JPS63103303A - Feedback controller - Google Patents

Feedback controller

Info

Publication number
JPS63103303A
JPS63103303A JP24933386A JP24933386A JPS63103303A JP S63103303 A JPS63103303 A JP S63103303A JP 24933386 A JP24933386 A JP 24933386A JP 24933386 A JP24933386 A JP 24933386A JP S63103303 A JPS63103303 A JP S63103303A
Authority
JP
Japan
Prior art keywords
circuit
diode
flow rate
control signal
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24933386A
Other languages
Japanese (ja)
Inventor
Masaaki Suhara
正明 須原
Junichi Miyagi
淳一 宮城
Youjirou Yamazaki
山崎 容次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP24933386A priority Critical patent/JPS63103303A/en
Publication of JPS63103303A publication Critical patent/JPS63103303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To improve the stability of a feedback controller by reducing the gradient of the diode rectifying characteristics immediately before the end of the rise and fall of a deviation control signal. CONSTITUTION:A feedback controller for flow rate and pressure of a variable capacity type hydraulic pump contains the feedback control systems for both flow rate and pressure, the changeover switches for both feedback control systems, and the compensating circuits 10 and 11 including a phase advance compensating circuit 12 and a phase delay compensating circuit 13. A 1st diode D1 and a 2nd diode D2 are provided to the circuit 12. The phase of the deviation control signal supplied from a control element is controlled by both circuits 12 and 13. Then the deviation control signal gives the feedback control to a controlled system. In this phase control process, the diode D1 is turned off by a large potential difference at the rise of the deviation control signal. Thus the diode D1 has a quick rise and is turned off immediately before the end of its rise to reduce the overshoot.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は可変容量型油圧ポンプ等のフィードバック制御
装置に関し、特にフィードバック制御系にその系の特性
改善用の補償回路を備えたものの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a feedback control device for a variable displacement hydraulic pump or the like, and particularly to an improvement in a feedback control system equipped with a compensation circuit for improving the characteristics of the system.

(従来の技術) 従来、例えば可変容量型油圧ポンプのフィードバック制
御系においては、夕I御対衆としてのポンプ斜板と、該
ポンプ斜板を操作する電気回路や油圧アクチユエータ等
の操作手段と、この操作手段にフィードバック的と目標
値との偏差に等しい伯の偏差制御信号を出力する制御回
路等の制御要素とを備えて、この偏差制御信号に暴いて
ポンプ斜板の傾斜角度を#I御吏ることにより、該油圧
ポンプに接続されるアクチュエータへの油の流量や作用
圧力等の制!iluを目標値にフィードバックυ]仰す
るようになされでいろ。
(Prior Art) Conventionally, for example, in a feedback control system of a variable displacement hydraulic pump, a pump swash plate as a controller, operating means such as an electric circuit or a hydraulic actuator for operating the pump swash plate, and This operating means is equipped with a feedback control element such as a control circuit that outputs a deviation control signal equal to the deviation from the target value, and the inclination angle of the pump swash plate is controlled by #I in response to this deviation control signal. By squeezing, you can control the oil flow rate and working pressure to the actuator connected to the hydraulic pump! Feedback ilu to target value υ] Do as I say.

ところで、上記のL!]きフィードバラフシ制御系では
、一般に、モの舅の系の特外(過渡応答)を改善するた
めの位相進み補償回路及び位相遅れ補償回路が設けられ
、これら補償回路を、制御要素から操作要素への偏差制
御信号の出力経路に介設して、偏差制御信号の・立川を
適宜変化させることにより、イのフィードバックル制御
系の特性をほぼ所期通りに実;i!するようにしている
By the way, the above L! ] In a feed-balance control system, a phase lead compensation circuit and a phase lag compensation circuit are generally provided to improve the abnormality (transient response) of the main system, and these compensation circuits can be operated from the control element. By intervening in the output path of the deviation control signal to the element and changing the deviation control signal Tachikawa appropriately, the characteristics of the feedback control system in A can be realized almost as expected; i! I try to do that.

(発明が解決しようどする問題点) しかるに、上記の如く補償回路を備えた場合、位相進み
補償回路では、コンデンサと抵抗との並列回路が)M1
蚊さ札ていて、この抵抗の値を低く設定することにより
、偏差制御信号の立上り及び立下りを応答性良く行うこ
とが望まれるが、この場合には、この良好な応答性に起
因して、偏差制御信号の立上り及び立下り後にオーバシ
ュートやアンダシュートが生じ易くなり、安定性が低下
する欠点が生じる。
(Problem to be solved by the invention) However, when the compensation circuit is provided as described above, in the phase lead compensation circuit, the parallel circuit of the capacitor and the resistor is
By setting the value of this resistor low, it is desirable to perform the rise and fall of the deviation control signal with good responsiveness, but in this case, due to this good responsiveness, , overshoots and undershoots tend to occur after the rise and fall of the deviation control signal, resulting in a disadvantage of reduced stability.

本発明は斯かる魚に潴みてなされたものであって、特に
ダイオードの整流特性に看目し、その両端の電位差がそ
の順方向電圧降下値以下になると、ターン4フして電流
の流通を阻止することを利用し、その目的は、偏差制御
信号の立上り及び立下りの終了直面では、ぞの傾きを低
減するようにリーることにより、この立上り及び立下り
の応答性を良好に確保しつつ、その後のオーバシュート
やアンダシュートの発生を防止しで、安定性の向上を図
ることにある。
The present invention was developed based on this idea, and takes into consideration the rectifying characteristics of diodes, and when the potential difference between the two ends becomes less than the forward voltage drop value, the current flow is stopped by turning 4. The purpose of this is to reduce the slope of the rising edge and falling edge of the deviation control signal, thereby ensuring good response to the rising edge and falling edge. At the same time, the objective is to improve stability by preventing subsequent overshoots and undershoots.

く問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段は、上記
の如く、制御対象(1)と、該シj御対象く1)を操作
する操作要素(2)と、該操作要素(2)に偏差制卸信
号を出力する制御要素(5)とを備えて、上記制御対象
(1)のフィードバック制御系<8.9>を構成したフ
ィードバックル]御に@を前提とする。そして、上記制
御要素(5)から操作要素(2)への偏差制御信号の出
力経路に、上記フィードバック制御系(8,9>の特性
を改善する位相進み補償回路(12)及び位相遅れ補償
回路(13)を設けるとともに、この位相進み補償回路
(12)を、コンデンサ(C1)と、上記操作要素く2
)側への電流の流通を許容する第1ダイオード(Dl)
に直列に接続された低抵抗値の第1抵抗(R1)と、上
記制御要素(5)側への電流の流通を許容する第2ダイ
オード〈Dl)に直列に接続された低抵抗値の第2抵抗
(R2)と、高抵抗値の第3抵抗(R1)とを並列に接
続した並列回路(19)で橋1成したものである。
In order to achieve the above object, the solution means of the present invention, as described above, includes a control object (1) and an operating element (1) for operating the control object (1). 2) and a control element (5) that outputs a deviation control signal to the operating element (2), and constitutes a feedback control system <8.9> for the control object (1). Assumes @. A phase lead compensation circuit (12) and a phase lag compensation circuit for improving the characteristics of the feedback control system (8, 9>) are provided in the output path of the deviation control signal from the control element (5) to the operation element (2). (13), and this phase lead compensation circuit (12) is connected to the capacitor (C1) and the above-mentioned operating element.
) side, the first diode (Dl) allows current to flow to the
A first resistor (R1) with a low resistance value connected in series with the second diode (Dl) that allows current to flow to the control element (5) side. One bridge is formed by a parallel circuit (19) in which two resistors (R2) and a third resistor (R1) having a high resistance value are connected in parallel.

(作用) 以この構成により、本発明では、シj′m要素(5)か
らの偏差制御信号は、位相進み補償回路(12)及び位
相遅れ補償回路(13)でその位相を適宜調整されたの
も操作要素に入力されて、該操作要素(2)によりI!
lll6i1対象(1)がフィードバック制御されるの
が繰返されることにより、油のIllや圧力等のflI
IIII Iが目標値に収束することになる。
(Function) With this configuration, in the present invention, the phase of the deviation control signal from the shij'm element (5) is appropriately adjusted by the phase lead compensation circuit (12) and the phase lag compensation circuit (13). I! is input to the operating element, and the operating element (2) causes I!
By repeating feedback control of Ill6i1 object (1), Ill of oil and flI of pressure etc.
III I will converge to the target value.

その際、偏差!IHa信号の位相進み補償回路(12)
での文相調整過程において、偏差〜j御信号は、その立
上り部分では、その大きな電位差により第1ダイオード
(Dl)がターンオフして低抵抗値の笥1抵抗〈R1)
を介して流通するので、位相遅れ補償回路(13)を流
通後の偏差制御信号は、その電流値変化が大きくなって
立上りが素早くなり、良好な応答性が得られるとともに
、この立上りの終了直前では、その電位差が上記第1ダ
イオード(Dl)の1頃方向電圧降下値以下になって、
該第1ダイオード(Dl)がターンオフし、今度は高抵
抗値の第3抵抗(R3)を介して流れるので、その1l
iFIt変化が坂やかになって、オーバシュートを生じ
ることなく、その立上りが安定性良く終了することにな
る。
At that time, deviation! IHa signal phase lead compensation circuit (12)
In the syntax adjustment process, the deviation ~j control signal turns off the first diode (Dl) due to the large potential difference at its rising edge, and the first resistor (R1) with a low resistance value is turned off.
Therefore, the deviation control signal after passing through the phase lag compensation circuit (13) has a large change in current value and rises quickly, and good response is obtained, and the deviation control signal passes through the phase lag compensation circuit (13) immediately before the end of this rise. Then, the potential difference becomes less than the voltage drop value in the direction around 1 of the first diode (Dl),
The first diode (Dl) is turned off, and the current flows through the third resistor (R3), which has a high resistance value, so that the 1l
The iFIt change becomes steep, and the rise ends with good stability without overshooting.

同様に、偏差制御信号の立下り部分では、大きな電位差
に伴う第2ダイオード<02 )のターンオンにより低
抵抗値の第2抵抗(R2)を介して流通するので、立下
りが素早くなって良好な応答性が得られるとともに、こ
の立下りの終了直前ぐは、電位差が小さくなるのに伴な
い上記第2ダイオード(Dl)がターンオフして、高抵
抗値の第3抵抗(R3)を介して流通するので、その電
流変イヒが5やかになって、アンダシュートを生じずに
ぞの立下りが安定性良く終了する。
Similarly, in the falling part of the deviation control signal, the second diode (<02) is turned on due to a large potential difference, and the signal flows through the second resistor (R2) with a low resistance value, so the falling part becomes quick and good. Responsiveness is obtained, and just before the end of this fall, the second diode (Dl) turns off as the potential difference decreases, and the current flows through the third resistor (R3) with a high resistance value. As a result, the current changes rapidly and the trailing edge ends with good stability without undershooting.

(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明を可変容量型油圧ポンプの流Φ及び圧力
のフィードバック制御装置に通用した実施例を示す。同
図において、〈1)は流量及び圧力の双方のフィードバ
ック制御で単一の制御対象となる油圧ポンプのポンプ斜
板、(2)は該ポンプ斜板(1)の傾斜角度を調整操作
する操作手段としての増幅回路であって、該11@回路
(2)内には、流量及び圧力の各偏差制御信号(後述)
を増幅して上記ポンプ斜板(1)に出力する主増幅器<
2a)が備えられている。
FIG. 1 shows an embodiment in which the present invention is applied to a flow Φ and pressure feedback control device of a variable displacement hydraulic pump. In the figure, <1) is a pump swash plate of a hydraulic pump that is a single control target in feedback control of both flow rate and pressure, and (2) is an operation for adjusting the inclination angle of the pump swash plate (1). It is an amplifier circuit as a means, and in the circuit (2), each deviation control signal of flow rate and pressure (described later) is provided.
The main amplifier <
2a) is provided.

また、(3)は上記ポンプ斜板(1)の傾斜角度、つま
り油の吐出流量を検出する斜板角センサ、(4)はポン
プ斜板(1)から油供給を受けるアクチュエータ(図示
せず)での油の作用圧力を検出する圧力センサ、(5)
は1記斜板角センサく3)の出力信号を受け、ポンプ斜
板く1)の実際の傾斜角度値と目標流量に相当する目標
傾斜角度との角度@差、つまり流示侃羞を演算づる第1
減算回路(5a)と、上記圧力センサ(4)の出力を受
け、油の実際の作用圧力値とその目標値との圧力偏差を
漬粋する第2泳忰回′f1<5t))と力翫らなる制4
要素としての減埠回路であって、該減算回詫(5)の第
1減譚回路(5a)からの流量偏差制御信号(電圧信号
)及び第2減粋回路く5b)からの圧力偏差制御信号く
電圧信号)は各々反転増幅回路<6)、<7)を介して
上記増幅回路(2)に出力可能になっていて、増幅回路
(2)が流量偏差1!jiJ御信号を受けたときには、
該流量偏差制御信号値に応じてポンプ斜板(1)の傾斜
角度を増減調整して、吐出流量をその目標値に増減調整
するようにした流量フィードバック制御系(8)を構成
しているととうに、増幅回路(2)が減時回路(5)か
ら圧力僅差に制御信号を受けたときには、該圧力僅差制
御信号値に応じてポンプ斜板く1)の傾斜角度を理法調
整して、吐出流量の調整により油の作用圧力を高低調整
するようにした圧力フィードバック制御系く9)を構成
している。
Further, (3) is a swash plate angle sensor that detects the inclination angle of the pump swash plate (1), that is, the discharge flow rate of oil, and (4) is an actuator (not shown) that receives oil supply from the pump swash plate (1). ), a pressure sensor detecting the working pressure of the oil at (5)
receives the output signal of the swash plate angle sensor 1) and calculates the angle difference between the actual tilt angle value of the pump swash plate 1) and the target tilt angle corresponding to the target flow rate, that is, the flow rate. Zuru 1st
A subtraction circuit (5a) receives the output of the pressure sensor (4) and calculates the pressure deviation between the actual working pressure value of the oil and its target value. Kanara system 4
A reduction circuit as an element, comprising a flow deviation control signal (voltage signal) from the first reduction circuit (5a) of the subtraction circuit (5) and pressure deviation control from the second reduction circuit (5b). The signals (voltage signals and voltage signals) can be output to the amplifier circuit (2) through the inverting amplifier circuits <6) and <7), respectively, and the amplifier circuit (2) has a flow rate deviation of 1! When you receive the jiJ signal,
A flow rate feedback control system (8) is configured to increase or decrease the inclination angle of the pump swash plate (1) in accordance with the flow rate deviation control signal value to increase or decrease the discharge flow rate to its target value. When the amplifier circuit (2) receives a pressure difference control signal from the time reduction circuit (5), it adjusts the inclination angle of the pump swash plate 1) according to the pressure difference control signal value to control the discharge. A pressure feedback control system (9) is configured to adjust the working pressure of oil by adjusting the flow rate.

さらに、(10)は上記流量フィードバック制御系(8
)の特性(周波数応答)を改善するために補償定数が適
切に調整された流@制御用の補償回路、(11)は同様
に圧力フィードバック制御系(9)の特性を改善するた
めに補償定数が適切にFl整された圧力制御用の補償回
路であって、その各補償定数は、流量制御用と圧力制御
用とで1llilj御ループの広さの相違に伴い互いに
異なる値に選定されている。
Furthermore, (10) is the flow rate feedback control system (8).
) is a compensation circuit for flow @ control in which the compensation constant is appropriately adjusted to improve the characteristics (frequency response), (11) is a compensation constant to similarly improve the characteristics of the pressure feedback control system (9). is a compensation circuit for pressure control in which Fl is appropriately adjusted, and each compensation constant is selected to be a different value depending on the difference in the width of the control loop for flow rate control and pressure control. .

そして、al及び圧力の各フィードバック!ff1IW
時には、各々対応する補償回路(10)又は(11)を
ポンプ斜板(1)の制御ループに接続すべく、各補償回
路(10)、 (11)は、上記減譚回路(5)側に各
々反転WI幅回路(15)、 (16)を直列に接続ぜ
しめたのら、互いに並列に接続され、この両名の並列回
路の両端には各々第1及び第2の切換スイッチ(17)
、 (1g)が接続されていて、減樟回路(5)11!
llの第1切換スイツチ(17)は、両′4債回路(1
0)、 (11)を上記減郷回路(5)の第1減輝回路
(5a)側と第2減算回路<5b)fflllとに選択
的に切換ろものであり、第2の切換スイッチ(18)は
、流1制御用の補償回路(10)と圧力制御用の補償回
路(11)とを上記増幅回路(2)に選択的に接続する
ものである。
And each feedback of al and pressure! ff1IW
Sometimes each compensation circuit (10), (11) is connected to said attenuation circuit (5) in order to connect the respective compensation circuit (10) or (11) to the control loop of the pump swash plate (1). The inverting WI width circuits (15) and (16) are connected in series, and then connected in parallel with each other, with first and second changeover switches (17) at both ends of the parallel circuits.
, (1g) is connected, and the camphor reduction circuit (5) 11!
The first changeover switch (17) of
0), (11) are selectively switched between the first dimming circuit (5a) side and the second subtracting circuit (<5b)ffllll of the dimming circuit (5), and the second changeover switch ( 18) is for selectively connecting a compensation circuit (10) for flow 1 control and a compensation circuit (11) for pressure control to the amplifier circuit (2).

加えて、(20)は上記2個の切換スイッチ(17)。In addition, (20) is the aforementioned two changeover switches (17).

(18)を17J換〜]御Tる偏差か判定回路であって
、該偏差量判定回路(20)は、上記減帥回路(5)の
第−減算回路(5a)からの流量偏差制卸信号と、第2
減件回路(5b)からの圧力僅差制御信号とを受け、こ
の両者の@差値から、目標値に対しでフィードバック量
(センサ出力)が大きい制御系を判定して、流量又は圧
力のフィードバックlli!制御の必要時を検出する薇
能を有し、流量制御の必要時には、上記第1及び第2の
切換スイッチ(17)、 (18)を流量側に切換るよ
う両切換スイッチ(17)、(18)に切換@号を出力
して、減碑回路5からの流量偏差制御信号を流量フィー
ドバック制御系に対応する汎竜ヤ制御用の補償回路(1
0)を経て増幅回路2に出力させろ一方、圧力副面の必
要時には切換スイッチ(17L (181を圧力側に切
換るよう切換信号を圧力し【、減挿回路5からの圧力偏
差制卸信号を圧力フィードバック制御系に対応する圧力
制御用の補償回路(11)を経て増′喘回路2に出力さ
せるようにしている。
(18) is controlled by 17J ~], the deviation amount determining circuit (20) is a flow rate deviation control circuit that controls the flow rate deviation from the -th subtraction circuit (5a) of the above-mentioned flow rate reduction circuit (5). signal and second
Receives the pressure slight difference control signal from the reduction circuit (5b), determines the control system that has a larger feedback amount (sensor output) with respect to the target value from the difference value between the two, and performs flow rate or pressure feedback. ! It has the ability to detect when control is required, and when flow control is required, both changeover switches (17), (18) are configured to switch the first and second changeover switches (17), (18) to the flow rate side. 18), the flow rate deviation control signal from the reduction circuit 5 is output to the compensation circuit (1) for general dragon control corresponding to the flow rate feedback control system.
0) to the amplifier circuit 2. On the other hand, when the pressure secondary side is required, a switching signal is applied to switch the changeover switch (17L (181) to the pressure side), and a pressure deviation control signal from the subtraction circuit 5 is output. The output is made to the inflator circuit 2 via a pressure control compensation circuit (11) corresponding to the pressure feedback control system.

そして、上記流量シjtI17T]及び圧力制御用の各
補償回路(101,(11)は、各々@2図に計量する
ように、応答性改善用の位相進み補償回路(12)と、
該位相進み哨償回路(12)の後段で・過渡応答に大き
な影響を与えることなくループゲインをj台大させる位
相遅れ補償回路(13)と、該位相遅れ補償回路(13
)の後段で信号を#1幅する増幅器(14)とを備え、
上記位相進み補償回路(12)は、コンデンサ(01)
と、抵抗値が低く調整された第1の可変抵抗(R1)と
、同様に抵抗値が低く調整された第2の可変抵抗(R2
)と、抵抗値の高い第3抵抗(R3)と、上記減簿回路
(5)から増幅器(2)への電流の流通を許容する第1
ダイオード(Dl)と、逆に増幅器(2)から減算回路
(5)への電流の流通を許容する第2ダイで一ド(D2
)とを備えていて、第1抵抗<R+ )には上記第1ダ
イオード〈Dl)が直列に接続されていると共に、第2
抵抗(R2)には上記第2ダイオード(つ2)が直列に
接続され、この2個の抵抗(R+ )、  <R2)は
、各々上記ダイオード(D+ )、(02)を直列に接
続した状態で上記第3抵ゲ(:(R3)とコンデンサ(
C1)とに並列に接続されて並列回M(19>が形1成
されている。そして、上記第1及び第2のダイオード(
D+ )、(02)の整流特性は、各々、頭方向電圧の
印加時に、このj項方向セ圧値が順方向電圧降下値、つ
まり順方向電流が流れ始める電圧値(例えば0.6V)
以下の場合にはターンオフし、:頃方向電圧雀下値を越
えろ場合にはターンオンするとともに、逆方向電1咥の
印tIf:!時には、常にターンオフする′#性となっ
ている。
Each of the compensation circuits (101, (11) for the above-mentioned flow rate shift [JtI17T] and pressure control) is a phase lead compensation circuit (12) for improving responsiveness, as shown in Fig. @2, respectively.
At the subsequent stage of the phase lead compensation circuit (12), a phase lag compensation circuit (13) that increases the loop gain by J times without significantly affecting the transient response;
) and an amplifier (14) that increases the signal width by #1 at the subsequent stage
The phase lead compensation circuit (12) includes a capacitor (01)
, a first variable resistor (R1) whose resistance value is adjusted low, and a second variable resistor (R2) whose resistance value is similarly adjusted low.
), a third resistor (R3) with a high resistance value, and a first resistor (R3) that allows current to flow from the book reduction circuit (5) to the amplifier (2).
A diode (Dl) and a second die (D2) that allows current to flow from the amplifier (2) to the subtraction circuit (5) conversely.
), the first diode (Dl) is connected in series to the first resistor (<R+), and the second
The second diode (2) is connected in series to the resistor (R2), and these two resistors (R+), <R2) each have the diodes (D+) and (02) connected in series. Then, connect the third resistor (: (R3)) and the capacitor (
A parallel circuit M(19> is formed by connecting the first and second diodes (C1) in parallel with
The rectification characteristics of D+ ) and (02) are such that when a head voltage is applied, the j-term direction pressure value is the forward voltage drop value, that is, the voltage value at which the forward current begins to flow (for example, 0.6 V).
It turns off in the following cases, and turns on when the voltage exceeds the voltage drop in the direction below, and also turns on when the reverse voltage is detected tIf:! Sometimes it becomes a constant turn-off.

また、上記位相遅れ補償回路(13)は、他のコンデン
サ(C2)と、抵抗(R4)との直列回路からなる。
Further, the phase lag compensation circuit (13) is composed of a series circuit of another capacitor (C2) and a resistor (R4).

したがって、上記実施例においては、斜板角センサ(3
)で検出されたポンプ斜板(1)の傾斜角度く流量)信
号と、圧力センサ(4)で検出された油圧ポンプからの
油の作用圧力信号とが各々減−回路く5)に常時入力さ
れ、この誠痺回路(5)でこの流量及び圧力の各検出値
とその各目標値との偏差が各々常時演舞されていて、こ
の各憤芹制卯信号に暴いて偏差i判定回路(20)で例
えば流量!9JSの必要時が判定されて場合には、第1
及び第2の切換スイッチ(17)、 (1B)が各々流
量側に切換って、流量制御用の補償回路(10)がポン
プ斜板(1)の制御ループに接続されると共に、減p回
路(5)の第1減譚回路<58 )の流量偏差シ]1信
号がこの流量制御用の補償回路(10)を経て増幅回路
(2)に入力されて、この増幅回路(2)により上記4
ζンプ斜板(1)の傾斜角度がフィードバック制御され
るので、上記流量制御用の補償回路(10)でもって流
量フィードバック師I′a系の特性がほぼ所期値に実現
されつつ、油圧ポンプからの油の吐出流量が目標値に調
整きれる。
Therefore, in the above embodiment, the swash plate angle sensor (3
) and the working pressure signal of the oil from the hydraulic pump detected by the pressure sensor (4) are constantly input to the reduction circuit (5). The deviations between the detected values of flow rate and pressure and their respective target values are constantly displayed in this true control circuit (5), and the deviation i judgment circuit (20 ) for example the flow rate! 9. If it is determined that JS is necessary, the first
and the second changeover switches (17) and (1B) are respectively switched to the flow rate side, and the compensation circuit (10) for flow rate control is connected to the control loop of the pump swash plate (1), and the p reduction circuit is connected to the control loop of the pump swash plate (1). (5) The flow rate deviation signal of the first reduction circuit <58) is inputted to the amplifier circuit (2) via this flow rate control compensation circuit (10), 4
Since the inclination angle of the ζ pump swash plate (1) is feedback-controlled, the characteristics of the flow rate feedback system I'a system are realized to almost the desired values by the compensation circuit (10) for flow rate control, and the hydraulic pump The oil discharge flow rate can be adjusted to the target value.

その際、減算回路5からの流量偏差制御信号が、例えば
第3図(イ)に示す如く、所定期間のあいだ電圧値が所
定値Voに上稈するパルス波形の場合、その立上り部で
は、位相進み補償回路(12)の前後で電位差が大きく
て第1ダイオード(Dl)がターンオンするのぐ、この
僅差夕j仰信号は低抵抗値の第1瓶抗(R1)を流れ、
その後、補償回1(12)の1!″I後での電位乎が小
さくなり、第1ダイオード〈Dl)の11j方向電圧降
下値(例えば0゜6V)以下になると、この第1ダイオ
ード(D+ )がターンオフするので、?、量40I御
信号は高抵抗値の第3抵抗(R3)を経て流れることに
なる。
At this time, if the flow rate deviation control signal from the subtraction circuit 5 has a pulse waveform in which the voltage value exceeds the predetermined value Vo for a predetermined period of time as shown in FIG. As soon as the first diode (Dl) is turned on due to the large potential difference before and after the lead compensation circuit (12), this small difference signal flows through the first resistor (R1) with a low resistance value.
After that, compensation episode 1 (12) 1! When the potential after ``I'' becomes smaller and becomes less than the 11j direction voltage drop value (for example, 0°6V) of the first diode (Dl), this first diode (D+) turns off. The signal will flow through the third resistor (R3) with a high resistance value.

このように、立上り部初期、中期では低抵抗値の経路を
経て流れ、立上り部終期では高抵抗値の経路を経て流れ
るので、位相遅れ補償回路((13)を通過後の偏差!
!IIJ御信号は、同図(ロ)に示す如く、立上り部初
期、中期で素早く立上って、良好な応答性が得られると
ともに、その立上り部終期では、その傾きが、襟やかに
なって、図中一点偵線で示す如くオーバシュートを生じ
ることなく、安定性良く所定値Voに達することになる
In this way, in the early and middle stages of the rise, the flow passes through a path with low resistance, and at the end of the rise, it flows through a path with high resistance, so the deviation after passing through the phase lag compensation circuit ((13)!
! As shown in the same figure (b), the IIJ control signal rises quickly in the early and middle stages of the rising part, providing good response, and its slope becomes sharp at the end of the rising part. As a result, the predetermined value Vo is reached with good stability without overshooting, as shown by the rectangular line in the figure.

また、流量偏差胴部信号の立下り部での位相進み補償回
路(12)の作用も上記と同j3’C:あり、立下り部
の初期、中期では高電位差により第2ダイオード(Dl
)がターン4ンする一方、立下り部の終期では電位差の
低下に伴い該第2ダイオード(Dl)がターンオフし、
このことにより流MfH差制御信号は、立下り部の初期
、中期では低抵抗値の第2抵1(R2:’を経て流れ、
立下り部の終期では高抵抗値の第3抵抗(R3)を経て
流れるので、応答性良く立5つだのら、恨やかに変化し
て、アンダシュートを生じることなく安定性良く零値に
達することになる。よって、良好な応答性を確保しつつ
、オーバシュートやアンダシュートを防止して安定性の
向上を図ることができる。
In addition, the action of the phase lead compensation circuit (12) at the falling part of the flow rate deviation body signal is the same as above, and at the beginning and middle of the falling part, the second diode (Dl
) turns off, while at the end of the falling part, the second diode (Dl) turns off as the potential difference decreases,
As a result, the flow MfH difference control signal flows through the second resistor 1 (R2:') with a low resistance value in the early and middle stages of the falling part.
At the end of the falling part, the flow passes through the third resistor (R3) with a high resistance value, so if it rises with good response, it changes violently and reaches zero value with good stability without undershooting. will reach. Therefore, it is possible to prevent overshoot and undershoot and improve stability while ensuring good responsiveness.

また、第1及び第2抵抗(R+ )、(R2)は、各々
可変抵抗で構成されているので、立上り部及び立上り部
の初期、中期の応答速度を各々流量及び圧力のフィード
バック制御系に応じて変化させることができる。
In addition, since the first and second resistors (R+) and (R2) are each composed of variable resistors, the response speeds of the rising portion and the initial and middle periods of the rising portion can be adjusted depending on the flow rate and pressure feedback control system, respectively. can be changed.

以上、流量フィードバック制御l1時を例に挙げて説明
したが1.吐カフィードバックffi’制御時には、補
償回路が圧力〜I御用の補償回路< (11)に代わる
のみで、その作用は同様である。
The above explanation took the flow rate feedback control l1 as an example, but 1. At the time of ejection feedback ffi' control, the compensation circuit only replaces the compensation circuit for pressure ˜I (11), and its operation is the same.

尚、上記実施例では、油圧ポンプに接続したアクチュエ
ータへの流量と作用圧力とをフィードバック制御する場
合について説明したが、本発明はこれに限定されず、そ
の他、上記流量や1圧力に対して馬力M御を加えたもの
でも同様に通用し得るのは勿論のこと、油圧ポンプの制
御に限らずモータ等のフィードバラフケj卸にも同様に
適用でさろのは言うまでもない。
In the above embodiment, the case where the flow rate and working pressure to the actuator connected to the hydraulic pump are feedback-controlled was explained, but the present invention is not limited to this, and in addition, the horsepower It goes without saying that a device with M control can be used in the same way, and it can be applied not only to the control of hydraulic pumps but also to the wholesale of feed valves such as motors.

(発明の効果) 以上説明したように、本発明のフィードバック制御装置
によれば、夕]御要素カーら操作要素への偏差制御信号
の出力経路の途中に特性改善用の補償回路を備える場合
、位相進み補償回路に備える抵抗を、低抵抗値のものと
高抵抗値のものとで構成し、立上り部及び立下り部の初
期、中期ではダイオードの整流特性に応じて偏差制御信
号を低抵抗値の抵抗に流通させ、その終期では高抵抗値
の抵抗に流通dぜて、この長期での応答速度のみを低く
し心ので、良好な応答性を確保しつつ、万一バシュート
やアンダシュートの発生を防止して、安定性の向上を図
ることができる。
(Effects of the Invention) As explained above, according to the feedback control device of the present invention, when a compensation circuit for improving characteristics is provided in the output path of the deviation control signal from the control element to the operation element, The resistance for the phase lead compensation circuit is configured with one with a low resistance value and one with a high resistance value, and the deviation control signal is set to a low resistance value according to the rectification characteristics of the diode in the early and middle stages of the rising and falling parts. By passing it through a resistor with a high resistance value at the final stage, we aim to lower the response speed only in this long period, so that we can ensure good response and prevent the occurrence of bassute or undershoot. It is possible to prevent this and improve stability.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は油圧ポンプ、つ
1らの油の流量及び圧力のフィードパックド制御に3用
した場合のブロック図、第2図は補償回路の具体的情成
を示す電気回路図、第3図は作動説明図である。 く1)・・・ポンプ斜板、(2)・・・増・、媚回路、
(3)・・・斜板角でンサ、(4;1・・・圧力センサ
、く5)・・・減稈回路、く8)・・・流量フィードバ
ック制御系、(9)・・・圧力フィードバック制御系、
(10)・・・流量制御用補償回路、(11)・・・圧
力制御用補償回路、(12)・・・位相進み補償回路、
(13)・・・位相遅れ補償回路、(C1)・・・コン
デンサ、<R+ )・・・第1抵抗、(R2)・・・第
2抵抗、(R3)・・・第3抵抗、(Dl)・・・第1
ダイオード、(Dl)・・・第2ダイオード。 第3図 El?Fl’1 第2図
The drawings show an embodiment of the present invention, and Fig. 1 is a block diagram of a hydraulic pump in which the pump is used for feed-packed control of the flow rate and pressure of two oils, and Fig. 2 shows specific information of the compensation circuit. FIG. 3 is an electrical circuit diagram showing the operation. 1)...pump swash plate, (2)...increase, aphrodisiac circuit,
(3)...Swash plate angle sensor, (4;1...pressure sensor, 5)...culm reduction circuit, 8)...flow rate feedback control system, (9)...pressure feedback control system,
(10)...Compensation circuit for flow rate control, (11)...Compensation circuit for pressure control, (12)...Phase lead compensation circuit,
(13)... Phase lag compensation circuit, (C1)... Capacitor, <R+)... First resistor, (R2)... Second resistor, (R3)... Third resistor, ( Dl)...1st
Diode, (Dl)...second diode. Figure 3 El? Fl'1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)制御対象(1)と、該制御対象(1)を操作する
操作要素(2)と、該操作要素(2)に偏差制御信号を
出力する制御要素(5)とを備えて、上記制御対象(1
)のフィードバック制御系(8,9)を構成したフィー
ドバック制御装置において、上記制御要素(5)から操
作要素(2)への偏差制御信号の出力経路には、上記フ
ィードバック制御系(8,9)の特性を改善する位相進
み補償回路(12)及び位相遅れ補償回路(13)が備
えられ、該位相進み補償回路(12)は、コンデンサ(
C_1)と、上記操作要素(2)側への電流の流通を許
容する第1ダイオード(D_1)に直列に接続された低
抵抗値の第1抵抗(R_1)と、上記制御要素(5)側
への電流の流通を許容する第2ダイオード(D_2)に
直列に接続された低抵抗値の第2抵抗(R_2)と、高
抵抗値の第3抵抗(R_3)とが並列に接続された並列
回路(19)からなることを特徴とするフィードバック
制御装置。
(1) comprising a controlled object (1), an operating element (2) for operating the controlled object (1), and a control element (5) for outputting a deviation control signal to the operating element (2); Controlled object (1
), in which the output path of the deviation control signal from the control element (5) to the operating element (2) includes the feedback control system (8, 9). The phase lead compensation circuit (12) is equipped with a phase lead compensation circuit (12) and a phase lag compensation circuit (13) that improve the characteristics of the capacitor (
C_1), a first resistor (R_1) with a low resistance value connected in series with the first diode (D_1) that allows current to flow to the operating element (2) side, and the control element (5) side. A second resistor (R_2) with a low resistance value connected in series to a second diode (D_2) that allows current to flow to the second diode (D_2) and a third resistor (R_3) with a high resistance value are connected in parallel. A feedback control device comprising a circuit (19).
JP24933386A 1986-10-20 1986-10-20 Feedback controller Pending JPS63103303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24933386A JPS63103303A (en) 1986-10-20 1986-10-20 Feedback controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24933386A JPS63103303A (en) 1986-10-20 1986-10-20 Feedback controller

Publications (1)

Publication Number Publication Date
JPS63103303A true JPS63103303A (en) 1988-05-09

Family

ID=17191451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24933386A Pending JPS63103303A (en) 1986-10-20 1986-10-20 Feedback controller

Country Status (1)

Country Link
JP (1) JPS63103303A (en)

Similar Documents

Publication Publication Date Title
US7466112B2 (en) Variable frequency current-mode control for switched step up-step down regulators
US6972546B2 (en) Power system
US20060176038A1 (en) Current-mode control for switched step up-step down regulators
US4708596A (en) Device for regulating pressure and delivery of and adjustable pump
US7812578B2 (en) DC-DC converter
US20050088154A1 (en) Voltage regulator
US9431900B2 (en) Dynamic operating frequency control of a buck power converter having a variable voltage output
JPS63186001A (en) Electro-hydraulic type servo system
JP3863785B2 (en) Pressure / flow rate control method and apparatus for bi-directional variable discharge pump
JPS63103303A (en) Feedback controller
CN109660123A (en) Switching at runtime frequency control in multi-phase voltage regulator
US3119055A (en) Speed responsive control system
US5077487A (en) Driver circuit for a large capacity switching element
DE102004032187B4 (en) The discharge lamp lighting circuit
JPS61293160A (en) Dc voltage conversion circuit
US7777426B2 (en) Circuit arrangement and method for controlling a pulsed power supply
US5801352A (en) Power supply unit for discharge apparatus which prevents excessive electrode wear
US6919649B2 (en) Power supply device
JP2003148402A (en) Hydraulic control system
JP2796828B2 (en) Adjuster for pressure adjustment circuit
JPH0733599Y2 (en) Stepping motor drive
RU2766929C2 (en) Electrically controlled hydraulic system for vehicle transmission and system control method
DK142689B (en) REGULATOR WITH AUTOMATICALLY SET PARAMETERS IN UNITED STATES
KR930008681Y1 (en) Speed control apparatus for diesel engine
JPH0689762B2 (en) Actuator speed controller