4397310A (en) Anastigmatic high magnification, wide-angle binocular indirect attachment for laser photocoagulator
US4502764A (en) Contact lens for the observation and treatment of a point in the eye
CA2765268A1 (en) Apparatus for ophthalmic laser surgery
JP2007159740A (en) Laser treatment apparatus for ophthalmology
JPH03128033A (en) Ophthalmological machinery
JPS6075056A (en) Ophthalimic microscopic operation apparatus and method
US4652092A (en) Neodymium-YAG laser, for ophthalmological treatment
WO2000021475A1 (en) Laser system with projected reference pattern
JPS631056B2 (en)
US7173745B2 (en) Optical beam delivery configuration
Riquin et al. Contact glasses for use with high power lasers: Two new contact glasses for microsurgery at the iris, in the pupillary and the retropupillary space