JPS63103852A - Fiber for reinforcing cement - Google Patents

Fiber for reinforcing cement

Info

Publication number
JPS63103852A
JPS63103852A JP25047386A JP25047386A JPS63103852A JP S63103852 A JPS63103852 A JP S63103852A JP 25047386 A JP25047386 A JP 25047386A JP 25047386 A JP25047386 A JP 25047386A JP S63103852 A JPS63103852 A JP S63103852A
Authority
JP
Japan
Prior art keywords
cement
fiber
weight
resin
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25047386A
Other languages
Japanese (ja)
Inventor
丈夫 澤登
勇二 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP25047386A priority Critical patent/JPS63103852A/en
Publication of JPS63103852A publication Critical patent/JPS63103852A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/36Suction cleaners with hose between nozzle and casing; Suction cleaners for fixing on staircases; Suction cleaners for carrying on the back
    • A47L5/362Suction cleaners with hose between nozzle and casing; Suction cleaners for fixing on staircases; Suction cleaners for carrying on the back of the horizontal type, e.g. canister or sledge type

Landscapes

  • Artificial Filaments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、繊維強化セメント複合材にお−て優れた曲げ
強度を有するセメント補強用繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to fibers for reinforcing cement having excellent bending strength in fiber-reinforced cement composite materials.

〔従来技術〕[Prior art]

連続縁雄でセメントを補強する場合、従来よシ、連続a
m束を一方向に配設させて補強するλ 方法、また、網状、木繊布状あるいは織物に加工し、積
層させて補強する方法等が知られている。該繊維束には
、いずれも、エポキシ樹脂等の合成樹脂が含浸されてお
シ、繊維の引張強度を有効に利用しようとするものであ
る。
When reinforcing cement with continuous edge a, conventional
The λ method in which m bundles are arranged in one direction for reinforcement, and the method in which the materials are processed into a net, wood fiber, or woven fabric and laminated for reinforcement are known. All of the fiber bundles are impregnated with synthetic resin such as epoxy resin to effectively utilize the tensile strength of the fibers.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしたがら、繊維束を被覆している合成樹脂は、セメ
ントとの付着が悪く、界面で0すべ)”が発生するため
、セメント複合材として。
However, the synthetic resin that coats the fiber bundles has poor adhesion to cement, and 0-slips occur at the interface, so it cannot be used as a cement composite material.

kfl維の補強効果を十分に得ることができなかった。It was not possible to sufficiently obtain the reinforcing effect of kfl fibers.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、従来の問題点を解決すべく鋭意検討を行った結
果、補強繊維束に特定の組成の被覆層を設けることによ
りSセメントと補強繊維束との付着性が改善され、且つ
、外側の被積層が特定の引張物性を有することによp、
補強効果が改善されることを見す出し1本発明に到達し
たO すなわち1本発明の目的は、セメントと補強繊維との付
着を改良し、優れた曲げ強度を有するセメント補強用繊
維を提供するものである。
Therefore, as a result of intensive studies to solve the conventional problems, we found that by providing a coating layer with a specific composition on the reinforcing fiber bundle, the adhesion between S cement and the reinforcing fiber bundle was improved, and the outer coating was improved. p due to the laminate having specific tensile properties,
The present invention was achieved based on the finding that the reinforcing effect is improved.That is, the object of the present invention is to improve the adhesion between cement and reinforcing fibers and to provide cement reinforcing fibers having excellent bending strength. It is something.

そしてその目的は、有機、または無機の連続長繊維を合
成樹脂で含浸処理した後、硬化状態で引張強度2ook
g/cI以上、ヤング* / 00〜700 kg /
 (7/lを有するエラストマーで被包し硬化させて得
られるセメント補強用繊維によって容易に達成される。
The purpose is to impregnate organic or inorganic continuous fibers with synthetic resin, and then achieve a tensile strength of 2 ook in the cured state.
g/cI or more, Young* / 00-700 kg /
(This is easily achieved by cement reinforcing fibers obtained by encapsulating and curing an elastomer having a ratio of 7/l.

以下1本発明を説明するに1本発明に用いられる有機ま
六は無機の連続長繊維は、特に限定されるものではない
が1例えば、有機繊維ではナイロン、ポリエステル、レ
ーヨン、 更には。
The present invention will be explained below. The organic or inorganic continuous fibers used in the present invention are not particularly limited, but examples include organic fibers such as nylon, polyester, and rayon.

アラミド等の芳香族系繊維が用いられ、無機繊維ではガ
ラス繊ri、炭素繊維および黒鉛繊維等が用いられる。
Aromatic fibers such as aramid are used, and inorganic fibers such as glass fibers, carbon fibers, and graphite fibers are used.

この内、引張強度/jOkg/sJ以上、ヤング率10
℃on/−以上有するものが好ましい。繊維には表面処
理および仕上剤等によシ前処理してもよい。
Among these, tensile strength/jOkg/sJ or more, Young's modulus 10
It is preferable to have a temperature of ℃on/- or more. The fibers may be pretreated with surface treatments, finishing agents, and the like.

次に、本発明の北−処理の含浸処理に用いる合成樹脂は
、水溶性、非水溶性にかかわらず。
Next, the synthetic resin used for the impregnation treatment of the present invention may be water-soluble or non-water-soluble.

公知のものが用いられる。例えば、エポキシ化合物、不
飽和ポリエステル、ポリイミド類、ジアリルフタレート
等があ)、熱硬化性であるこ遁 とが好ましいが、パ硬北側を使用する常温硬化型の樹脂
を用いても良い。かかる合成樹脂は。
A known one is used. For example, epoxy compounds, unsaturated polyesters, polyimides, diallyl phthalates, etc. are preferable, but thermosetting resins are preferable, but room temperature curing resins that use a hard surface may also be used. Such synthetic resin.

水に溶解、もしくは乳化分散させたエマルジョン、ある
いは有機溶媒を用いた溶液として用する。
It is used as an emulsion by dissolving or emulsifying it in water, or as a solution using an organic solvent.

次に1本発明の第二処理の被覆処理で用いるエラストマ
ーは、天然ゴム、合成ゴム、ウレタン、及び熱可塑性樹
脂等が用いられるが、この内、硬化状態で引張強度20
0kQ/Cr11以上、ヤング’FIX/ 00− j
 00kq/cdの範囲にあるものが好ましい。引張強
度が低すぎると、まな、ヤング率が低すぎるとエラスト
マーの層が大きく変形する光め、繊維束強度をセメント
構造物に伝達しにくくなる。一方、ヤング率が高すぎる
と。
Next, as the elastomer used in the coating treatment of the second treatment of the present invention, natural rubber, synthetic rubber, urethane, thermoplastic resin, etc. are used, and among these, tensile strength of 20
0kQ/Cr11 or more, Young'FIX/00-j
Preferably, it is in the range of 00 kq/cd. If the tensile strength is too low, the elastomer layer will deform significantly if the Young's modulus is too low, and it will be difficult to transfer the fiber bundle strength to the cement structure. On the other hand, if Young's modulus is too high.

繊維束が堅くなシ、応力集中が起こシ易く、靭性が低下
する。
If the fiber bundle is not stiff, stress concentration tends to occur and the toughness decreases.

かかるエラストマーは、第一処理で用いる合成樹脂と同
様、乳化分散液、あるいは有機溶媒を用いた溶液にして
用いることができる。
Such an elastomer, like the synthetic resin used in the first treatment, can be used in the form of an emulsified dispersion or a solution using an organic solvent.

尚、必要によっては、該エラストマーに加硫剤(架橋剤
)等の配合剤を添加しても良い。
Note that, if necessary, a compounding agent such as a vulcanizing agent (crosslinking agent) may be added to the elastomer.

長繊維に前記第一処理および第二処理を施す方法として
1合成樹脂による第一処理では樹脂液槽にfl!維を浸
し虎後、絞ρローラー等を介して、熱処理槽を通し硬化
させるが、その熱処理温度は1通常、70℃以上、12
0℃以下で30分程度行う。繊維束強度を更に得よりと
する場合には、/!θ℃以上、200℃以下で1時間程
度行っても良い。常温硬化型の樹脂を用いた場合には、
含浸した後、一定時間室温に放置し硬化させる。いずれ
の樹脂を用いた場合にも、好ましくは、樹脂が半硬化状
態であるうちに引き続き第二処理を施すことが取扱い等
の点から都合がよい。
As a method of subjecting the long fibers to the first treatment and second treatment, 1. In the first treatment with a synthetic resin, fl! After soaking the fiber, it is hardened by passing it through a heat treatment tank using a squeezing roller etc., and the heat treatment temperature is usually 70℃ or higher, 12℃.
Do this for about 30 minutes at 0°C or below. If you want to further improve the fiber bundle strength, /! The heating may be carried out at a temperature of θ°C or higher and 200°C or lower for about 1 hour. When using room temperature curing resin,
After impregnating, leave it at room temperature for a certain period of time to harden. No matter which resin is used, it is preferable to perform the second treatment while the resin is still in a semi-cured state, which is convenient from the point of view of handling and the like.

次に、第二処理では、fa維をエラストマーの乳化液又
は溶液槽に浸し、第一処理と同様、絞りローラー等を介
して、熱処理槽を通し、硬化させる。その熱処理温度は
、700℃以上200℃以下で7−y40公租度行うの
が好ましい。
Next, in the second treatment, the FA fibers are immersed in an elastomer emulsion or solution bath, and similarly to the first treatment, they are passed through a heat treatment bath through a squeezing roller or the like and hardened. The heat treatment temperature is preferably 700° C. or higher and 200° C. or lower with a 7-y40 tolerance.

第−処理及び第二処理のいずれにおいても熱処理温度が
低すぎた)、硬化時間が少なすぎると、繊維束強度が不
足し、セメント後合材の曲げ強度が低下する。
If the heat treatment temperature was too low in both the first treatment and the second treatment, and the curing time was too short, the fiber bundle strength would be insufficient and the bending strength of the cemented composite material would decrease.

一方、熱処理温度が高すぎると、樹脂及びエラストマー
の変質、劣化が起こり、セメントとの付着が低下する。
On the other hand, if the heat treatment temperature is too high, the resin and elastomer will change in quality and deteriorate, resulting in decreased adhesion with cement.

繊維に対する樹脂の付N量は!0〜J、00重量Sが好
ましい。樹脂付N量が多すぎると付着ムラによる凝集破
壊が起こシ易く、−力付着量が少なすぎると繊維束強埋
が不足し、セメント複合材の曲げ強度が低下する。また
、繊維に対するエラストマー硬化物の付着式は、70〜
200重1に%好ましくは、JO〜ioo重量Sで用い
るのがよい。エラストマーの付着量が多スキると、エラ
ストマ一層のM?集破壊が起とシ易く、一方、付M量が
少なすぎるとセメントとの付着が低下する。
What is the amount of N applied to the fibers? 0 to J, 00 weight S is preferred. If the amount of resin-attached N is too large, cohesive failure is likely to occur due to uneven adhesion, and if the amount of -force adhesion is too small, the fiber bundles will not be strongly embedded, resulting in a decrease in the bending strength of the cement composite material. In addition, the adhesion formula of the cured elastomer to the fiber is 70~
200% by weight 1% Preferably, JO to ioo weight S is preferably used. If the amount of elastomer attached is too large, the M of the elastomer is one layer? Collision and fracture are likely to occur, and on the other hand, if the amount of M is too small, adhesion with cement will be reduced.

樹脂及びエラストマーの硬化物は1通常、繊維全体を被
覆しているが1本発明の効果を損々わない程度の部分被
覆であってもよい。
The cured product of resin and elastomer usually covers the entire fiber, but it may cover only a portion of the fiber as long as it does not impair the effects of the present invention.

以上の処理を施し九繊維は、セメント補強用に用いるに
際し、長繊維(ストランド)状、シート状、不織布状、
織物状等の形態で使用でき。
The above-treated nine fibers can be used in the form of long fibers (strands), sheets, non-woven fabrics,
Can be used in the form of textiles, etc.

含浸法(またはハンドレイアップ法)、抄造法等の施工
法が用いられる。
Construction methods such as impregnation method (or hand lay-up method) and paper making method are used.

また、ポルトランドセメント、高炉セメント。Also, Portland cement, blast furnace cement.

アルミナセメント、ケイ酸カルシウム等の各徨水硬性セ
メントに配合し、板状、管状、柱状等各種形状の繊維強
化セメント材が製造できる。
It can be mixed with various hydraulic cements such as alumina cement and calcium silicate to produce fiber-reinforced cement materials in various shapes such as plates, tubes, and columns.

使用すべき繊維の量は、所望の強度特性を得るように定
める。通常、セメントの乾燥型xio。
The amount of fiber to be used is determined to obtain the desired strength properties. Usually a dry form of cement xio.

重量部に対し、O−5〜夕重i部が望ましい。Based on parts by weight, O-5 to i parts by weight are desirable.

に必要な水は1通常セメントの乾燥重量/ 00゜重量
部に対し、20〜70重量部、セメント構造体の強度を
できるだけ上げるためには、30〜+1j重量部の水を
混合するが好ましい。さらに、骨材として、砂、ケイ砂
等をセメント700重量部に対し、jO−λ00重量部
配合する「モルタル」を用いても良い。
The amount of water required for this is usually 20 to 70 parts by weight per dry weight of cement/00 parts by weight.In order to increase the strength of the cement structure as much as possible, it is preferable to mix 30 to +1 parts by weight of water. Furthermore, a "mortar" containing 700 parts by weight of cement and jO-λ00 parts by weight of sand, silica sand, etc. may be used as an aggregate.

〔実施例〕〔Example〕

以下1本発明を冥す例によシ、具体的に説明するが本発
明はその要旨をこえない限シ下記の実施例に限定される
ものではない。
The present invention will be specifically described below by way of an example, but the present invention is not limited to the following example as long as it does not go beyond the gist of the invention.

実施例1 引張強度−00kg / xi 、ヤング”X 4’ 
Or、on /−のピッチ系炭素繊維束(コ000フィ
ラメント:長さJ Ocm )を用い、これをjON濃
度のエポキシ樹脂(熱硬化型)を含む、メチルエチルケ
トン溶液に含浸し1次いで、to℃て20分さらに、/
jO℃で20分間乾燥、熱処理?施し樹脂を硬化させた
。続いて、自己架橋型のスチレンブタジェンゴムラテッ
クス(t、to5b固形分二日本ゼオン夷)で、被偵処
居した後。
Example 1 Tensile strength -00kg/xi, Young "X 4'
Using a pitch-based carbon fiber bundle (co000 filament: length JOcm) of or, on /-, it was impregnated in a methyl ethyl ketone solution containing an epoxy resin (thermosetting type) with a concentration of jON, and then heated to 20 minutes more /
Dry at 0°C for 20 minutes and heat treat? The applied resin was cured. Subsequently, it was treated with self-crosslinking styrene-butadiene rubber latex (T, to 5b solid content, manufactured by Nippon Zeon).

710℃で70分間熱処理し、ゴムを硬化させた。該ラ
テックスを熱処理して得られる硬化皮膜の引張物性を第
1表にパす。
The rubber was cured by heat treatment at 710° C. for 70 minutes. Table 1 shows the tensile properties of the cured film obtained by heat-treating the latex.

炭素繊維に対する樹脂、及びゴムの付N量は。What is the amount of N attached to resin and rubber to carbon fiber?

各々、/3j重量九、7!重量%であった。得られた炭
素繊維束を繊維強化セメント材の製造法であるハンドレ
イアップ法の常法に従い、セメント1oo11量部に対
し、水rz%砂it。
Each /3j weight 9, 7! % by weight. The obtained carbon fiber bundles were mixed with 11 parts of cement and 11 parts of water rz% sand according to the conventional method of hand lay-up, which is a method for manufacturing fiber-reinforced cement materials.

の各重量部からなるセメントマトリックス中に。in a cement matrix consisting of each part by weight of

一定間隔をもって張設し、io本の炭素繊維束を配列さ
せた。続いて気中養生(温度20″c1相対湿度2よX
)し、材令7日で炭素繊維強化セメント材を得た。
The carbon fiber bundles were stretched at regular intervals to arrange io carbon fiber bundles. Next, air curing (temperature 20"c1 relative humidity 2x
), and a carbon fiber reinforced cement material was obtained after 7 days of age.

得られた炭素ui維強化セメント材を下記の条件で曲げ
試験を行つ念。
The obtained carbon ui fiber reinforced cement material was subjected to a bending test under the following conditions.

試験体寸法:縦3バー横μ国、厚さ2個スパン間:  
2ttx かぶ夛厚;  0−Jctx 3点曲げ試験法:試験体3枚の平均値 その曲げ物性を第2表に示す。
Specimen dimensions: Vertical 3 bars Width μ country, Thickness 2 pieces Between spans:
2ttx Cover thickness; 0-Jctx Three-point bending test method: Average value of three test specimens The bending properties are shown in Table 2.

実施例コ 実施例7と同一の炭素繊維束を用い、JOX濃度の常温
硬化エポキシ樹脂を含むメチルエチルケトン溶液に含浸
した後、−昼夜室温で放置し、硬化させた。
Example 7 Using the same carbon fiber bundle as in Example 7, it was impregnated with a methyl ethyl ketone solution containing a room temperature curing epoxy resin with a JOX concentration, and then allowed to stand at room temperature day and night to be cured.

以下、実施例/と同様にして、得られた炭素繊維強化セ
メント材の物性を第2表に示します。
Table 2 below shows the physical properties of the carbon fiber reinforced cement material obtained in the same manner as in Example.

尚、常温硬化エポキシ樹脂及びゴムの付着量は、炭素繊
維に対し、各々ii、o重iX、A4重iXであった。
Note that the adhesion amounts of the room temperature curing epoxy resin and rubber were ii, o, iX, and A4 iX, respectively, relative to the carbon fiber.

実施例3 実施例/と同一の炭素繊維束を用い、jO几濃度の熱硬
化型エポキシ樹脂を含むメチルエチルケトン溶液に含浸
し、次いで、10℃で20分、さらに130℃で30分
間乾燥、熱処理を施し、樹脂を硬化させた。続いて、ゴ
ム固形分100重量部に対し、コロイド硫黄3.亜鉛華
!、レジチオカルバメート加硫促進剤λの各重量部を混
合、分散させたアクリロニトリルブタジェンゴムラテッ
クス(固形分μj X )で被覆処理し1次いで、iz
o℃で3日分間熱処理して、ゴムを硬化(加泥)させた
、該ラテックスを熱処理して得られる硬化(加硫)皮膜
の引張物性を第1表に示す。
Example 3 Using the same carbon fiber bundle as in Example 3, it was impregnated with a methyl ethyl ketone solution containing a thermosetting epoxy resin with a concentration of 100 °C, and then dried and heat-treated at 10 °C for 20 minutes and further at 130 °C for 30 minutes. The resin was cured. Subsequently, 3.0 parts of colloidal sulfur was added to 100 parts by weight of the rubber solid content. Zinc flower! , acrylonitrile butadiene rubber latex (solid content μj
Table 1 shows the tensile physical properties of a cured (vulcanized) film obtained by heat treating the latex, which was heat treated at 0°C for 3 days to cure (add) the rubber.

以下、実施例/と同様にして得られ大炭素繊維強化セメ
ント材の物性を第2表に示した。
Table 2 below shows the physical properties of the large carbon fiber reinforced cement material obtained in the same manner as in Example.

尚、炭素繊維に対する樹脂及びゴムの付着量は、各々、
/2F重量3.11重量%であった。
In addition, the amount of resin and rubber adhered to carbon fiber is as follows:
/2F weight was 3.11% by weight.

実施例グ 実施例/と同一の炭素繊維束を用い11 k’r二処理
で、メチロール化メラミン樹脂を、ゴム固形分10θi
t部に対し!M計部配合し九カルボキシル変性アクリレ
ートラテックス(固形分μ/几)で被覆処理した以外は
、実施例/と同様にして得られた炭素繊維強化セメント
材の物性を第2表に示した。
Example 4 Using the same carbon fiber bundle as in Example 2, methylolated melamine resin was treated with 11 k'r to a rubber solid content of 10θi.
Against the t section! Table 2 shows the physical properties of the carbon fiber-reinforced cement material obtained in the same manner as in Example 1, except that it was coated with a nine-carboxyl modified acrylate latex (solid content μ/liter).

該ラテックスの硬化皮膜の引張物性は第1表に示す通シ
、尚、炭素繊維に対する樹脂及びゴムの付着量は、各々
、/&弘京量%、乙り重量Sであった。
The tensile properties of the cured latex film were as shown in Table 1, and the amounts of resin and rubber adhered to the carbon fibers were /&Kokyo weight % and weight S, respectively.

比較例/ 実施例1と同一の炭素繊維束を用い、zoyy濃度の熱
硬化型エポキシ樹脂を含むメチルエチルクトン溶液に含
浸し1次込でto℃で20分。
Comparative Example/ Using the same carbon fiber bundle as in Example 1, it was impregnated with a methyl ethyl lactone solution containing a thermosetting epoxy resin at a zoyy concentration and heated to ℃ for 20 minutes including the first step.

サラに、/−0℃で一時間、−00℃でrio分間乾燥
、熱飽理して、樹脂を硬化させた。以下。
The resin was cured by drying and heat saturation at -0°C for 1 hour and at -00°C for 1 hour. below.

実施例/と同様にセメントに打設、養生硬化して得られ
た炭素繊維強化セメント材の物性’に第2表に示した。
Table 2 shows the physical properties of the carbon fiber-reinforced cement material obtained by pouring it into cement and curing it in the same manner as in Example.

尚、炭素繊維に対する樹脂の付Mikは、/10重iX
であった。
In addition, the attachment Mik of the resin to the carbon fiber is /10 weight iX
Met.

比較側御 実施例1と同一の炭素繊維束を用い、第二処理で、ゴム
固形分1ooH量部に対し、コロイド硫黄3.亜鉛華!
、スルフェンアミド系加硫促進剤/の各重量部を混合1
分散させた。スチレンブタジェンゴムラテックス(固形
分弘θ%)で被覆処理した以外は実施例3と同様にして
得られた炭素繊維強化セメント材の物性を第−表に示し
た。
Comparative side Using the same carbon fiber bundle as in Example 1, in the second treatment, 3.0 parts of colloidal sulfur was added per 100 parts of rubber solid content. Zinc flower!
, sulfenamide vulcanization accelerator/
Dispersed. Table 1 shows the physical properties of a carbon fiber-reinforced cement material obtained in the same manner as in Example 3 except that it was coated with styrene-butadiene rubber latex (solid content θ%).

脂及びゴムの付着量は、各々l≠O重is。The amount of fat and rubber deposited is l≠O weight, respectively.

7z重JIXであった。It was a 7z heavy JIX.

比較例3 実施例/と同一の炭素繊維束を用い、第二処理で、ゴム
固形分ioo重量部に対し、コロイド硫黄λ、亜鉛華、
2.ジチオカルノくメート系加硫促進剤O6!の各重量
部を混合1分散させな。
Comparative Example 3 Using the same carbon fiber bundle as in Example, in the second treatment, colloidal sulfur λ, zinc white,
2. Dithiocarnocoumate vulcanization accelerator O6! Mix and disperse each part by weight.

アクリロニトリルブタジェンゴムラテックス(固形分a
jN)で被覆処理した以外は、実施例3と同様にして得
られた炭素繊維強化セメント材の物性を第2表に示した
Acrylonitrile butadiene rubber latex (solid content a
Table 2 shows the physical properties of the carbon fiber reinforced cement material obtained in the same manner as in Example 3, except that it was coated with JN).

脂及びゴムの付着量は、各々、/!μ重xi%。The amount of fat and rubber deposited is /! μ weight xi%.

r7重重量であった。The weight was r7.

〔ラテックス硬化皮膜の作朶並びに測定方法〕ラテック
スを原液のまま、もしくは、加硫剤等の配合剤が必要な
ラテックスには、配合剤を混合1分散させ、ガラス板上
に流し込み、室温して、硬化(加硫)させたものをJよ
り 1.JO/で規定する測定方法に従い、引張試験に
供した。
[Preparation and measurement method of latex cured film] Use the latex as a undiluted solution, or for latex that requires compounding agents such as a vulcanizing agent, mix and disperse the compounding agents, pour it onto a glass plate, and leave it at room temperature. , cured (vulcanized) from J 1. A tensile test was performed according to the measurement method specified by JO/.

第2表 〔発明の効果〕 −本発明の七メント補強用繊維を用いた繊維強化セメン
ト材は、従来の強化セメント材にない優れた曲げ強度を
有することが認められた。また1本発明の処庁を施すこ
とにより、セメントの水及びアルカリ性に対して、防蝕
効果があるため、ストル、ガラス繊維が使用できる利点
を持つ。
Table 2 [Effects of the Invention] - It was found that the fiber-reinforced cement material using the 7-ment reinforcing fiber of the present invention has excellent bending strength not found in conventional reinforced cement materials. Further, by applying the treatment of the present invention, it has a corrosion-proofing effect against the water and alkalinity of cement, so it has the advantage of being able to use steel and glass fiber.

本発明によシ、侵れた曲げ強度が発現する理由を推察す
ると1合成樹脂を含浸した繊維束の外側に、ゴム層を被
覆することで、セメントとの付M性が増し、且つゴム層
が特定の引張物性を有することで、凝集破壊に至らず、
従って。
According to the present invention, the reasons why the eroded bending strength appears are as follows: 1. By coating the outside of the fiber bundle impregnated with synthetic resin with a rubber layer, the adhesion to cement increases, and the rubber layer has specific tensile properties, so it does not lead to cohesive failure,
Therefore.

樹脂層に応力集中が起こシにくくなる。その結果、繊維
束強度が有効に働き1曲げ強度を高めるものと考えられ
る。
Stress concentration is less likely to occur in the resin layer. As a result, it is thought that the fiber bundle strength works effectively to increase the 1-bending strength.

Claims (1)

【特許請求の範囲】[Claims] (1)有機または無機の連続長繊維を合成樹脂で含浸処
理した後、硬化状態で引張強度200kg/cm^2以
上かつヤング率100〜500kg/cm^2を有する
エラストマーで被覆し、硬化させて得られるセメント補
強用繊維。
(1) Organic or inorganic continuous fibers are impregnated with a synthetic resin, then coated with an elastomer having a tensile strength of 200 kg/cm^2 or more and a Young's modulus of 100 to 500 kg/cm^2 in the cured state, and cured. The resulting fiber for reinforcing cement.
JP25047386A 1986-10-21 1986-10-21 Fiber for reinforcing cement Pending JPS63103852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25047386A JPS63103852A (en) 1986-10-21 1986-10-21 Fiber for reinforcing cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25047386A JPS63103852A (en) 1986-10-21 1986-10-21 Fiber for reinforcing cement

Publications (1)

Publication Number Publication Date
JPS63103852A true JPS63103852A (en) 1988-05-09

Family

ID=17208381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25047386A Pending JPS63103852A (en) 1986-10-21 1986-10-21 Fiber for reinforcing cement

Country Status (1)

Country Link
JP (1) JPS63103852A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0420265A1 (en) * 1989-09-29 1991-04-03 Hitachi, Ltd. Vacuum cleaner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0420265A1 (en) * 1989-09-29 1991-04-03 Hitachi, Ltd. Vacuum cleaner
EP0558101A2 (en) * 1989-09-29 1993-09-01 Hitachi, Ltd. Vacuum cleaner
EP0558101A3 (en) * 1989-09-29 1994-01-12 Hitachi Ltd

Similar Documents

Publication Publication Date Title
EP0242793B1 (en) Cement reinforcing fiber
EP1652879B1 (en) Compositions for use in concrete
Singh et al. Mechanical behaviour of particulate hybrid composite laminates as potential building materials
JPH0450267B2 (en)
JPS62297265A (en) Carbon fiber composite high strength refractories
CN110643150B (en) High-strength heat-resistant resin matrix and method for efficiently preparing high-performance composite material by using same
KR970001082B1 (en) Inorganic fiber having modifying surface and its use for reinforcement of resins
JPS63103852A (en) Fiber for reinforcing cement
DE69924244T2 (en) Reaction resin sheet materials
JP4065668B2 (en) Insulating material and manufacturing method thereof
EP2004712B1 (en) Preparations for use in concrete
JPS6039475A (en) Aromatic amide fiber coated with sulfonylazide
JPS62252355A (en) Fiber for reinforcing cement
JPS62252356A (en) Fiber for reinforcing cement
JPS62260743A (en) Fiber for reinforcing cement
JP2757108B2 (en) Fiber reinforced concrete
JPH08151280A (en) Inorganic board and production
JP2826941B2 (en) Method for producing fiber reinforced concrete
JPH04112032A (en) Manufacture of high-strength high-elasticity hybrid type frp
JPS62108755A (en) Fiber material for cement reinforcement
DE3706024C2 (en)
DE1469977C (en) Heat from plastics reinforced with mineral substances
JPH0248445A (en) Carbon fiber for reinforcing cement
JP2016056265A (en) Thermosetting furan resin composition and furan resin laminate using the same
JPS62207643A (en) Glass/unsaturated polyester laminated board and manufacture thereof