JPS63103073A - Aluminum vessel for evacuation - Google Patents

Aluminum vessel for evacuation

Info

Publication number
JPS63103073A
JPS63103073A JP24649886A JP24649886A JPS63103073A JP S63103073 A JPS63103073 A JP S63103073A JP 24649886 A JP24649886 A JP 24649886A JP 24649886 A JP24649886 A JP 24649886A JP S63103073 A JPS63103073 A JP S63103073A
Authority
JP
Japan
Prior art keywords
aluminum
vessel
reactive substance
titanium
reactive substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24649886A
Other languages
Japanese (ja)
Other versions
JPH0313306B2 (en
Inventor
Nobuo Miyamoto
信雄 宮本
Masaki Suemitsu
末光 真希
Toshito Hara
原 敏人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24649886A priority Critical patent/JPS63103073A/en
Publication of JPS63103073A publication Critical patent/JPS63103073A/en
Publication of JPH0313306B2 publication Critical patent/JPH0313306B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To protect Al as the material of a vacuum vessel for treating a reactive substance from the reactive substance by lining the vessel with a thin Ti film. CONSTITUTION:When a vacuum vessel 1 in which a reactive substance is set, e.g., a vessel for a molecular beam epitaxial growth device or a plasma CVD device is produced, the vessel 1 is made of Al or an Al alloy 3 and the linear with a coating layer of metallic Ti 5 by vapor deposition, sputtering, ion plating or other method. The corrosion of the Al vessel by the reactive substance such as Ga can be prevented.

Description

【発明の詳細な説明】 〔概要〕 アルミニウムで形成した真空容器において、アルミニウ
ム表面をチタン被膜で覆うことによりアルミニウム表面
を反応性物質から保護する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] In a vacuum container made of aluminum, the aluminum surface is protected from reactive substances by covering the aluminum surface with a titanium film.

〔産業上の利用分野〕[Industrial application field]

本発明は、たとえば分子線エピタキシー装置、プラズマ
CVD装置などのような反応性物質が存在する真空環境
下でアルミニウムを真空容器として使用する際の、アル
ミニウム表面の保護技術に関する。
The present invention relates to a technique for protecting an aluminum surface when aluminum is used as a vacuum container in a vacuum environment where reactive substances are present, such as in a molecular beam epitaxy device, a plasma CVD device, or the like.

尚、この明細書において、アルミニウムとはアルミニウ
ムおよびその合金を含むものとする。即ち、一般に市販
されているアルミニウム材には通常、銅、シリコン、マ
ンガン、マグネシウム、亜鉛、クロム、等が数%から1
0%位混入されているが本発明はそれらの金属を含むア
ルミニウムにも適用し得る。
Note that in this specification, aluminum includes aluminum and its alloys. In other words, commercially available aluminum materials usually contain copper, silicon, manganese, magnesium, zinc, chromium, etc. from several percent to 1 percent.
Although about 0% of these metals are mixed, the present invention can also be applied to aluminum containing these metals.

〔従来の技術〕[Conventional technology]

アルミニウムはガス放出率がステンレス鋼に比べて一桁
以上低いという真空容器材料としてすぐれた特長を持っ
ているが、一方この材料は非常に活性な金属で、種々の
反応性物質と容易に反応してその表面が侵されるという
欠点を持つ。ことにGaAs系の分子線エピタキシーで
用いられるガリウムとは27″Cという低温で共晶を作
り、その融は込みはアルミニウム材の深さ数mmにまで
およぶことがある。このことからアルミニウム材は上記
の如きすぐれた特性を有するにも拘わらずそのままでは
化合物半導体の分子線エピタキシー装置等の反応性物質
処理用真空容器には用いることができなかった。
Aluminum has an excellent feature as a material for vacuum containers in that its gas release rate is more than an order of magnitude lower than that of stainless steel, but on the other hand, this material is a very active metal and easily reacts with various reactive substances. The disadvantage is that the surface is attacked. In particular, gallium, which is used in GaAs-based molecular beam epitaxy, forms a eutectic at a low temperature of 27"C, and the melting can extend to a depth of several mm into the aluminum material. For this reason, the aluminum material Despite having the above-mentioned excellent properties, it could not be used as is in vacuum vessels for processing reactive substances such as molecular beam epitaxy equipment for compound semiconductors.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決すべき課題はガス放出率が極めて低いとい
うアルミニウムの特性を活かすべくこれを反応性物質処
理用の真空容器に用いた場合に、アルミニウムがその反
応性物質と反応し易いという問題を如何にして克服する
かということにある。
The problem to be solved by the present invention is that when aluminum is used in a vacuum container for processing reactive substances in order to take advantage of aluminum's characteristic of extremely low gas release rate, it solves the problem that aluminum easily reacts with the reactive substances. It's about how to overcome it.

即ち、発明の目的は反応性物質を取り扱う真空容器に適
したアルミニウムの表面保護手段を提供することにある
That is, an object of the invention is to provide a means for protecting the surface of aluminum suitable for vacuum vessels handling reactive substances.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために本発明によれば、アルミニ
ウムの表面を保護すべく、アルミニウム表面を金属チタ
ンの薄膜で覆うことを特徴とする。
In order to achieve the above object, the present invention is characterized in that the aluminum surface is covered with a thin film of metallic titanium in order to protect the aluminum surface.

〔作用〕[Effect]

アルミニウム表面に施された金属チタン被膜が真空容器
内の反応性物質とアルミニウム表面との接触を妨げ反応
性物質がアルミニウム層に溶は込むのを防止する。
The metallic titanium coating applied to the aluminum surface prevents the reactive substances in the vacuum container from coming into contact with the aluminum surface, thereby preventing the reactive substances from melting into the aluminum layer.

〔実施例〕〔Example〕

図面は本発明の一実施例を示すもので、分子線エピタキ
シー装置の真空容器1の一例を示す。容器の形状自体は
球形のものや円筒形のもの等もあり図示のものに何ら限
定されない。容器1はアルミニウム壁3により形成され
る。
The drawing shows an embodiment of the present invention, and shows an example of a vacuum vessel 1 of a molecular beam epitaxy apparatus. The shape of the container itself may be spherical or cylindrical, and is not limited to what is shown in the figures. The container 1 is formed by an aluminum wall 3.

本発明によればアルミニウム壁の内周面は金属チタン薄
膜5が施される。
According to the invention, a metallic titanium thin film 5 is applied to the inner peripheral surface of the aluminum wall.

アルミニウム表面を金属チタン薄膜で覆う具体的方法と
しては蒸着法、スパッタリング法、あるいはイオンブレ
ーティング法、等を用いることができる。このうち第一
の蒸着法では、通常の高真空装置に用いられるチタン・
サブリメーション・ポンプを用いることが可能である。
As a specific method for covering the aluminum surface with a metallic titanium thin film, a vapor deposition method, a sputtering method, an ion blating method, or the like can be used. The first vapor deposition method uses titanium, which is used in ordinary high vacuum equipment.
It is possible to use a sublimation pump.

本発明の具体的実施例を以下に説明する。アルミニウム
合金JIS規格A3003材にチタンを5000A蒸着
した試料と蒸着しない試料について、それぞれの上にガ
リウムを約2μm蒸着した後200°C24時間の熱処
理を行った。熱処理後、各々の試料表面をやわらかい紙
にて拭いたところ、チタン蒸着おこなった試料はガリウ
ムが完全に拭きとれて白色金属光沢が回復したのに対し
、チタン蒸着をおこなわない試料はガリウムが深くアル
ミニウム中に融は込んでおり、黒く鈍い表面のままであ
った。オージェ分光法の深さ方向分析によっても、チタ
ン蒸着を施した試料ではガリウム蒸着膜とアルミニウム
下地の間にチタン層が入りこんで両者の接触を妨げてい
るのに対し、チタン蒸着を施さなかった試料ではアルミ
ニウム下地にガリウムが深く融は込んでいることがわか
った。
Specific embodiments of the present invention will be described below. For a sample in which titanium was deposited at 5000A on an aluminum alloy JIS standard A3003 material and a sample in which titanium was not deposited, about 2 μm of gallium was deposited on each, and then heat treatment was performed at 200° C. for 24 hours. After heat treatment, when the surface of each sample was wiped with soft paper, the gallium was completely wiped off in the sample with titanium vapor deposition and the white metallic luster was restored, whereas in the sample without titanium vapor deposition, the gallium was deep and reflected the aluminum. It had melted inside, leaving a black, dull surface. Depth analysis using Auger spectroscopy also revealed that in the sample with titanium vapor deposition, a titanium layer penetrates between the gallium vapor deposited film and the aluminum base, preventing contact between the two, whereas in the sample without titanium vapor deposition, It was found that gallium was deeply fused into the aluminum base.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明によればアルミニウム表面が反応性物
質から遮断されるので反応性物質と反応することはなく
、反応性物質処理用の真空容器として有効なアルミニウ
ムを用いることができる。
As described above, according to the present invention, the aluminum surface is shielded from reactive substances, so that it does not react with the reactive substances, and aluminum can be used effectively as a vacuum container for treating reactive substances.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はアルミニウム真空容器の一例を示す要部断面図。 1・・・容器、     3・・・アルミニウム壁、5
・・・チタン薄膜。
The drawing is a cross-sectional view of essential parts showing an example of an aluminum vacuum container. 1... Container, 3... Aluminum wall, 5
...Titanium thin film.

Claims (1)

【特許請求の範囲】[Claims] アルミニウム表面をチタン薄膜で被覆したことを特徴と
する反応性物質を処理する真空用アルミニウム容器。
An aluminum container for vacuum use for processing reactive substances, characterized in that the aluminum surface is coated with a titanium thin film.
JP24649886A 1986-10-18 1986-10-18 Aluminum vessel for evacuation Granted JPS63103073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24649886A JPS63103073A (en) 1986-10-18 1986-10-18 Aluminum vessel for evacuation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24649886A JPS63103073A (en) 1986-10-18 1986-10-18 Aluminum vessel for evacuation

Publications (2)

Publication Number Publication Date
JPS63103073A true JPS63103073A (en) 1988-05-07
JPH0313306B2 JPH0313306B2 (en) 1991-02-22

Family

ID=17149289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24649886A Granted JPS63103073A (en) 1986-10-18 1986-10-18 Aluminum vessel for evacuation

Country Status (1)

Country Link
JP (1) JPS63103073A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478524A (en) * 1992-08-24 1995-12-26 Nissan Motor Co., Ltd. Super high vacuum vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478524A (en) * 1992-08-24 1995-12-26 Nissan Motor Co., Ltd. Super high vacuum vessel
US5683523A (en) * 1992-08-24 1997-11-04 Nissan Motor Co., Ltd. Titanium alloy for super high vacuum vessels

Also Published As

Publication number Publication date
JPH0313306B2 (en) 1991-02-22

Similar Documents

Publication Publication Date Title
KR960009051A (en) Corrosion-resistant aluminum products for semiconductor processing equipment
CA1198128A (en) Protective aluminum-silicon coating composition for metal substrates
JP2001164354A (en) Member inside plasma treatment chamber, and manufacturing method therefor
Chen et al. Structures of intermetallic phases formed during immersion of H13 tool steel in an Al–11Si–3Cu die casting alloy melt
JPS63103073A (en) Aluminum vessel for evacuation
US3622374A (en) Diffusion coating of ferrous articles
EP0349044B1 (en) Process for the production of a protective film on a magnesium-based substrate, application to the protection of magnesium alloys, substrates thus obtained
KR930012290A (en) Flame Sprayed Composite Film
US4588449A (en) Oxide whisker growth on contaminated aluminum-containing stainless steel foil
JPS5716161A (en) Preparation of coating tip for cutting
Voisey et al. Inhibition of metal dusting using thermal spray coatings and laser treatment
EP0043742B1 (en) Method of gas-chromizing steels
Zhigalina et al. Structure of diamond-like silicon–carbon films alloyed by vanadium
JPS61113756A (en) Manufacture of seawater-resistant al-coated steel material
JP2002053944A (en) Method for nitriding substrate containing aluminum metal
US3396048A (en) Process for aluminizing metal
Cheong et al. Thermal stablility and oxidation resistance of CrAlSiN nano-structured coatings deposited by lateral rotating cathode arc
US5192409A (en) Method of sputtering a mixture of hexagonal boron nitride and stainless steel onto a steel vessel and heating the film so as to precipitate the boron nitride onto the film surface
RU1786180C (en) Method of chemical-thermal treatment of products made of aluminum and its alloys
Tang et al. Discussion of “Interfacial layer in coatings produced in molten Zn-Al eutectoid alloy containing Si”
US4436768A (en) Refractory structure and process for the preparation thereof
SU852961A1 (en) Composition for complex treatment of metallic articles
EP0039774A1 (en) Refractory structure and process for making it
Chen et al. The effect of silicon in steel on the growth of intermetallic phases during hot dipping in a Zn-5% Al melt
RU2044107C1 (en) Composition for combined thermochemical treatment of hard alloy tools