JPS63105012A - Production of acrylonitrile-based polymer - Google Patents

Production of acrylonitrile-based polymer

Info

Publication number
JPS63105012A
JPS63105012A JP24935786A JP24935786A JPS63105012A JP S63105012 A JPS63105012 A JP S63105012A JP 24935786 A JP24935786 A JP 24935786A JP 24935786 A JP24935786 A JP 24935786A JP S63105012 A JPS63105012 A JP S63105012A
Authority
JP
Japan
Prior art keywords
polymer
acrylonitrile
polymerization
parts
vinylidene chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24935786A
Other languages
Japanese (ja)
Inventor
Yoshihiko Hosako
宝迫 芳彦
Katsuhei Shigeoka
重岡 勝平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP24935786A priority Critical patent/JPS63105012A/en
Publication of JPS63105012A publication Critical patent/JPS63105012A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled polymer capable of giving acrylic fiber of outstanding transparency and flame-retardancy, by incorporating specified amounts of 2-acrylamide-2methylpropane sulfonic acid (salt) in the reaction system in the production of the titled polymer by aqueous suspension polymerization. CONSTITUTION:In the production of the objective acrylonitrile-based polymer containing 45.5-65.5wt% of acrylonitrile and 33.0-52.0wt% of vinylidene chloride by aqueous suspension polymerization, >=3.0wt% (on a 2-acrylamide-2- methylpropane solfonic acid basis), based on the whole monomer, of 2- acrulamide-2-methylpropane sulfonic acid (salt) is incorporated in the polymerization system. The polymerization is preferably carried out at 30-40 deg.C and pH 2.0-3.5, using, as initiators, an oxidizing agent such as ammonium persulfate and a reducing agent such as acid sodium sulfite. The above-mentioned process is capable of polymerizing large quantities of vinylidene chloride even without using surfactant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は透明性にすぐれた高度な難燃性を有するアクリ
ル繊維を製造するのに適したアクリロニトリル系重合体
の新規な製造方法にある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a novel method for producing an acrylonitrile polymer suitable for producing acrylic fibers having excellent transparency and high flame retardancy.

〔従来の技術〕[Conventional technology]

アクリロニトリル系重合体よりなるアクリル繊維は羊毛
に似た優れた嵩高性、風合、染色鮮明性等の性質を有し
、広範囲の用途に利用されている。しかしアクリル繊維
は本来多くの天然線維と同様に易燃性である欠点を有し
ている。
Acrylic fibers made of acrylonitrile-based polymers have properties similar to wool, such as excellent bulk, texture, and color clarity, and are used in a wide range of applications. However, acrylic fibers, like many natural fibers, inherently have the disadvantage of being easily flammable.

近年状々の生活環境は火災などの災害の危険にさらされ
る度合が増大し、繊維製品の難燃化に対する要求が高ま
りてきた。特に防炎性を必要とするカーテン、カーペッ
ト等のインテリア製品に関しては難燃化が必須の条件と
さえなりつつある。
BACKGROUND ART In recent years, living environments have become more exposed to disasters such as fire, and there has been an increasing demand for flame retardant textile products. In particular, flame retardancy is becoming an essential condition for interior products such as curtains and carpets that require flame retardancy.

アクリル繊維を難燃化する方法として、 (1)sb、
ol等の不燃性物質を繊維に含有または付着せしめる方
法、(2)難燃性を有する重合体例えば塩化ビニル重合
体とアクリロニトリル系重合体をブレンド紡糸する方法
、(3)難燃性を有する単量体を共重合させる方法など
多くの方法が提案されている。
As a method to make acrylic fiber flame retardant, (1) sb,
(2) A method of blend-spinning a flame-retardant polymer such as a vinyl chloride polymer and an acrylonitrile polymer; (3) A method of blend-spinning a flame-retardant polymer such as a vinyl chloride polymer and an acrylonitrile polymer; Many methods have been proposed, including methods for copolymerizing polymers.

これらの方法の中で半永久的に繊維に難燃性を賦与する
ことができ、しかもアクリル繊維の本来の物性、風合等
をそこなわない方法として難燃性を有する単量体との共
重合方式が優れており、かつ広く利用されている。
Among these methods, copolymerization with flame-retardant monomers is a method that can impart flame retardancy semi-permanently to fibers without damaging the original physical properties, texture, etc. of acrylic fibers. The method is excellent and widely used.

これら難燃性を有する単量体としては、ハロゲン含有ビ
ニル単量体、例えば塩化ビニル、塩化ビニリデン、臭化
ビニル等がある。しかし、これら難燃性を有する単量体
を共重合して得られる重合体を紡糸してなるアクリル繊
維は、本来アクリル繊維が有する優れた性能をすべて保
有している訳ではなく、いまだ十分満足できる状態にあ
るとは言えない。しかも優れた難燃性能を有するために
は、これらの単量体を多く含有せしめることが必要であ
るが、逆にアクリル繊維の本来の優れた性質を損なう結
果となっている。特に染色鮮明性、失透防止性を著しく
低下させるため、商品価値を損なう大きな問題を有して
いる。この理由としては、ハロゲン含有ビニル単量体を
多く含むアクリル繊維の多くは湿式紡糸法により製造さ
れるため繊維組織内に微細な空隙を作りやすいためと考
えられている。
Examples of these flame-retardant monomers include halogen-containing vinyl monomers, such as vinyl chloride, vinylidene chloride, and vinyl bromide. However, acrylic fibers made by spinning polymers obtained by copolymerizing these flame-retardant monomers do not possess all of the excellent performance originally possessed by acrylic fibers, and are still not fully satisfied. I cannot say that I am in a position to do so. Moreover, in order to have excellent flame retardant performance, it is necessary to contain a large amount of these monomers, but this results in the loss of the original excellent properties of acrylic fibers. In particular, it significantly reduces dyeing clarity and devitrification prevention properties, which poses a major problem that impairs commercial value. The reason for this is thought to be that most acrylic fibers containing a large amount of halogen-containing vinyl monomers are manufactured by wet spinning, which tends to create fine voids within the fiber structure.

このためハロゲン含有ビニル単量体を多量に含有するア
クリル繊維の失透性を改良するためには、凝固浴中での
繊維組織内の微細な空隙の生成を防止することが特に重
要になっている。このような失透性を改良し十分な染色
性をハロゲン含有単量体を含む共重合体に賦与する方法
としてこれまで染料に対する染着座席である強酸性基(
−8O3)を含有せしめる方法が広く採用されている。
Therefore, in order to improve the devitrification properties of acrylic fibers containing large amounts of halogen-containing vinyl monomers, it is especially important to prevent the formation of fine voids within the fiber structure in the coagulation bath. There is. As a method of improving such devitrification and imparting sufficient dyeability to copolymers containing halogen-containing monomers, strong acid groups (which serve as dyeing sites for dyes) have been used.
-8O3) is widely used.

このような方法としてスルホン酸基含有ビニル単量体を
多く含有せしめたアクリロニトリル/塩化ビニルまたは
塩化ビニリデン共重合体を、難燃性を有するアクリロニ
トリル/塩化〈ニルまたは塩化ビニリデン共重合体と、
ブレンド紡糸することによって失透防止性良好な難燃繊
維を製造することが提案されている(%公昭53−93
00号)。
In such a method, an acrylonitrile/vinyl chloride or vinylidene chloride copolymer containing a large amount of a sulfonic acid group-containing vinyl monomer is mixed with a flame-retardant acrylonitrile/vinyl chloride or vinylidene chloride copolymer,
It has been proposed to produce flame-retardant fibers with good devitrification prevention properties by blend spinning (% Kosho 53-93
No. 00).

この方法は有機溶媒を重合媒体として使用するため重合
速度が遅く、また未反応単量体の回収、重合反応後の著
しい粘度上昇など操作上困難な問題が多く、工業的に有
利な方法とは言えない。これに対して水を媒体とする水
系懸濁重合は重合速度が速いこと、未反応単量体の回収
が容易なこと、重合時の温度コントロールがしやすいこ
となど優れており、しかも連続重合が容易なためアクリ
ル繊維の製造に広く利用されている。
Since this method uses an organic solvent as the polymerization medium, the polymerization rate is slow, and there are many operational difficulties such as recovery of unreacted monomers and a significant increase in viscosity after the polymerization reaction, so it is difficult to find an industrially advantageous method. I can not say. On the other hand, aqueous suspension polymerization using water as a medium has advantages such as high polymerization rate, easy recovery of unreacted monomers, and ease of temperature control during polymerization.Moreover, continuous polymerization is possible. Because it is easy, it is widely used in the production of acrylic fibers.

しかし水を好体とする悲濁重合にも種々の短所があり、
特に水に対する溶解性の著しく低い単量体をアクリロニ
) IJルと共重合する際には該単量体の重合利用性が
低下する欠点を有している。特に難燃性能を有するハロ
ゲン含有ビニル単量体は水に対する溶解性が著しく低い
ためこのような単量体に該当する。
However, tragic polymerization, which prefers water, also has various disadvantages.
In particular, when a monomer having extremely low solubility in water is copolymerized with acrylonitrile, the polymerization utility of the monomer is reduced. In particular, halogen-containing vinyl monomers having flame retardant properties fall under such monomers because they have extremely low solubility in water.

このような欠点を解決する方法として界面活性剤を添加
し、非水溶性のハロゲン含有ビニル単量体を水中に分散
させることによって、ハロゲン含有単量体の重合利用性
を大幅に向上し、ハロゲン含有ビニル単量体を多量に含
有するアクリロニトリル系共重合体を製造することが提
案されている(特公昭50−33916号)。
As a way to solve these drawbacks, by adding a surfactant and dispersing the water-insoluble halogen-containing vinyl monomer in water, the polymerization utility of the halogen-containing monomer can be greatly improved, and the halogen It has been proposed to produce an acrylonitrile copolymer containing a large amount of vinyl monomer (Japanese Patent Publication No. 33916/1983).

界面活性剤を添加することによって非水溶性単量体の重
合利用性は向上するが、逆に水溶性であるスルホン酸基
含有ビニル単量体の重合利用性を低下する欠点を有して
おり、アクリロニトリルに対して低い反応性を有する単
量体の重合利用性をさらに低下させる欠点がある。
Although the addition of a surfactant improves the polymerization utility of water-insoluble monomers, it has the disadvantage of decreasing the polymerization utility of water-soluble sulfonic acid group-containing vinyl monomers. , has the disadvantage of further reducing the polymerization availability of monomers with low reactivity toward acrylonitrile.

これら界面活性剤を添加する水系懸濁重合が有する欠点
を改良し、さらに難燃性を有するアクリル系繊維の失透
紡糸性を向上する方法としてアクリロニトリルの反応性
比との比が1以上である反応性を有するスルホン酸基含
有ビニル単量体を使用し、さらにこれらのスルホン酸基
含有ビニル単量体を反応系に添加する時間を規制するこ
とによって失透防止性の良好な難燃性を有するアクリロ
ニトリル系重合体を製造することが提案されている(特
開昭57−10613号)。
As a method for improving the drawbacks of aqueous suspension polymerization in which these surfactants are added and further improving the devitrification spinnability of flame-retardant acrylic fibers, the reactivity ratio to acrylonitrile is 1 or more. By using reactive sulfonic acid group-containing vinyl monomers and regulating the time during which these sulfonic acid group-containing vinyl monomers are added to the reaction system, flame retardance with good devitrification prevention properties can be achieved. It has been proposed to produce an acrylonitrile polymer having the following properties (JP-A-57-10613).

しかし、スルホン酸含有ビニル単量体の添加時間を規制
する方法はアクリロニトリル系重合体の製造方式に広く
採用されている水系懸濁連続重合方式には採用が困難で
あり、長時間しかも安定した重合体を製造することがで
きず、工業上地も有利な方法とは言えない。
However, the method of regulating the addition time of the sulfonic acid-containing vinyl monomer is difficult to apply to the aqueous suspension continuous polymerization method that is widely used in the production of acrylonitrile polymers. It is not possible to produce a composite, and it cannot be said to be an advantageous method in industrial terms.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ハロゲン含有ビニル単量体を多く含有するアクリロニト
リル系重合体を製造するに当り、水系懸濁連続重合方式
が有する問題点は、非水溶性であるハロゲン含有ビニル
単量体と親水性であるスルフォン酸基含有単量体を同一
な反応系で、しかも効率よくアクリロニトリルと共重合
させる点にある。
When producing acrylonitrile-based polymers containing a large amount of halogen-containing vinyl monomers, the problems with the aqueous suspension continuous polymerization method are that the halogen-containing vinyl monomers are water-insoluble and the sulfonic acid is hydrophilic. The aim is to efficiently copolymerize a group-containing monomer with acrylonitrile in the same reaction system.

本発明の目的はこのような水系懸濁1合方式が保持する
問題点を解決し、難燃性に優れしかも透明性にすぐれた
アクリル繊維を製造するのに適したアクリロニトリル系
重合体の工業的に有利な製造方法を提供することにある
The purpose of the present invention is to solve the problems of the aqueous suspension system and to develop an industrial acrylonitrile polymer suitable for producing acrylic fibers with excellent flame retardancy and transparency. The objective is to provide an advantageous manufacturing method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨は、アクリロニトリル45.5〜64.5
重量%、塩化ビニリデン33.0〜52.0重量%を含
有するアクリロニトリル系重合体を水を媒体として製造
するに当り、2−アクリルアミド−2メチルプロパンス
ルフオン酸またはその塩を反応系に供給される全単量体
に対して2−アクリルアミド−2メチルプロパンスルフ
オン酸として3.0重量%以上供給し、界面活性剤を添
加することなく反応せしめることを特徴とするアクリロ
ニトリル系重合体の製造方法にある。
The gist of the present invention is that acrylonitrile 45.5 to 64.5
When producing an acrylonitrile polymer containing 33.0 to 52.0% by weight of vinylidene chloride using water as a medium, 2-acrylamido-2methylpropanesulfonic acid or a salt thereof is supplied to the reaction system. A method for producing an acrylonitrile polymer, which comprises supplying 3.0% by weight or more of 2-acrylamido-2methylpropanesulfonic acid to the total monomers and reacting without adding a surfactant. It is in.

本発明は共重合体を製造する上で従来不可欠と考えられ
ていた界面活性剤を添加しないことによって、透明性に
すぐれた高度な難燃性アクリル繊維を製造することを可
能にするものである。
The present invention makes it possible to produce highly flame-retardant acrylic fibers with excellent transparency by not adding surfactants, which were previously thought to be essential in producing copolymers. .

以下本発明について詳細に説明する。The present invention will be explained in detail below.

本発明における第一の要件はノ・ロゲン含有単量体を含
有するアクリロニトリル系重合体の組成が45.5〜6
4.5重量%のアクリロニトリルと33.0〜sz、o
ti%の塩化ビニリデンを主とすることにある。
The first requirement in the present invention is that the composition of the acrylonitrile polymer containing the nitrogen-containing monomer is 45.5 to 6.
4.5% by weight acrylonitrile and 33.0~sz,o
ti% vinylidene chloride as the main ingredient.

本発明の重合体の組成のうちアクリロニトリルの含有量
を45.5〜64.5mi%に規定したのは、45.5
重量%未満ではアクリル繊維が本来有するすぐれた繊維
性能を維持することができないためであり、また64.
5重量%を超えるとアクリル繊維としての性能は容易に
得られるが高度な難燃性能を与えることが困難なためで
ある。塩化ビニリデンの含有量を33.0〜52.0重
量%に規定したのは塩化ビニリデンの含有量が33.0
重量%未満では高度な難燃性能が得られないためであり
、また52.0重量%を超えるとアクリル繊維が本来有
する繊維性能を保有することができないためである。本
発明において難燃性を有するハロゲン含有単量体として
塩化ビニリデンを選択したのは塩化ビニリデンがハロゲ
ン含有単量体の中でも比較的沸点が高く水系慾濁連続重
合に最も適しているためである。
The content of acrylonitrile in the composition of the polymer of the present invention was specified to be 45.5 to 64.5 mi%.
This is because if it is less than 64% by weight, the excellent fiber performance inherent to acrylic fibers cannot be maintained.
This is because if it exceeds 5% by weight, the performance as an acrylic fiber can be easily obtained, but it is difficult to provide high flame retardant performance. The content of vinylidene chloride was specified as 33.0 to 52.0% by weight because the content of vinylidene chloride was 33.0% by weight.
This is because if the amount is less than 52.0% by weight, high flame retardant performance cannot be obtained, and if it exceeds 52.0% by weight, the fiber performance inherent to acrylic fibers cannot be maintained. In the present invention, vinylidene chloride was selected as the flame-retardant halogen-containing monomer because vinylidene chloride has a relatively high boiling point among halogen-containing monomers and is most suitable for aqueous cloudy continuous polymerization.

また本発明に用いられるアクリロニトリル系重合体はア
クリロニトリル、塩化ビニリデン、スルホン酸基含有ビ
ニル単量体の外に、これらと共重合可能なモノオレフィ
ン性単量体を少量含有してもよく共重合体の組成を何ら
規制するものではない。これら共重合可能なモノオレフ
ィン単量体としては、例えばアクリル酸、メタクリル酸
およびそれらのエステル、アクリルアミド、酢酸ビニル
、スチレンなどがある。
In addition to acrylonitrile, vinylidene chloride, and a sulfonic acid group-containing vinyl monomer, the acrylonitrile polymer used in the present invention may also contain a small amount of a monoolefinic monomer that can be copolymerized with these. It does not restrict the composition in any way. Examples of these copolymerizable monoolefin monomers include acrylic acid, methacrylic acid and their esters, acrylamide, vinyl acetate, and styrene.

次に本発明の第二の要件は、本発明の第一の要件を満足
するアクリロニトリル系重合体を水系愁濁重合方式で製
造する際に、2−アクリルアミド−2メチルプロパンス
ルフオン酸またはその塩を反応系に供給される全単量体
に対して2−アクリルアミド−2メチルプロパンスルフ
オン酸として3.0重量%以上供給することにある。
Next, the second requirement of the present invention is that when producing an acrylonitrile polymer that satisfies the first requirement of the present invention by an aqueous suspension polymerization method, 2-acrylamido-2methylpropanesulfonic acid or a salt thereof The purpose is to supply 3.0% by weight or more of 2-acrylamido-2methylpropanesulfonic acid to the total monomers supplied to the reaction system.

2−アクリルアミド−2メチルプロパンスルフオン酸ま
たはその塩はアクリロニトリル、塩化ビニリデンと共重
合することによって生成する共重合体中にスルフォン酸
基を導入し、該重合体を紡糸してなる難燃性を有するア
クリル繊維にすぐれた透明性を与えるだけでなく、アク
リロニトリル、塩化ビニリデンそれぞれとの適切な反応
性を有することから重合反応系内で微細な重合体を生成
する。この微細な重合体はスルフォン酸基を多量に含有
し、高い親水性を有すると共にアクリロニトリル、塩化
ビニリデンを含有するため親油性をも有している。この
ためあたかも界面活性剤と同一の作用を有し、界面活性
剤を添加しなくとも非水溶性の塩化ビニリデンの反応性
を高める結果となる。このような2−アクリルアミド−
2メチルプロパンスルフオン酸の効果は、アクリロニト
リル、塩化ビニIJデンそれぞれとの反応性が適切であ
ることによるものと考えられ、一般に高反応性を有する
ビニルベンゼンスルフォン酸等ベンゼン環ヲ有するスル
フォン酸基含有単量体を、アクリロニトリル、塩化ビニ
リデンと共重合しても上記したような微細な重合体は生
成することはなく塩化ビニリデンの反応性を高めること
はできない。また逆にアリルスルフォン酸のような2−
アクリルアミド−2メチルプロパンスルフオン酸より低
い反応性を有するものについても同様である。
2-Acrylamido-2-methylpropanesulfonic acid or its salt is copolymerized with acrylonitrile and vinylidene chloride to introduce a sulfonic acid group into the resulting copolymer, and the flame retardant product is obtained by spinning the polymer. Not only does it give excellent transparency to acrylic fibers, but it also has appropriate reactivity with acrylonitrile and vinylidene chloride, so it produces fine polymers in the polymerization reaction system. This fine polymer contains a large amount of sulfonic acid groups and has high hydrophilicity, and since it contains acrylonitrile and vinylidene chloride, it also has lipophilicity. For this reason, it has the same effect as a surfactant, and the reactivity of water-insoluble vinylidene chloride is increased even without the addition of a surfactant. Such 2-acrylamide-
The effect of 2-methylpropanesulfonic acid is thought to be due to its appropriate reactivity with acrylonitrile and vinyl chloride, and generally, sulfonic acid groups with a benzene ring such as vinylbenzenesulfonic acid have high reactivity. Even if the containing monomer is copolymerized with acrylonitrile or vinylidene chloride, the above-mentioned fine polymer will not be produced and the reactivity of vinylidene chloride cannot be increased. Conversely, 2-
The same applies to those having lower reactivity than acrylamide-2-methylpropanesulfonic acid.

2−アクリルアミド−2メチルプロパンスルフオン酸ま
たはその塩の供給量を反応系に供給される全単量体に対
して3.0重i%以上としたのは3.0重量%未満では
重合反応条件によりて微細な重合体が生成しえないこと
があるとともに、該重合体を紡糸して成るアクリル繊維
に透明性を与えるに十分なスルフォン酸基を導入するこ
とができないためである。
If the amount of 2-acrylamide-2-methylpropanesulfonic acid or its salt is 3.0% by weight or more based on the total monomers supplied to the reaction system, if it is less than 3.0% by weight, the polymerization reaction will occur. This is because, depending on the conditions, it may not be possible to produce a fine polymer, and it may not be possible to introduce sufficient sulfonic acid groups to impart transparency to acrylic fibers made by spinning the polymer.

本発明の第三の要件は界面活性剤を重合反応系に添加し
ないことにある。ここで規定する界面活性剤は一般的に
定義される親水性基と親油性基をともに有する化合物で
あり、狭義に解釈されるものではない。アクリロニトリ
ル−塩化ビニリデン共重合体を紡糸してなる繊維の失透
性について本発明者らが鋭意検討した結果、界面活性剤
が本発明の第一の要件を満足する重合体中に存在すると
該1合体を紡糸してなる繊維の透明性を損なうことを見
い出した。特にポリエチレングリコール鎖を有するノニ
オン系の界面活性剤はアクリロニトリル、塩化ビニリデ
ンに対して良好な溶解性を有することから生成する重合
体内に取り込まれ、洗浄工程において十分取り除くこと
が困難となり繊維の透明性を著しく損なう結果となる。
The third requirement of the present invention is that no surfactant is added to the polymerization reaction system. The surfactant defined here is a compound having both a generally defined hydrophilic group and a lipophilic group, and is not to be interpreted in a narrow sense. As a result of intensive studies by the present inventors regarding the devitrification properties of fibers made by spinning acrylonitrile-vinylidene chloride copolymer, it was found that the surfactant is present in the polymer that satisfies the first requirement of the present invention. It has been found that the transparency of the fibers obtained by spinning the coalescence is impaired. In particular, nonionic surfactants with polyethylene glycol chains have good solubility in acrylonitrile and vinylidene chloride, so they are incorporated into the resulting polymer, making it difficult to remove them sufficiently during the washing process and impairing the transparency of the fibers. This results in significant damage.

親水性が高く、アクリロニトリル、塩化ビニリデンに対
し″′C溶解性の低いアニオン系の界面活性剤において
も繊維の透明性への影響が見られる。上記の理由により
本発明の第一の要件を満足する重合体を紡糸してなる繊
維の透明性を向上する上で界面活性剤を取り除くことが
特に重要である。
Even anionic surfactants that are highly hydrophilic and have low C solubility in acrylonitrile and vinylidene chloride have an effect on fiber transparency.For the above reasons, the first requirement of the present invention is satisfied. It is particularly important to remove the surfactant in order to improve the transparency of the fibers produced by spinning the polymer.

本発明に使用される開始剤はアクリロニトリル系重合体
を水系懸濁重合方式によって製造される際に通常使用さ
れる酸化剤、還元剤の中から選ぶことができる。例えば
過硫酸カリウム、過硫酸アンモニウムのごとき過硫酸塩
、塩素酸ナトリウムのごとき塩素酸塩等の酸化剤と亜硫
酸またはそれらの塩等の還元剤の組み合せなどがある。
The initiator used in the present invention can be selected from oxidizing agents and reducing agents commonly used when producing acrylonitrile polymers by aqueous suspension polymerization. Examples include a combination of an oxidizing agent such as a persulfate such as potassium persulfate or ammonium persulfate, or a chlorate such as sodium chlorate, and a reducing agent such as sulfite or a salt thereof.

還元剤/酸化剤の比率はどんな割合でも可能であるが重
合をより効率よく進める上で酸化剤/還元剤の当量比を
1〜4にすることが好ましい。
Although any ratio of reducing agent/oxidizing agent is possible, it is preferable to set the equivalent ratio of oxidizing agent/reducing agent to 1 to 4 in order to advance the polymerization more efficiently.

重合反応温度は30〜40℃にすることが好ましい。こ
の理由は重合温度が40℃を超えると低沸点の塩化ビニ
リデンが蒸発し、反応系外に離散することによって塩化
ビニリデンの重合転化率を低下させるためである。また
30℃未満では重合速度が低下し、生産性を下げるだけ
でなく重合安定性を損う結果にもなる。重合釜をシール
ドし、加圧下で塩化ビニリデンの蒸発離散を防ぎながら
重合温度をあげることは可能であるが、連続重合方式で
は重合釜内な一定の加圧状態に保つことは操作上難かし
く工業的に得策とは言えない。
The polymerization reaction temperature is preferably 30 to 40°C. The reason for this is that when the polymerization temperature exceeds 40°C, vinylidene chloride having a low boiling point evaporates and is dispersed outside the reaction system, thereby reducing the polymerization conversion rate of vinylidene chloride. Moreover, if it is lower than 30°C, the polymerization rate decreases, resulting in not only a decrease in productivity but also a loss in polymerization stability. Although it is possible to raise the polymerization temperature under pressure by shielding the polymerization reactor and preventing the evaporation and dissipation of vinylidene chloride, it is difficult to maintain a constant pressure inside the polymerization reactor in a continuous polymerization method, making it difficult to maintain a constant pressure in the reactor. I can't say it's a good idea.

本発明における重合媒体としての水はイオン交換水を使
用することが好ましい。さらに単量体に対する一イオン
交換水の割合(以降水/単量体比と言う)はどんな比率
でも可能であるが、好ましくは水/単量体比1.0〜5
.0の範囲が選ばれる・。水/単量体比が1.0以下で
は1合体水溶液の粘度上昇を起こし、攪拌が不完全とな
りX合の温度コントロール性を悪化させるためである。
It is preferable to use ion-exchanged water as the polymerization medium in the present invention. Further, the ratio of ion-exchanged water to monomer (hereinafter referred to as water/monomer ratio) can be any ratio, but preferably the water/monomer ratio is 1.0 to 5.
.. A range of 0 is selected. This is because if the water/monomer ratio is less than 1.0, the viscosity of the aqueous solution of the monomer increases, resulting in incomplete stirring and worsening of the temperature controllability of the X-combination.

また水/単量体比が5.0以上では重合効率が低下し工
業的に有利とは言えない。重合反応釜内での単量体の平
均滞在時間は通常アクリロニトリル系重合体を水系懸濁
■合方式によって製造する隙に規矩される時間が好まし
く特別規定するものではない。重合反応釜内での水素イ
オン濃度は使用される触媒がすみやかに酸化・還元反応
を起こす範囲であればよく、好ましくはpH2,0〜3
.5がよい。重合釜から耶り出された重合体は重合停止
剤を添加し反応を停止させる。重合反応の停止剤は通常
アクリロニトリル系重合体を水系懸濁1合で製造する際
に使用されるものであれば問題はない。重合体水溶液は
重合停止剤を添加された後、未反応単量体の回収を行な
う。未反応単量体の回収方法としては重合体水溶液を直
接蒸留する方法、また一旦脱水洗浄し未反応単量体を重
合体と分離した後蒸留する方法があり、両方式とも採用
可能である。後者における脱水洗浄機としては通常公知
のp過脱水機である回転式真空p過機、遠心脱水機等が
使用される。これらの装置を用いて重合体水溶液から重
合体を分離するにあたり、より効率よく行なうため硫酸
ナトリウム、硫酸アルミニウム等の凝集剤を添加したり
重合体の凝集を促進する意味で重合体水溶液を昇温する
等の操作を行うこともできる。重合体中に残った水分は
通常の乾燥方式によって取り除かれる。
Moreover, if the water/monomer ratio is 5.0 or more, the polymerization efficiency decreases and it cannot be said to be industrially advantageous. The average residence time of the monomers in the polymerization reactor is not particularly specified, and is preferably the time that is usually determined during the production of an acrylonitrile polymer by an aqueous suspension polymerization method. The hydrogen ion concentration in the polymerization reactor may be within a range where the catalyst used can quickly cause an oxidation/reduction reaction, preferably at a pH of 2.0 to 3.
.. 5 is good. A polymerization terminator is added to the polymer discharged from the polymerization vessel to stop the reaction. There is no problem with the terminator for the polymerization reaction, as long as it is one that is normally used when producing an acrylonitrile polymer in an aqueous suspension. After a polymerization terminator is added to the aqueous polymer solution, unreacted monomers are recovered. Methods for recovering unreacted monomers include direct distillation of the aqueous polymer solution, and methods of once dehydrating and washing to separate unreacted monomers from the polymer, followed by distillation, and both methods can be employed. In the latter case, a rotary vacuum p-filtration machine, a centrifugal dehydration machine, etc., which are known p-super-dehydration machines, are usually used. When separating a polymer from an aqueous polymer solution using these devices, in order to do it more efficiently, flocculants such as sodium sulfate or aluminum sulfate are added, or the temperature of the aqueous polymer solution is raised to promote coagulation of the polymer. You can also perform operations such as Any water remaining in the polymer is removed by conventional drying methods.

〔実施例〕〔Example〕

以下本発明を具体的に実施例によって説明する。部は重
量部を表す。
EXAMPLES The present invention will be specifically described below with reference to Examples. Parts represent parts by weight.

透明性の評価は以下の方式で評価した。Transparency was evaluated using the following method.

得られた繊維を十分開繊し、ニードルパンチングマシー
ンで20X10cm、目付250 //m’のフェルト
を作成した。作成したフェルトを9×40Uに切り取り
、10關ガラスセルに入れベンジルアルコールに浸漬し
、490.5部mの波長の透過率を測定した。
The obtained fibers were sufficiently opened and a felt of 20×10 cm and a basis weight of 250//m' was made using a needle punching machine. The created felt was cut into 9×40 U, placed in a 10-sized glass cell, immersed in benzyl alcohol, and the transmittance at a wavelength of 490.5 parts m was measured.

実施例1 容量837の攪拌機付き重合反応釜にイオン交換水(p
H=3)を357仕込み、アクリロニトリ#56.9部
、塩化ビニリデン40.0部の単量体混合液と2−アク
リルアミド−2メチルプロパンスルフォン酸3.1部、
過硫酸アンモニウム0.70部、酸性亜硫酸ナトリウム
0.84部、硫酸第一鉄(FeSO4・7HzO) 4
.4 X 10  部になるようにそれぞれイオン交換
水に溶解し連続的に供給を開始した。さらにイオン交換
水の全量が200部になるようにイオン交換水を別途供
給した。重合温度を35℃、反応系内のpHを2.9に
保ち連続的に十分な攪拌を行ない平均120分滞在させ
て反応を行った。反応器溢流口より連続的に重合体水溶
液を取り出し、これにシュウ酸ナトリウム0.49部、
エチレンジアミンテトラアセテート2ナトリウム塩0.
07部、重炭酸ナトリウム1.82部を100部のイオ
ン交換水に溶解した重合停止剤水溶液を0.2部の速度
で加え、更にイオン交換水を加えた後回転式真空濾過機
で未反応単量体、余剰の重合助剤を除去した。
Example 1 Ion-exchanged water (p
357 parts of H=3), 56.9 parts of acrylonitrile, 40.0 parts of vinylidene chloride, and 3.1 parts of 2-acrylamide-2methylpropanesulfonic acid.
Ammonium persulfate 0.70 parts, sodium acid sulfite 0.84 parts, ferrous sulfate (FeSO4.7HzO) 4
.. Each of them was dissolved in ion-exchanged water in an amount of 4 x 10 parts, and continuous feeding was started. Further, ion-exchanged water was separately supplied so that the total amount of ion-exchanged water was 200 parts. The polymerization temperature was maintained at 35° C., the pH within the reaction system was maintained at 2.9, and sufficient stirring was performed continuously to conduct the reaction for an average of 120 minutes. An aqueous polymer solution was continuously taken out from the overflow port of the reactor, and 0.49 parts of sodium oxalate was added to it.
Ethylenediaminetetraacetate disodium salt 0.
07 parts, a polymerization terminator aqueous solution prepared by dissolving 1.82 parts of sodium bicarbonate in 100 parts of ion-exchanged water was added at a rate of 0.2 parts, and after further adding ion-exchanged water, unreacted was removed using a rotary vacuum filter. The monomer and excess polymerization aid were removed.

未反応単量体、余剰の重合助剤を除去した重合体水溶液
を遠心脱水機で脱水し重量分率で約50%の水を含んだ
湿潤重合体を得た。得られた湿潤重合体をスクリュ一式
押し出し機によりペレット、状に成型した後通気乾燥機
で乾燥し表1に示す重合体を得た。
The aqueous polymer solution from which unreacted monomers and excess polymerization aid were removed was dehydrated using a centrifugal dehydrator to obtain a wet polymer containing about 50% water by weight. The obtained wet polymer was molded into pellets using a screw extruder and then dried using an aerated dryer to obtain the polymers shown in Table 1.

微細な重合体の確認は重合体懸濁液を採集しNctSF
紙を使用し濾過後型合体懸濁液に対して約10倍量の洗
浄水で洗浄した。得られた炉液は白濁しており、これを
ポリエチレン中空糸で捕集乾燥し、微細な重合体を得た
。また得られた重合体の組成を分析すると、塩化ビニリ
デン20重量%、重合体中のスルフォン酸基が5.8X
 10  mol/pであり、2−アクリルアミド−2
メチルプロパンスルフオン酸の含有量’) 多イ重合体
であった。
To confirm the presence of fine polymers, collect the polymer suspension and use NctSF.
After filtration, paper was used and washed with about 10 times the amount of washing water as compared to the combined suspension. The obtained furnace liquid was cloudy, and was collected and dried with a polyethylene hollow fiber to obtain a fine polymer. Furthermore, analysis of the composition of the obtained polymer revealed that vinylidene chloride was 20% by weight, and the sulfonic acid group in the polymer was 5.8X.
10 mol/p, 2-acrylamide-2
Methylpropanesulfonic acid content') It was a multi-polymer.

得られた重合体25部をジメチルアセトアミド75部に
溶解し、これを100ホール0.13龍φの口金を通し
55%のジメチルアセトアミド水溶液(30℃)に紡糸
し5倍延伸後115℃で蒸熱セットを行ない14.8デ
ニール、強度2、81/d、伸度37.0%の失透の全
くみられない繊維を得た。また得られた繊維の難燃性は
、LOI(限界酸素指数)28.5と非常に優れた難燃
性能が得られた。
25 parts of the obtained polymer was dissolved in 75 parts of dimethylacetamide, spun into a 55% dimethylacetamide aqueous solution (30°C) through a 100-hole 0.13mm diameter spinneret, stretched 5 times, and then steamed at 115°C. Setting was performed to obtain a fiber having a denier of 14.8, a strength of 2.81/d, an elongation of 37.0%, and no devitrification. Moreover, the flame retardancy of the obtained fiber was LOI (limiting oxygen index) of 28.5, which was an extremely excellent flame retardant performance.

実施例2 実施例1と同様な設備を用いアクリロニトリル52.3
部、塩化ビニリデン45.0部の単量体混合液を供給し
、過硫酸アンモニウム0.45部、酸性亜硫酸ナトリウ
ム0.90部をそれぞれイオン交換水に溶解したほかは
実施例1と同様な条件により重合体水溶液を得た。反応
器溢流口より取り出した重合体水溶液に実施例1と同様
な反応停止剤を添加し、遠心脱水機で脱水洗浄後重量分
率で約60%の水分を含んだ湿潤重合体を得た。この湿
潤重合体を70℃で乾燥した。
Example 2 Using the same equipment as in Example 1, acrylonitrile 52.3
The same conditions as in Example 1 were carried out, except that a monomer mixture of 45.0 parts of vinylidene chloride was supplied, and 0.45 parts of ammonium persulfate and 0.90 parts of sodium acid sulfite were each dissolved in ion-exchanged water. An aqueous polymer solution was obtained. The same reaction terminator as in Example 1 was added to the polymer aqueous solution taken out from the reactor overflow port, and after dehydration and washing with a centrifugal dehydrator, a wet polymer containing approximately 60% water by weight was obtained. . This wet polymer was dried at 70°C.

得られた重合体を実施例1と同様な方法で紡糸し15.
0デニール、強度2.5 P/d、伸度36.0%の失
透の全くない繊維を得た。また得られた繊維の難燃性は
LOI31.5と非常に優れた難燃性能を示した。
The obtained polymer was spun in the same manner as in Example 1.15.
A fiber with no devitrification was obtained, having a denier of 0 denier, a strength of 2.5 P/d, and an elongation of 36.0%. Furthermore, the flame retardancy of the obtained fiber was LOI 31.5, which showed very excellent flame retardancy.

実施例3 アクリロニトリル56.8部、2−アクリルアミド−2
メチルプロパンスルフォン酸4.0部を供給する以外、
実施例1と同様な方法で重合体を得た。
Example 3 56.8 parts of acrylonitrile, 2-acrylamide-2
Other than supplying 4.0 parts of methylpropanesulfonic acid,
A polymer was obtained in the same manner as in Example 1.

得られた重合体を実施例1と同様な方法で紡糸し、15
.0デニール、強度2.9 P/d、伸度36.0%の
全く失透のない繊維を得た。この繊維の難燃性能はLO
I29,0と優れた性能を示した。
The obtained polymer was spun in the same manner as in Example 1, and 15
.. A fiber with no devitrification was obtained, having a denier of 0 denier, a strength of 2.9 P/d, and an elongation of 36.0%. The flame retardant performance of this fiber is LO
It showed excellent performance with I29.0.

実施例4 アクリロニトリル56.3部、塩化ビニリデン40部、
rnnヒビニル20部、2−アクリルアミ)’−2,)
’チ#プロパンスルフォン酸3.5部な供給する以外は
実施例1と同様な方法で重合を実施し重合体を得た。
Example 4 56.3 parts of acrylonitrile, 40 parts of vinylidene chloride,
rnnhibinyl 20 parts, 2-acrylamide)'-2,)
Polymerization was carried out in the same manner as in Example 1, except that 3.5 parts of propane sulfonic acid was supplied to obtain a polymer.

得られた重合体を実施例1と同様な方法で紡糸し、14
.8デニール、強度2.9 p/a 、伸度36%のま
りたく失透のない繊維を得た。
The obtained polymer was spun in the same manner as in Example 1, and 14
.. A fiber with a denier of 8 denier, a strength of 2.9 p/a, and an elongation of 36% was obtained which was free from devitrification.

実施例5 酸化剤として塩素酸ナトリウムを0.45部、硫酸を反
応系のpHを2.5に保つように供給する以外、実施例
1と同様な方法で重合体を製造し、同様な方法で紡糸し
繊維を得た。得られた繊維は15.0デニール、強度2
.8 P/d 、伸度36%の透明な繊維が得られた。
Example 5 A polymer was produced in the same manner as in Example 1, except that 0.45 parts of sodium chlorate and sulfuric acid were supplied as oxidizing agents to maintain the pH of the reaction system at 2.5. The fibers were obtained by spinning. The obtained fiber has a denier of 15.0 and a strength of 2
.. A transparent fiber with 8 P/d and an elongation of 36% was obtained.

この繊維のLOIを測定したところ28.5とすぐれた
難燃性能を示した。
When the LOI of this fiber was measured, it was 28.5, showing excellent flame retardant performance.

比較例1 2−アクリルアミド−2メチルプロパンスルフォン酸3
.1部を供給するかわりに、スチレンスルフオン酸ナト
リウム3.1部を供給し、そのほかは実施例1と同様な
方法で重合を実施した。
Comparative example 1 2-acrylamide-2methylpropanesulfonic acid 3
.. Polymerization was carried out in the same manner as in Example 1 except that 3.1 parts of sodium styrene sulfonate was supplied instead of 1 part of sodium styrene sulfonate.

重合を開始し、定常後の重合体懸濁液は粘性を増し1合
転化率も67%と低かった。また実施例1と同様な方法
で微細な重合体の生成を確認したが、ろ液は白濁せず生
成が確認されなかった。
After the polymerization started and reached a steady state, the polymer suspension became viscous and the 1-polymer conversion rate was as low as 67%. In addition, the formation of fine polymers was confirmed in the same manner as in Example 1, but the filtrate did not become cloudy and no formation was confirmed.

得られた重合体23部をジメチルアセトアミド77部に
溶解し、これを100ホール0.013nφの口金を通
し55%ジメチルアセトアミド水溶液(30℃)中に紡
糸し、5倍延伸後115℃の蒸熱セットを行ない、15
.0デニール、強度3.1 p/d、伸度34%の繊維
を得た。得られた繊維は失透のない繊維であったが、難
燃性はLOI24.5と不十分でありた。
23 parts of the obtained polymer was dissolved in 77 parts of dimethylacetamide, spun into a 55% dimethylacetamide aqueous solution (30°C) through a 100-hole 0.013nφ spinneret, and after stretching 5 times, it was steam-set at 115°C. 15
.. A fiber with a denier of 0, a strength of 3.1 p/d, and an elongation of 34% was obtained. Although the obtained fiber was a fiber without devitrification, its flame retardancy was insufficient at LOI of 24.5.

比較例2 アクリロニトリル57.0部、塩化ビニリデン40.0
部、アリルスルフォン酸ナトリウム3.0部を供給する
以外、実施例1と同様な方法で重合を実施した。比較例
1と同様に重合体懸濁液は粘度が高く、重合転化率も6
0%と低レベルであった。実施例1と同様な手法で微細
な重合体が存在するかどうかを確認したが、生成はみら
れなかった。
Comparative Example 2 Acrylonitrile 57.0 parts, vinylidene chloride 40.0 parts
Polymerization was carried out in the same manner as in Example 1, except that 3.0 parts and 3.0 parts of sodium allylsulfonate were supplied. Similar to Comparative Example 1, the polymer suspension had a high viscosity and a polymerization conversion rate of 6.
It was at a low level of 0%. The presence or absence of fine polymers was confirmed using the same method as in Example 1, but no formation was observed.

得られた共重合体を比較例1と同様な方法で峻維に賦型
した結果、繊維は十分な透明性を有せず蛯燃性能もLO
I24.0と不十分であった。
As a result of shaping the obtained copolymer into a dense fiber in the same manner as in Comparative Example 1, the fiber did not have sufficient transparency and its flammability was LO.
The I24.0 was insufficient.

比較例3 アクリロニトリル58.0部、塩化ビニリデン40.0
部、2−アクリルアミド−2メチルプロパンスルフォン
酸2.0部を供給する以外、実施例1と同様な方法で重
合を行なった。比較例1と同様に重合体懸濁液は粘稠と
なり、重合転化率も58%と低レベルであった。実施例
1と同様な方法で微細な重合体の生成を確認したが、ν
液は透明で生成は確認されなかった。
Comparative Example 3 Acrylonitrile 58.0 parts, vinylidene chloride 40.0 parts
Polymerization was carried out in the same manner as in Example 1, except that 2.0 parts of 2-acrylamido-2-methylpropanesulfonic acid were supplied. As in Comparative Example 1, the polymer suspension became viscous, and the polymerization conversion rate was at a low level of 58%. The formation of fine polymers was confirmed in the same manner as in Example 1, but ν
The liquid was clear and no formation was observed.

得られた重合体を比較例1と同様な方式で紡糸したが、
得られた繊維は透明性に欠け、難燃性能もLOI23,
5と不十分であった。
The obtained polymer was spun in the same manner as in Comparative Example 1, but
The obtained fiber lacks transparency and flame retardant performance is LOI23,
5, which was insufficient.

比較例4 実施例1と同様な装置を用い、同様な手法でアクリロニ
トリル56.9部、塩化ビニリデン40.0部の単量体
混合液と2−アクリルアミド−2メチルプロパンスルフ
オン酸3.1m、/ニオン系界面活性剤(C+z Ht
s−<L)0(CHz CHtO)nHn x 13 
)を1.2部、アンモニウム0.66部、酸性亜硫酸ナ
トリウム0.79部、硫酸第一鉄(F@S0,7H,O
)  4.4 X 10  部をそれぞれイオン交換水
に溶解し連続的に供給を開始した。
Comparative Example 4 A monomer mixture of 56.9 parts of acrylonitrile and 40.0 parts of vinylidene chloride, 3.1 m of 2-acrylamido-2methylpropanesulfonic acid, /ionic surfactant (C+z Ht
s-<L)0(CHz CHtO)nHn x 13
), 1.2 parts of ammonium, 0.66 parts of ammonium, 0.79 parts of sodium acid sulfite, ferrous sulfate (F@S0,7H,O
) 4.4 x 10 parts of each were dissolved in ion-exchanged water and continuous feeding was started.

さらにイオン交換水の全量が200部になるようにイオ
ン交換水を別途供給した。重合温度を35℃、反応系の
pH3,0に保ち連続的に十分な攪拌を行い、平均12
0分滞在させて反応を行った。連続的に得られた重合体
26部を実施例1と同様な方法で処理を行ない重合体を
得た。
Further, ion-exchanged water was separately supplied so that the total amount of ion-exchanged water was 200 parts. The polymerization temperature was kept at 35°C and the pH of the reaction system was kept at 3.0, and sufficient stirring was carried out continuously.
The reaction was carried out for 0 minutes. 26 parts of the continuously obtained polymer was treated in the same manner as in Example 1 to obtain a polymer.

得られた重合体を実施例1と同様な方法で紡糸し15.
0デニール、強度2.97/d、伸度34%の繊維を得
た。しかし得られた繊維は光沢のない失透した繊維であ
った。
The obtained polymer was spun in the same manner as in Example 1.15.
A fiber with a denier of 0, a strength of 2.97/d, and an elongation of 34% was obtained. However, the obtained fibers were devitrified fibers with no luster.

比較例5 n kql 3 )の代りに、ラウリル硫酸エステルナ
トリウムを0.4部供給し、過硫酸アンモニウム0.5
3部、酸性亜硫酸ナトリウム0.64部を供給する以外
は、比較例4と同様な条件で重合体を得た。
Comparative Example 5 Instead of n kql 3 ), 0.4 parts of sodium lauryl sulfate was supplied, and 0.5 parts of ammonium persulfate was supplied.
A polymer was obtained under the same conditions as in Comparative Example 4, except that 3 parts and 0.64 parts of sodium acid sulfite were supplied.

得られた重合体を実施例1と同様な方法で紡糸し、15
.0デニール、強度3.1 //d、伸度35.0%の
繊維を得た。得られた繊維は光沢を有する繊維であった
が、各実施例での繊維に比較すると透明性に劣っていた
The obtained polymer was spun in the same manner as in Example 1, and 15
.. A fiber with a denier of 0 denier, a strength of 3.1 //d, and an elongation of 35.0% was obtained. Although the obtained fibers were glossy, they were inferior in transparency compared to the fibers in each example.

比較例6 実施例1で得られた重合体を26部、ノニオnk13)
0.05部、ジメチルアセトアミド74.0部に溶解し
、これを100ホール、0.13nφの口金を通し55
%ジメチルアセトアミド水溶液(30℃)に紡糸し、5
倍延伸後115℃で蒸熱セットを行ない15.1デニー
ル、強度2、9 //a、伸度36%の繊維を得たが、
光沢のない繊維となった。
Comparative Example 6 26 parts of the polymer obtained in Example 1, Nonion NK13)
0.05 parts of dimethylacetamide was dissolved in 74.0 parts of dimethylacetamide, and passed through a 100-hole, 0.13-nφ nozzle with a diameter of 55 mm.
% dimethylacetamide aqueous solution (30°C),
After double stretching, steam setting was performed at 115°C to obtain a fiber with a denier of 15.1, a strength of 2.9//a, and an elongation of 36%.
The fibers became dull.

比較例7 比較例6と同様に実施例1で得た重合体26部、ジメチ
ルアセトアミド74.0部に2ウリル硫酸エステルナト
リウム0.01部を加えて溶解し、比較例6と同様な方
法で紡糸し繊維を得た。
Comparative Example 7 In the same manner as in Comparative Example 6, 0.01 part of sodium diuryl sulfate was added to 26 parts of the polymer obtained in Example 1 and 74.0 parts of dimethylacetamide, and dissolved. The fibers were obtained by spinning.

得られた繊維は比較例4と同様に光沢の有する繊維であ
ったが、透明性に劣る結果となりた。
The obtained fibers were glossy fibers similar to Comparative Example 4, but the transparency was poor.

これら実施例及び比較例での結果を表1に示す。Table 1 shows the results of these Examples and Comparative Examples.

※ 比粘度 濃度0.5//100−のジメチルホルムアミド溶液と
し、25℃で測定した。
*Measurements were made at 25°C using a dimethylformamide solution with a specific viscosity concentration of 0.5//100-.

※ 失透状況及び光沢 ◎最も良好、O良好、△少し不良、×不良の4段階評価
した。
* Devitrification status and gloss were evaluated in 4 stages: ◎ most good, O good, △ slightly poor, and × poor.

※ AN アクリロニトリル dC1 塩化ビニリデン V 酢酸ビニル ※ SAG 重合体中の−so、−基(X 10’ mol/P)試
料1/をジメチルホルムアミド59m1に溶解し、イオ
ン交換樹脂に通し遊離酸にした後、0.0IN  水酸
化カリウムメタノール溶液で中和滴定し測定した。
* AN Acrylonitrile dC1 Vinylidene chloride V Vinyl acetate * SAG -so, - group in polymer (X 10' mol/P) Sample 1/ was dissolved in 59 ml of dimethylformamide and passed through an ion exchange resin to form a free acid, Measurement was carried out by neutralization titration with 0.0 IN potassium hydroxide methanol solution.

以上の実施例に示すように本発明により得られた重合体
を紡糸して得られる繊維は透明性に優れ、高度な難燃性
を有するものである。比較例6,7に示すように実施例
1で得られた重合体を紡糸し繊維に賦型する際に、界面
活性剤を添加すると生成した繊維は透明性にかけたもの
となる。比較的影響の少ないアニオン系の界面活性剤に
おいてもその影響が見られる。
As shown in the above examples, the fibers obtained by spinning the polymer obtained according to the present invention have excellent transparency and a high degree of flame retardancy. As shown in Comparative Examples 6 and 7, when a surfactant is added when the polymer obtained in Example 1 is spun and shaped into fibers, the resulting fibers become more transparent. This effect can also be seen in anionic surfactants, which have relatively little effect.

〔発明の効果〕〔Effect of the invention〕

このようにアクリロニトリル、塩化ビニリデン共重合体
にすぐれた透明性を与える上で、界面活性剤を添加しな
いことが有効であり、本発明では、2−アクリルアミド
−2メチルプロパンスルフオン酸またはその塩はアクリ
ロニトリル、塩化ビニIJデンに対して得意な反応性を
有し、反応系に一定量以上供給することによって微細な
重合体を生成しうる。さらにこの微粒化した重合体は非
水溶性の塩化ビニIJデンを分散させる効果を有し、界
面活性剤を使用しなくとも塩化ビニリデンが効率よく共
重合体に取り込まれる。
In this way, not adding a surfactant is effective in imparting excellent transparency to acrylonitrile and vinylidene chloride copolymer, and in the present invention, 2-acrylamido-2methylpropanesulfonic acid or its salt is It has good reactivity with acrylonitrile and vinyl chloride, and can produce fine polymers by supplying a certain amount or more to the reaction system. Furthermore, this finely divided polymer has the effect of dispersing water-insoluble vinylidene chloride, and vinylidene chloride is efficiently incorporated into the copolymer without using a surfactant.

本発明におけるこのような効果は、透明性にすぐれた難
燃性を有するアクリル繊維を製造するのに適したアクリ
ロニ) IJル系重合体を工業的に最も優位とされる水
系%濁連続重合方式で製造することを可能にするもので
あり、本発明が有する工業上の意義は大なるものである
These effects of the present invention are due to the fact that the acrylonitrile-based polymer is suitable for producing acrylic fibers with excellent transparency and flame retardancy. The present invention has great industrial significance.

Claims (1)

【特許請求の範囲】[Claims] (1)アクリロニトリル45.5〜64.5重量%、塩
化ビニリデン33.0〜52.0重量%を含有するアク
リロニトリル系重合体を水を媒体として製造するに当り
、2−アクリルアミド−2メチルプロパンスルフオン酸
またはその塩を反応系に供給される全単量体に対して2
−アクリルアミド−2メチルプロパンスルフオン酸とし
て3.0重量%以上供給し、界面活性剤を添加すること
なく反応せしめることを特徴とするアクリロニトリル系
重合体の製造方法。
(1) When producing an acrylonitrile polymer containing 45.5 to 64.5% by weight of acrylonitrile and 33.0 to 52.0% by weight of vinylidene chloride using water as a medium, 2-acrylamide-2methylpropanesulfur Foonic acid or its salt is added to the total monomers supplied to the reaction system at a rate of 2
A method for producing an acrylonitrile polymer, which comprises supplying 3.0% by weight or more of -acrylamide-2methylpropanesulfonic acid and reacting without adding a surfactant.
JP24935786A 1986-10-20 1986-10-20 Production of acrylonitrile-based polymer Pending JPS63105012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24935786A JPS63105012A (en) 1986-10-20 1986-10-20 Production of acrylonitrile-based polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24935786A JPS63105012A (en) 1986-10-20 1986-10-20 Production of acrylonitrile-based polymer

Publications (1)

Publication Number Publication Date
JPS63105012A true JPS63105012A (en) 1988-05-10

Family

ID=17191822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24935786A Pending JPS63105012A (en) 1986-10-20 1986-10-20 Production of acrylonitrile-based polymer

Country Status (1)

Country Link
JP (1) JPS63105012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208385A (en) * 2008-06-09 2008-09-11 Uni-Chemical Co Ltd Flame retardant composed of acrylamide-based polymer containing sulfonic acid group

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208385A (en) * 2008-06-09 2008-09-11 Uni-Chemical Co Ltd Flame retardant composed of acrylamide-based polymer containing sulfonic acid group

Similar Documents

Publication Publication Date Title
US5356985A (en) Highly-concentrated aqueous polyacrylonitrile emulsions and a method for their preparation
US3104154A (en) Graft copolymer containing spinnable solution and method for preparing and spinning thereof
US4223108A (en) Glossy fibres of the modacrylic type having reduced inflammability, and compositions of matter and process for producing the same
SU1128845A3 (en) Method of obtaining fire-proof fibre
US3234160A (en) Process for making polyvinyl alcohol fibers having improved properties
JPS63105012A (en) Production of acrylonitrile-based polymer
US3681311A (en) Process for shortstopping the polymerization of acrylonitrile polymer compositions
US4513126A (en) Acrylonitrile polymer, process for the preparation thereof and fiber prepared therefrom
US4524193A (en) Modacrylic synthetic fiber having an excellent devitrification preventing property and a process for preparing the same
JPS5833882B2 (en) Acrylonitrile/vinyl chloride copolymer with increased viscosity
US6048955A (en) Modacrylic copolymer composition
JPH06158422A (en) Flame-retardant acrylic fiber having high shrinkage
US4017561A (en) Wet spun modacrylic filaments with improved coloristic properties
JP3172545B2 (en) Method for producing acrylonitrile polymer
US4118556A (en) Process for the production of acrylonitrile-vinyl-chloride copolymers with improved whiteness
JPS6172010A (en) Production of acrylonitrile copolymer
JPS62209115A (en) Production of acrylonitrile polymer
US3984495A (en) Shaped products such as fibers and films composed mainly of polyvinyl chloride and polyvinyl alcohol, and further containing an amido-containing polymer, and methods for production thereof
US3376276A (en) Low shrinkage modacrylic interpolymer
US2847389A (en) Spinning solution comprising ternary polymers of acrylonitrile dissolved in concentrated aqueous salt solutions
US3887676A (en) Polyvinylchloride graft vinyl chloride onto amido backbone and polyvinyl alcohol as film or fiber
US2700034A (en) Dyeable acrylonitrile filamentforming copolymer
US4186156A (en) Crystallizable vinylidene chloride polymer powders and acrylic fibers containing same
US3939120A (en) Acrylonitrile copolymers suitable for making flame-resisting fibers
JPS63303111A (en) Production of flame-retardant acrylic fiber