JPS63103037A - Sliding member - Google Patents

Sliding member

Info

Publication number
JPS63103037A
JPS63103037A JP24679986A JP24679986A JPS63103037A JP S63103037 A JPS63103037 A JP S63103037A JP 24679986 A JP24679986 A JP 24679986A JP 24679986 A JP24679986 A JP 24679986A JP S63103037 A JPS63103037 A JP S63103037A
Authority
JP
Japan
Prior art keywords
particles
wear
solid lubricant
composite material
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24679986A
Other languages
Japanese (ja)
Inventor
Masahiro Kubo
雅洋 久保
Tadashi Donomoto
堂ノ本 忠
Atsuo Tanaka
淳夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP24679986A priority Critical patent/JPS63103037A/en
Publication of JPS63103037A publication Critical patent/JPS63103037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To minimize wear loss by setting up respective Moh's hardnesses, diameters, and volume percentages of a grain reinforcement and a solid lubricant in a composite material in the primary member to suitable ranges and also by constituting the sliding surface, of a secondary member, of a steel having specific hardness so as to provide excellent wear resistance to both of the sliding surfaces. CONSTITUTION:The sliding surface part of a primary member is constituted of a composite material in which a mixture of a grain reinforcement of >=6 Moh's hardness, <=30mum diameter, and 3-40% volume percentage and a solid lubricant of 3-50% volume percentage selected from short fibers, grains, etc., of <=4.5 Moh's hardness and <=100mum diameter is used as reinforcement and an alloy composed principally of Al, Mg, Cu, Zn, Pb and Sn is used as matrix. On the other hand, at least the sliding surface part, of the secondary member, which slides on the above primary member is constituted of a steel of >=180 hardness Hv(10kg). Moreover, it is desirable that any one of oxides, nitrides, and mixtures thereof is used as the solid lubricant.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、互いに当接して相対的に摺動する二つの部材
よりなる摺動用部材に係り、更に詳細には一方の部材が
強化粒子と固体潤滑剤との混合物を強化材とする複合材
料にて構成され他方の部材が鋼にて構成された二つの部
材よりなる摺動用部材に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sliding member consisting of two members that are in contact with each other and slide relative to each other, and more particularly, one member is made of reinforcing particles and a solid lubricant. The present invention relates to a sliding member made of two members, one made of a composite material reinforced with a mixture with a compound and the other made of steel.

従来の技術 金属材料の比強度や耐摩耗性を向上させるべく強化繊維
や分散粒子(強化粒子)の如き強化材にて複合強化され
た繊維強化金属裏金材料及び粒子分散金属複合材料に於
ては、一般に強化材が硬質であるため、強化材にて複合
強化されていないマトリックス金属のみよりなる材料に
比して、それに当接して相対的に摺動する相手材の摩耗
量が大きくなり易いという問題がある。
Conventional technology In order to improve the specific strength and wear resistance of metal materials, fiber-reinforced metal back metal materials and particle-dispersed metal composite materials are reinforced with reinforcing materials such as reinforcing fibers and dispersed particles (reinforced particles). In general, since the reinforcing material is hard, the amount of wear of the mating material that comes into contact with it and slides relative to it is likely to be greater than that of a material made only of matrix metal that is not compositely reinforced with the reinforcing material. There's a problem.

かかる問題を解消すべく、例えば特開昭53−1028
24号、同54−64263号、同58−93844号
、同58−93845号、同58−93847号、同5
8−113335号、同59−59855号、同59−
59856号の各公報に記載されている如く、複合材料
に自己潤滑性に優れた減摩物質を悉加することが既に知
られている。かかる複合材料によれば、減摩物質を含ま
ない複合材料に比して摩擦摩耗特性、即ち自らの耐摩耗
性及び相手攻撃性の両方に優れた金属材料を得ることが
できる。
In order to solve this problem, for example, Japanese Patent Application Laid-Open No. 53-1028
No. 24, No. 54-64263, No. 58-93844, No. 58-93845, No. 58-93847, No. 5
No. 8-113335, No. 59-59855, No. 59-
As described in Japanese Patent No. 59856, it is already known to add anti-friction substances having excellent self-lubricating properties to composite materials. According to such a composite material, it is possible to obtain a metal material that has superior friction and wear characteristics, that is, both its own wear resistance and its attack resistance against other materials, as compared to a composite material that does not contain an anti-friction substance.

かかる複合材料の一つとして、本願発明者等は、本願出
願人と同一の出願人の出願にかかる特願昭61−334
26号に於て、モース硬度が6以上であり直径が30μ
m以下である短繊維、粒子、及びそれらの混合物よりな
る群より選択された体積率1〜40%の強化材と、モー
ス硬度が4.5以下であり直径が100μm以下である
短維維、粒子、及びそれらの混合物よりなる群より選択
された体積率3〜50%の固体潤滑剤とによりマトリッ
クス金属が複合化された金属基複合材料を提案した。
As one of such composite materials, the inventors of the present application have obtained Japanese Patent Application No. 61-334 filed by the same applicant as the applicant of the present application.
No. 26, with a Mohs hardness of 6 or more and a diameter of 30μ
reinforcing material with a volume fraction of 1 to 40% selected from the group consisting of short fibers, particles, and mixtures thereof, having a Mohs hardness of 4.5 or less and a diameter of 100 μm or less, We have proposed a metal matrix composite material in which a matrix metal is composited with a solid lubricant selected from the group consisting of particles and mixtures thereof with a volume ratio of 3 to 50%.

発明が解決しようとする問題点 しかし、互いに当接して相対的に摺動する二つの摺動用
部材に於て、その一方の部材を上述の如き複合材料にて
構成した場合には、その他方の部材の材質によってはそ
の他方の部材の摩耗が著しく増大し、従ってそれらを互
いに当接して相対的に摺動する摺動用部材として使用す
ることはできない。
Problems to be Solved by the Invention However, in two sliding members that are in contact with each other and slide relative to each other, when one of the members is made of the above-mentioned composite material, the other member is Depending on the material of the member, the wear of the other member increases significantly, and therefore, they cannot be used as sliding members that abut each other and slide relative to each other.

本願発明者等は、互いに当接して相対的に摺動する二つ
の部材よりなる摺動用部材であって、その一方の部材が
上述の如き複合材料にて構成され、その他方の部材が鋼
にて構成された摺動用部材に於て、それら両方の部材の
摩耗量を最小限に抑えるためには、それらの材質及び性
質の組合せとしては如何なるものが適切であるかについ
て種々の実験的研究を行なった結果、複合材料及び鋼が
それぞれ成る特定の特徴を有するものでなければならな
いことを見出した。
The inventors of the present application have proposed a sliding member consisting of two members that come into contact with each other and slide relative to each other, one of which is made of a composite material as described above, and the other member is made of steel. In order to minimize the amount of wear on both of these sliding members, various experimental studies have been conducted to find out what combination of materials and properties is appropriate. As a result, it was found that the composite material and the steel must each have specific characteristics.

本発明は、本願発明者等が行なった上述の如き実験的研
究の結果得られた知見に基き、一方の部材が強化粒子と
固体潤滑剤との混合物を強化材としアルミニウム合金の
如き金属をマトリックスとする複合材料にて構成され、
その他方の部材が鋼にて構成された互いに当接して相対
的に摺動する二つの部材よりなる摺動用部材であって、
それら両方の部材の互いに他に対する摺動面に於ける耐
摩耗性が改善された摺動用部材を提供することを目的と
している。
The present invention is based on the findings obtained as a result of the above-mentioned experimental research conducted by the inventors of the present invention, and is based on the findings that one member is reinforced with a mixture of reinforcing particles and a solid lubricant, and a metal such as an aluminum alloy is used as a matrix. Constructed of composite materials,
A sliding member consisting of two members, the other member of which is made of steel, which abut each other and slide relative to each other,
It is an object of the present invention to provide a sliding member in which the wear resistance of the sliding surfaces of both members relative to each other is improved.

問題点を解決するための手段 上述の如き目的は、本発明によれば、互いに当接して相
対的に摺動する第一の部材と第二の部材とよりなる摺動
用部材にして、前記第一の部材の少なくとも前記第二の
部材に対する摺動面部はモース硬度が6以上であり直径
が30μm以下である体積率3〜40%の強化粒子と、
モース硬度が4.5以下であり直径が100μm以下で
ある短繊維、粒子、及びそれらの混合物よりなる群より
選択された体積率3〜50%の固体潤滑剤との混合物を
強化材とし、アルミニウム、マグネシウム、銅、亜鉛、
鉛、スズ及びそれらの何れかを主成分とする合金よりな
る群より選択された金属をマトリックス金属とする複合
材料にて構成されており、前記第二の部材の少なくとも
前記第一の部材に対する摺動面部は硬さHv(10kg
)が180以上の鋼にて構成されていることを特徴とす
る摺動用部材によって達成される。
Means for Solving the Problems According to the present invention, the above-mentioned object is achieved by providing a sliding member consisting of a first member and a second member that abut each other and slide relative to each other; At least the sliding surface portion of the first member relative to the second member has reinforcing particles having a Mohs hardness of 6 or more and a diameter of 30 μm or less and having a volume ratio of 3 to 40%;
A mixture with a solid lubricant with a volume ratio of 3 to 50% selected from the group consisting of short fibers, particles, and mixtures thereof having a Mohs hardness of 4.5 or less and a diameter of 100 μm or less is used as a reinforcing material, and aluminum , magnesium, copper, zinc,
It is made of a composite material whose matrix metal is a metal selected from the group consisting of lead, tin, and alloys containing any of these as a main component, and the sliding of the second member with respect to at least the first member is The hardness of the moving surface part is Hv (10kg
) is achieved by a sliding member characterized in that it is made of steel of 180 or more.

発明の作用及び効果 本願発明者等が行った実験的研究の結果によれば、添加
される固体潤滑剤(減摩物質)の種類や量等の如何によ
っては、複合材料の摩擦摩耗特性を十分向上させること
ができないばかりか、却って複合材料の摩擦摩耗特性や
強度等が低下することがあることが判明した。即ち固体
潤滑剤の中には金属をマトリックスとする複合材料に適
したものと不適当なものとがあり、従って複合材料に適
した固体潤滑剤が選定され゛なければならず、また固体
潤滑剤の量等は上述の如き複合材料を製造する際に当業
者により随意に設定されてよい設計的事項に係るもので
はなく、摩擦摩耗特性に優れた複合材料を得るためには
、固体潤滑剤及び強化粒子の硬度、大きさ、体積率がそ
れら相互の関連に於て最適に設定されなければならない
ことが判明した。
Effects of the Invention According to the results of experimental research conducted by the present inventors, the friction and wear characteristics of composite materials can be sufficiently improved depending on the type and amount of the solid lubricant (anti-friction substance) added. It has been found that not only cannot the improvement be achieved, but the friction and wear characteristics, strength, etc. of the composite material may actually deteriorate. In other words, some solid lubricants are suitable for composite materials with metal as a matrix, while others are not. Therefore, a solid lubricant suitable for composite materials must be selected, and solid lubricants The amount of solid lubricant and the like are not related to design matters that may be set at will by a person skilled in the art when manufacturing a composite material such as the one described above. It has been found that the hardness, size, and volume fraction of the reinforcing particles must be set optimally in relation to each other.

例えば上述の特開昭58−93844号、同58−93
845号、同58−93847号の各公報に於ては、固
体潤滑剤として黒鉛等の粒子や鉛、亜鉛、スズ等の粒子
が使用されてよいことが示されているが、黒鉛等の粒子
の場合にも、その直径が大きい場合は、複合材料自身が
脆くなり、摩耗粉が増大することに起因して複合材料及
び相手材の摩耗量が増大し、また複合材料の強度も低下
する。また鉛、亜鉛、スズ等の粒子の場合には、複合材
料製造時にこれらの粒子が溶融して複合材料中に偏析し
易く、そのため十分な潤滑効果が得られず、複合材料の
摩擦摩耗特性を十分に向上させることが困難であり、ま
た偏析に起因して複合材料の強度も低下し易い。更にか
かる問題は腹合材料の製造に従来より一般に採用されて
いる溶融含浸法や焼結法に於て顕著であるため、これら
の固体潤滑剤を含む複合材料をこれらの方法にて良好に
製造することは困難である。
For example, the above-mentioned Japanese Patent Application Publication Nos. 58-93844 and 58-93
Publications No. 845 and No. 58-93847 indicate that particles of graphite, etc., and particles of lead, zinc, tin, etc. may be used as solid lubricants, but particles of graphite, etc. Even in the case of , if the diameter is large, the composite material itself becomes brittle and wear particles increase, resulting in an increase in the amount of wear on the composite material and the mating material, and the strength of the composite material also decreases. Furthermore, in the case of particles such as lead, zinc, tin, etc., these particles tend to melt and segregate in the composite material during the manufacture of the composite material, making it difficult to obtain sufficient lubrication effects and impairing the friction and wear characteristics of the composite material. It is difficult to sufficiently improve the strength of the composite material, and the strength of the composite material also tends to decrease due to segregation. Furthermore, since such problems are conspicuous in the melt impregnation method and sintering method that have been conventionally commonly used for manufacturing lubricant materials, it is difficult to successfully manufacture composite materials containing these solid lubricants using these methods. It is difficult to do so.

また上述の特開昭53−103824号、同54−64
263号、同58−113335号、同59−5985
5号、同59−59856号の各公報に記載された固体
潤滑剤の如く、複合材料に適した固体潤滑剤が使用され
る場合にも、固体潤滑剤の硬さが成る特定の値以下の場
合には複合材料自身の摩耗量が大きくなり(固体潤滑剤
を含まない場合よりも摩耗量が大きい)、摩耗粉の発生
に起因して相手材の摩耗量も大きくなる。逆に強化材の
硬さが成る特定の値以上の場合にも、その直径が成る特
定の値以上である場合には、複合材料の相手攻撃性が大
きく、摩耗粉の発生に起因して複合材料自身の摩耗量も
増大する。更に強化材の量が少なすぎる場合には、固体
潤滑剤の硬さが低いため、固体潤滑剤を含まない通常の
複合材料の場合よりも複合材料の摩耗量が大きくなる。
Also, the above-mentioned Japanese Patent Application Laid-open Nos. 53-103824 and 54-64
No. 263, No. 58-113335, No. 59-5985
Even when solid lubricants suitable for composite materials are used, such as the solid lubricants described in Publications No. 5 and No. 59-59856, the hardness of the solid lubricant must be below a specific value. In this case, the amount of wear of the composite material itself becomes large (the amount of wear is larger than when no solid lubricant is included), and the amount of wear of the mating material also increases due to the generation of wear particles. On the other hand, if the hardness of the reinforcing material exceeds a certain value, and the diameter exceeds a certain value, the aggressiveness of the composite material is large, and the composite material is damaged due to the generation of wear particles. The amount of wear on the material itself also increases. Moreover, if the amount of reinforcing material is too small, the hardness of the solid lubricant will be low, and the amount of wear of the composite material will be greater than in the case of a normal composite material without a solid lubricant.

逆に強化材の量が多すぎる場合には、固体潤滑剤の量を
多くしても複合材料の相手攻撃性は減小しない。
Conversely, if the amount of reinforcing material is too large, the aggressiveness of the composite material will not decrease even if the amount of solid lubricant is increased.

更に固体潤滑剤の硬さが成る特定の値以上の場合には、
当然の如く複合材料の相手攻撃性が増大する。固体潤滑
剤の硬さが適正な値であってもその量が少なすぎる場合
には、複合材料の相手攻撃性を十分に低減することがで
きず、逆に固体潤滑剤が多すぎる場合には複合材料が脆
くなり、複合材料自身の摩耗量が増大し、摩耗粉の発生
に起因して相手材の摩耗量も増大する。
Furthermore, if the hardness of the solid lubricant exceeds a certain value,
Naturally, the aggressiveness of the composite material increases. Even if the hardness of the solid lubricant is an appropriate value, if the amount is too small, it will not be possible to sufficiently reduce the aggressiveness of the composite material, and conversely, if the solid lubricant is too large, The composite material becomes brittle, the amount of wear of the composite material itself increases, and the amount of wear of the mating material also increases due to the generation of abrasion powder.

本発明によれば、第一の部材を構成する複合材料はその
強化粒子及び固体潤滑剤のモース硬度、直径、及び体積
率が相互の関連に於て上述の好適な範囲に設定されるの
で、後に詳細に説明する本願発明者等が行った実験的研
究の結果より明らかである如く、従来の複合材料に比し
て摩擦摩耗特性に優れており、また第二の部材は硬さH
v(IOkg)が180以上の鋼にて構成される。従っ
て本発明によれば、互いに当接して相対的に摺動する二
つの部材よりなる摺動用部材であって、それら両方の部
材の互いに他に対する摺動面が耐摩耗性に優れており、
従ってそれら両方の部材のそれぞれの摺動面に於ける摩
耗量を最小限に抑えることができ、しかもその一方の部
材は比強度や剛性などにも優れている如き摺動用部材を
得ることができる。
According to the present invention, the Mohs hardness, diameter, and volume fraction of the reinforcing particles and the solid lubricant of the composite material constituting the first member are set within the above-mentioned preferred range in relation to each other; As is clear from the results of experimental research conducted by the inventors, which will be explained in detail later, it has superior friction and wear characteristics compared to conventional composite materials, and the second member has a hardness of H.
Constructed of steel with v (IOkg) of 180 or more. Therefore, according to the present invention, there is provided a sliding member consisting of two members that abut each other and slide relative to each other, and the sliding surfaces of both members relative to each other have excellent wear resistance,
Therefore, it is possible to minimize the amount of wear on the respective sliding surfaces of both members, and it is also possible to obtain a sliding member in which one of the members has excellent specific strength and rigidity. .

本発明の他の一つの詳細な特徴によれば、固体潤滑剤は
酸化物、窒化物、及びそれらの混合物の何れかである。
According to another detailed feature of the invention, the solid lubricant is any of oxides, nitrides, and mixtures thereof.

本発明に於て好適な酸化物の固体潤滑剤としては、酸化
タングステン(WO3)、酸化亜鉛(Zn O) 、−
酸化鉛(Pb O) 、チタン酸カリウム(K2O・6
T102 )等があり、窒化物の固体潤滑剤としては窒
化ホウ素(BN)がある。
In the present invention, suitable oxide solid lubricants include tungsten oxide (WO3), zinc oxide (ZnO), -
Lead oxide (PbO), potassium titanate (K2O・6
T102), etc., and boron nitride (BN) is a nitride solid lubricant.

本発明の更に他の一つの詳細な特徴によれば、強化粒子
のモース硬度及び直径はそれぞれ7以上、20μm以下
に設定され、固体潤滑剤のモース硬度、直径、体積率は
それぞれ4以下、5ouI11以下、5〜45%に設定
される。
According to yet another detailed feature of the present invention, the Mohs hardness and diameter of the reinforcing particles are set at 7 or more and 20 μm or less, respectively, and the Mohs hardness, diameter, and volume fraction of the solid lubricant are set at 4 or less and 5ouI11, respectively. Hereafter, it is set to 5 to 45%.

本発明の更に他の一つの詳細な特徴によれば、固体潤滑
剤のモース硬度及び体積率はそれぞれ3以下、10〜4
0%に設定される。
According to yet another detailed feature of the present invention, the Mohs hardness and volume fraction of the solid lubricant are 3 or less and 10 to 4, respectively.
Set to 0%.

尚本発明の摺動用部材に於ける複合材料の固体潤滑剤の
短繊維の繊維長は10μII〜5cm程度であることが
好ましい。また本願発明者等が行った実験的研究の結果
によれば、固体潤滑剤が短繊維である場合に於て、それ
らが本発明の要件を満す場合には、短繊維の配向に拘ら
ず複合材料及び相手材の摩耗量を低減することができ、
従って短繊維の配向は一方向配向、二次元ランダム配向
、三次元ランダム配向の何れであってもよい。
In the sliding member of the present invention, the fiber length of the short fibers of the solid lubricant of the composite material is preferably about 10 μII to 5 cm. Furthermore, according to the results of experimental studies conducted by the inventors of the present application, when solid lubricants are short fibers, if they satisfy the requirements of the present invention, regardless of the orientation of the short fibers, The amount of wear on the composite material and mating material can be reduced,
Therefore, the orientation of the short fibers may be unidirectional, two-dimensional random orientation, or three-dimensional random orientation.

また本明細書に於て、「粒子」はアスペクト比が3以下
のものを意味し、本明細書に於けるパーセントは体積率
の場合を除き重量パーセントである。
Further, in this specification, "particles" means particles having an aspect ratio of 3 or less, and percentages in this specification are weight percentages except in the case of volume percentages.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 先ず強化粒子としてモース硬度が9である窒化ケイ素粒
子(高純度化学(株)製、平均粒径10μa+)を用意
し、また固体潤滑剤としてモース硬度が2であるBN粒
子(電気化学工業株式会社製、平均粒径8μrA)を用
意した。次いで強化粒子とBN粒子とを1:1の体積比
にて混合し、該混合物をコロイダルシリカ中にて撹拌し
た。次いでかくして得られた粒子が均一に分散されたコ
ロイダルシリカに対し圧縮成形を行うことにより、第1
図に示されている如く、強化粒子2a及びBNN壬子2
b互いに均一に混合され80x80x20Ifflの寸
法を有する成形体1を形成した。
Example 1 First, silicon nitride particles (manufactured by Kojundo Kagaku Co., Ltd., average particle size 10 μa+) with a Mohs hardness of 9 were prepared as reinforcing particles, and BN particles (electrochemical (manufactured by Kogyo Co., Ltd., average particle size 8 μrA) was prepared. The reinforcing particles and BN particles were then mixed at a volume ratio of 1:1, and the mixture was stirred in colloidal silica. Next, by compression molding the colloidal silica in which the particles thus obtained are uniformly dispersed, the first
As shown in the figure, reinforcing particles 2a and BNN Miko 2
b They were uniformly mixed with each other to form a molded body 1 having dimensions of 80x80x20Iffl.

次いで成形体を500℃に予熱した後、第2図に示され
ている如く鋳型3のモールドキャビティ4内に配置し、
該モールドキャビティ内に720℃のアルミニウム合金
(JIS規格AC8A)の溶湯5を注渇し、該溶湯を鋳
型3に嵌合するプランジャ6により1200 kg/ 
m+a:の圧力に加圧し、その加圧状態を溶湯が完全に
凝固するまで保持した。かくして第3図に示されている
如く外径1101111%高さ50mmの円柱状の凝固
体7を鋳造し、該凝固体に対し熱処理T?を施し、各凝
固体より実質的に均一に混合された体積率10%の強化
粒子及び体積率10%のBN粒子にて複合化されたアル
ミニウム合金よりなる複合材料1′を切出し、該複合材
料より摩耗試験用のブロック試験片A1〜A7を機械加
工により作成した。
Next, after preheating the molded body to 500°C, it is placed in the mold cavity 4 of the mold 3 as shown in FIG.
A molten metal 5 of aluminum alloy (JIS standard AC8A) at 720°C is poured into the mold cavity, and a plunger 6 that fits the molten metal into the mold 3 is used to transfer the molten metal to 1200 kg/
The pressure was increased to m+a: and the pressurized state was maintained until the molten metal completely solidified. Thus, as shown in FIG. 3, a cylindrical solidified body 7 with an outer diameter of 1101111% and a height of 50 mm was cast, and the solidified body was subjected to heat treatment T? A composite material 1' made of an aluminum alloy composited with reinforcing particles with a volume ratio of 10% and BN particles with a volume ratio of 10% substantially uniformly mixed from each solidified body is cut out. Block specimens A1 to A7 for wear testing were prepared by machining.

同)、lにBN粒子が含まれていない点を除き上述のブ
ロック試験片Al−A7と同一の要領及び条件にてブロ
ック試験片A8を作成し、また窒化ケイ素粒子かモース
硬度8のアルミナ粒子(1,C。
A block test piece A8 was prepared in the same manner and under the same conditions as the above-mentioned block test piece Al-A7, except that BN particles were not included in l. (1, C.

!1社製「サフィールRGJより選出された粒子、平均
粒径15μm)に置換えられた点を除き、上述のブロッ
ク試験片A8と同一の要領及び条件にてブロック試験片
A9を作成した。
! A block test piece A9 was prepared in the same manner and under the same conditions as the above-mentioned block test piece A8, except that the particles were replaced with "particles selected from Saphir RGJ, average particle size 15 μm" manufactured by Sapphire Co., Ltd.

次いで各ブロック試験片を順次摩擦摩耗試験機にセット
し、相手部材である種々の硬さの鋼製の円筒試験片の外
周面と接触させ、それらの試験片の接触部に常温(20
℃)の潤滑油(キャッスルモータオイル5W−30)を
供給しつつ、接触面圧20kg/IIIQ!!、滑り速
度0. 3mm/ seeにて円筒試験片を1時間回転
させる摩耗試験を行った。
Next, each block test piece was sequentially set in a friction and wear tester, and brought into contact with the outer circumferential surface of the mating member, a steel cylindrical test piece of various hardness.
℃) while supplying lubricating oil (castle motor oil 5W-30), the contact surface pressure is 20 kg/IIIQ! ! , sliding speed 0. A wear test was conducted in which the cylindrical specimen was rotated for 1 hour at 3 mm/see.

尚これらの摩耗試験に於けるブロック試験片と円筒試験
片との組合せは下記の表1に示された通りであった。
The combinations of block test pieces and cylindrical test pieces in these wear tests were as shown in Table 1 below.

これらの摩耗試験の結果を第4図に示す。尚第4図(及
び後述の他の摩耗試験の結果を示す図)に於て、上半分
はブロック試験片の摩耗量(摩耗痕深さμm)を表わし
ており、下半分は相手材である円筒試験片の摩耗量(摩
耗域mmg)を表わしていする。
The results of these wear tests are shown in FIG. In Figure 4 (and the diagram showing the results of other wear tests described later), the upper half represents the wear amount (wear scar depth μm) of the block test piece, and the lower half represents the counterpart material. It represents the amount of wear (wear area mmg) of the cylindrical test piece.

第4図より、比較例の組合せAT 、A、のブロック試
験片及び組合せAI 、A9の円筒試験片の摩耗量は組
合せAI−A6の摩耗量よりも高い値であり、組合せA
1〜A6はブロック試験片及び円筒試験片の何れの点で
も摩耗特性に優れており、従って強化粒子と固体潤滑剤
との混合物を強化材とする複合材料と組合される鋼の硬
さはHv(lokg)で180以上であることが好まし
いことが解る。
From FIG. 4, the wear amount of the block test pieces of the combinations AT and A and the cylindrical test pieces of the combinations AI and A9 of the comparative examples is higher than that of the combination AI-A6, and the wear amount of the combination A
No. 1 to A6 have excellent wear characteristics in both block test pieces and cylindrical test pieces. Therefore, the hardness of the steel combined with the composite material whose reinforcement is a mixture of reinforcing particles and solid lubricant is Hv. (lokg) is preferably 180 or more.

実施例2 強化粒子として如何なる硬さのものが適しているかの検
討を行った。
Example 2 A study was conducted to find out what hardness is suitable for reinforcing particles.

まず下記の表2に示されている如く、脱粒処理された種
々のモース硬度の粒子B、−B5及びWO3粒子を用意
した。次いで各粒子とW 03粒子とを1:1の体積比
にて混合し、それらの混合物を使用して実施例1の場合
と同一の要領及び条件にて強化粒子及びW 03粒子の
体積率が共に10%である複合材料を製造し、それらの
複合材料よりブロック試験片B、−B、を作成し、それ
らのブロック試験片について実施例1の場合と同一の要
領及び条件にてクロムm (J I SMl洛5Cr2
0、Hv−720)を相手材とする摩耗試験を行った。
First, as shown in Table 2 below, grains B, -B5, and WO3 grains having various Mohs' hardnesses were prepared. Next, each particle and W 03 particles were mixed at a volume ratio of 1:1, and using the mixture, the volume ratio of the reinforcing particles and W 03 particles was adjusted in the same manner and under the same conditions as in Example 1. Chromium m ( J I SMl Raku5Cr2
0, Hv-720) was used as the mating material.

これらの摩耗試験の結果を第5図に示す。The results of these wear tests are shown in FIG.

第5図より、強化粒子のモース硬度が6以上、好ましく
は7以上の場合に、複合材料及び相手材両方の摩耗量が
小さい値になることが解る。
From FIG. 5, it can be seen that when the Mohs hardness of the reinforcing particles is 6 or more, preferably 7 or more, the wear amount of both the composite material and the mating material becomes a small value.

実施例3 固体潤滑剤として如何なる硬さのものが適しているかの
検討を行った。
Example 3 A study was conducted to determine what hardness would be suitable as a solid lubricant.

まず下記の表3に示されている如き固体潤滑剤c、−C
,,及びアルミナ粒子を用意した。次いで各固体潤滑剤
c、−Caとアルミナ粒子とが1=1の体積比にて混合
され、マトリックス金属がJIs規格ACIAのアルミ
ニウム合金(湯温720℃)に置換えられ、熱処理がT
6に変更された点を除き、実施例1の場合と同一の要領
及び条件にて固体潤滑剤及びアルミナ粒子の体積率が共
に15%である複合材料を製造し、各複合材料よりブロ
ック試験片c、−Caを作成し、各ブロック試験片につ
いて実施例1の場合と同一の要領及び条件にてクロム鋼
(JIS規格5Cr20、Hv−720)を相手材とす
る摩耗試験を行った。これらの摩耗試験の結果を第6図
に示す。
First, solid lubricants c, -C as shown in Table 3 below
, , and alumina particles were prepared. Next, each solid lubricant c, -Ca and alumina particles are mixed at a volume ratio of 1=1, the matrix metal is replaced with JIs standard ACIA aluminum alloy (hot water temperature 720°C), and heat treatment is performed at T.
Composite materials in which the volume percentages of the solid lubricant and alumina particles were both 15% were manufactured in the same manner and under the same conditions as in Example 1, except that 6 was changed, and block test pieces were prepared from each composite material. c, -Ca were prepared, and each block test piece was subjected to an abrasion test using chromium steel (JIS standard 5Cr20, Hv-720) as a mating material in the same manner and under the same conditions as in Example 1. The results of these wear tests are shown in FIG.

第6図より、固体潤滑剤のモース硬度が4.5以下、好
ましくは4以下、更に好ましくは3以下である場合に複
合材料及び相手材の摩耗量が小さくなることが解る。
From FIG. 6, it can be seen that when the Mohs hardness of the solid lubricant is 4.5 or less, preferably 4 or less, and more preferably 3 or less, the amount of wear on the composite material and the mating material is reduced.

実施例4 強化粒子として如何なる直径のものが適しているかの検
討を行った。
Example 4 We investigated what diameter is suitable for reinforcing particles.

まず下記の表4に示されている如き強化粒子D1〜D9
及びPbO粒子を用意した。次いで強化粒子とPbO粒
子とが1:2の体積比にて混合された点を除き、実施例
1の場合と同一の要領及び条件にて強化粒子及びPbO
粒子の体積率がそれぞれ10%、20%である複合材料
を製造し、各複合材料よりブロック試験片り、−Dgを
作成し、各ブロック試験片について実施例1の場合と同
一の要領及び条件にてステンレスj14 (J I 5
ffl格5US420J2)Hv−500)を相手材と
する摩耗試験を行った。これらの摩耗試験の結果を第7
図に示す。
First, reinforcing particles D1 to D9 as shown in Table 4 below
and PbO particles were prepared. Next, the reinforcing particles and PbO particles were mixed in the same manner and under the same conditions as in Example 1, except that the reinforcing particles and PbO particles were mixed at a volume ratio of 1:2.
Composite materials with particle volume percentages of 10% and 20%, respectively, were manufactured, and block test pieces, -Dg, were created from each composite material, and each block test piece was subjected to the same procedures and conditions as in Example 1. Stainless steel j14 (J I 5
A wear test was conducted using ffl rating 5US420J2)Hv-500) as a mating material. The results of these wear tests were
As shown in the figure.

第7図より、強化粒子の直径が30μm以下、好ましく
は20μm以下の場合に複合材料及び相手材の摩耗量が
小さくなることが解る。
From FIG. 7, it can be seen that when the diameter of the reinforcing particles is 30 μm or less, preferably 20 μm or less, the amount of wear on the composite material and the mating material is reduced.

実施例5 固体潤滑剤として如何なる直径のものが適しているかの
検討を行った。
Example 5 A study was conducted to determine what diameter is suitable for a solid lubricant.

まず下記の表5に示されている如き固体潤滑剤E1〜E
T及びアルミナ−シリカ粒子を用意した。
First, solid lubricants E1 to E as shown in Table 5 below.
T and alumina-silica particles were prepared.

次いで固体潤滑剤とアルミナ−シリカ粒子とが4二3の
体積比にて混合され、マトリックス金属としてJIS規
格AC7Bのアルミニウム合金(湯温690℃)が使用
され、熱処理がT4に置換えられた点を除き、実施例1
の場合と同一の要領及び条件にて固体潤滑剤及びアルミ
ナ−シリカ粒子の体積率がそれぞれ20%、15%であ
る複合材料を製造し、各複合材料よりブロック試験片E
、〜E7を作成し、各ブロック試験片について実施例1
の1場合と同一の要領及び条件にてステンレス鋼(JI
S規格5US420J2)Hv−500)を相手材とす
る摩耗試験を行った。これらの摩耗試験の結果を第8図
に示す。
Next, solid lubricant and alumina-silica particles were mixed at a volume ratio of 423, JIS standard AC7B aluminum alloy (hot water temperature 690°C) was used as the matrix metal, and heat treatment was replaced with T4. Example 1 except
Composite materials with volume percentages of solid lubricant and alumina-silica particles of 20% and 15%, respectively, were manufactured using the same procedure and conditions as in the case of
, ~E7 were prepared and Example 1 was prepared for each block test piece.
Stainless steel (JI
A wear test was conducted using S standard 5US420J2)Hv-500) as a mating material. The results of these wear tests are shown in FIG.

第8図より、固体潤滑剤が粒子であるか繊維であるかを
問わず、固体潤滑剤の直径が100μm以下、好ましく
は50μm以下の場合に複合材料及び相手材の摩耗量が
小さくなることが解る。
From Figure 8, regardless of whether the solid lubricant is particles or fibers, when the diameter of the solid lubricant is 100 μm or less, preferably 50 μm or less, the amount of wear on the composite material and the mating material is reduced. I understand.

実施例6 強化粒子の体積率が如何なる値が適切であるかの検討を
行った。
Example 6 An appropriate value for the volume fraction of reinforcing particles was investigated.

まず下記の表6に示された炭化タングステン粒子及びP
bO粒子を用意した。次いでこの炭化タングステン粒子
とPbO粒子とを種々の体積比にて混合し、かくして得
られた混合物を用いて実施例1の場合と同一の要領及び
条件にてブロック試験片F1〜F9を作成した。また強
化粒子及び固体潤滑剤を含まないマトリックス金属のみ
よりなるブロック試験片Foを作成した。次いでこれら
のブロック試験片について実施例1の場合と同一の要領
及び条件にて軸受m(JIS規格SUJ 2)Hv−8
50)を相手材とする摩耗試験を行った。
First, the tungsten carbide particles and P shown in Table 6 below
bO particles were prepared. Next, the tungsten carbide particles and PbO particles were mixed at various volume ratios, and block test pieces F1 to F9 were created using the mixture thus obtained in the same manner and under the same conditions as in Example 1. In addition, a block test piece Fo was prepared consisting only of matrix metal without reinforcing particles and solid lubricant. Next, these block test pieces were subjected to bearing m (JIS standard SUJ 2) Hv-8 in the same manner and under the same conditions as in Example 1.
A wear test was conducted using 50) as a mating material.

これらの摩耗試験の結果を第9図に示す。The results of these wear tests are shown in FIG.

第9図より、強化粒子の体積率が3〜40%、特に5〜
35%程度である場合に複合材料及び相手材の摩耗量が
小さい値になることが解る。
From Figure 9, the volume fraction of reinforcing particles is 3 to 40%, especially 5 to 40%.
It can be seen that when the amount of wear is about 35%, the amount of wear of the composite material and the mating material becomes a small value.

実施例7 固体潤滑剤の体積率が如何なる値であることが適切であ
るかの検討を行った。
Example 7 An appropriate value for the volume fraction of the solid lubricant was investigated.

まず下記の表7に示されている如きBN粒子及びアルミ
ナ粒子を用意した。次いでこのBN粒子とアルミナ粒子
とを種々の体積比にて混合し、それらの混合物を用いて
実施例1の場合と同一の要領及び条件にてブロック試験
片01〜G9を作成した。また強化粒子のみにて複合化
されたマトリックス金属よりなるブロック試験片cyo
を作成した。次いでこれらのブロック試験片について実
施例1の場合と同一の要領及び条件にてクロム鋼(JI
S規格5Cr20、Hv−720)を相手材とする摩耗
試験を行った。これらの摩耗試験の結果を第10図に示
す。
First, BN particles and alumina particles as shown in Table 7 below were prepared. Next, the BN particles and alumina particles were mixed at various volume ratios, and block test pieces 01 to G9 were created using the mixture in the same manner and under the same conditions as in Example 1. In addition, a block specimen made of a matrix metal composited only with reinforcing particles cyo
It was created. Next, these block test pieces were treated with chrome steel (JI) in the same manner and under the same conditions as in Example 1.
A wear test was conducted using S standard 5Cr20, Hv-720) as the mating material. The results of these wear tests are shown in FIG.

第10図より、固体潤滑剤の体積率が3〜50%、特に
5〜45%、更には10〜40%である場合に複合材料
及び相手材の摩耗量が小さい値になることが解る。
From FIG. 10, it can be seen that when the volume fraction of the solid lubricant is 3 to 50%, particularly 5 to 45%, and even 10 to 40%, the wear amount of the composite material and the mating material becomes a small value.

実施例8 マトリックス金属がマグネシウム合金、亜鉛合金、鉛合
金、スズ合金、銅合金である複合材料と鋼との組合せに
ついて摩耗試験を行った。
Example 8 Wear tests were conducted on combinations of steel and composite materials whose matrix metals were magnesium alloys, zinc alloys, lead alloys, tin alloys, and copper alloys.

まずマトリックス金属の溶湯の湯温及び加圧力がそれぞ
れ690℃、1000 kg/ cab”に設定された
点を除き、実施例1の場合と同一の要領及び条件にて体
積率25%のアルミナ粒子(表7)と、体積率25%の
BN粒子(表3のC2)とにより睨合化されたマグネシ
ウム合金(JIS規格MDC1−A)よりなるブロック
試験片H1を作成した。
First, alumina particles with a volume ratio of 25% ( A block test piece H1 was prepared from a magnesium alloy (JIS standard MDC1-A) which was interlaced with Table 7) and BN particles (C2 in Table 3) with a volume fraction of 25%.

また湯温及び加圧力がそれぞれ500°C11000k
g/ ca+Hに設定された点を除き、実施例1の場合
と同一の要領及び条件にて体積率40%のアルミナ粒子
(表7)と、体積率20%のBN粒子(表3のC2)と
により複合化された亜鉛合金(JIS規格ZDC1)よ
りなるブロック試験片11を作成した。
Also, the hot water temperature and pressure are 500°C and 11,000k each.
Alumina particles with a volume ratio of 40% (Table 7) and BN particles with a volume ratio of 20% (C2 in Table 3) were prepared in the same manner and under the same conditions as in Example 1, except that g/ca + H was set. A block test piece 11 made of a composite zinc alloy (JIS standard ZDC1) was prepared.

また湯温及び加圧力がそれぞれ410℃、1000 k
g/ cm”に設定された点を除き、上述の実施例1の
場合と同一の要領及び条件にて体積率20%の窒化ケイ
素粒子(実施例1に於て使用された粒子と同一)と、体
積率50%のW 03粒子(表3のC3)とにより複合
化された鉛合金(JIS規格WJ8)よりなるブロック
試験片J1を作成した。
Also, the hot water temperature and pressure are 410℃ and 1000k, respectively.
With silicon nitride particles (same as the particles used in Example 1) with a volume fraction of 20% in the same manner and under the same conditions as in Example 1 above, except that the particle size was set at A block test piece J1 was prepared from a lead alloy (JIS standard WJ8) composited with W 03 particles (C3 in Table 3) with a volume fraction of 50%.

また湯温及び加圧力がそれぞれ330°C11000k
g/ cm”に設定された点を除き、実施例1の場合と
同一の要領及び条件にて体積率596の窒化ケイ素粒子
(実施例1に於て使用された粒子と同一)と、体積率5
%のチタン酸カリウムホイスカ(表3のC4)とにより
複合化されたスズ合金(JIS規格WJ 2)とよりな
るブロック試験片に、を作成した。
Also, the hot water temperature and pressure are 330°C and 11000k each.
Silicon nitride particles with a volume fraction of 596 (same as the particles used in Example 1) and a volume fraction of 5
A block test piece was made of a tin alloy (JIS standard WJ 2) composited with % of potassium titanate whiskers (C4 in Table 3).

更1こ炭化ケイ素粒子(表4のD2)と、BN拉子(表
3のc2)と、銅合金(Cu−10igt%Sn)粉末
とを、炭化ケイ素粒子及びBN粒子の体積率がそれぞれ
3%、5%となるよう秤量して混合し、該混合物に少量
のエタノールを添加してスターシーにて約30分間混合
した。かくして得られた混合物を80℃にて5時間乾燥
した後、金型内に所定量の混合物を充填し、その混合物
をパンチにて4000 kg/ am”の圧力にて圧縮
することにより板状に成形した。次いで分解アンモニア
ガス(露点−30℃)雰囲気に設定されたバッチ型焼結
炉にて板状体を770℃にて30分間加熱することによ
り焼結し、焼結炉内の冷却ゾーンにて徐冷することによ
り複合材料を製造し、該複合材料よりブロック試験片L
1を作成した。
Furthermore, one silicon carbide particle (D2 in Table 4), BN sieve (c2 in Table 3), and copper alloy (Cu-10igt%Sn) powder were added, each with a volume fraction of silicon carbide particles and BN particles of 3. %, 5%, and mixed, a small amount of ethanol was added to the mixture, and the mixture was mixed for about 30 minutes in a Starsea. After drying the mixture thus obtained at 80°C for 5 hours, a predetermined amount of the mixture was filled into a mold, and the mixture was compressed with a punch at a pressure of 4000 kg/am'' to form a plate. The plate was then sintered by heating it at 770°C for 30 minutes in a batch-type sintering furnace set in an atmosphere of decomposed ammonia gas (dew point -30°C), and then placed in a cooling zone in the sintering furnace. A composite material is manufactured by slowly cooling the composite material, and a block test piece L is obtained from the composite material.
1 was created.

また比較の目的で上述のブロック試験片H1〜L、の複
合材料のマトリックス金属のみよりなる材料よりそれぞ
れブロック試験片H,−Loを作成した。
In addition, for the purpose of comparison, block test pieces H and -Lo were created from a material consisting only of the matrix metal of the composite material of the above-mentioned block test pieces H1 to L, respectively.

次いでこれらのブロック試験片についてクロム鋼(JI
Sfflr6SCr20、Hv−720)製の円筒試験
片を相手部材とする摩耗試験を実施例1の場合と同一の
要領及び条件にて行った。これらの摩耗試験の結果をそ
れぞれ下記の表8に示す。
These block specimens were then tested with chrome steel (JI
A wear test using a cylindrical test piece made of Sfflr6SCr20, Hv-720) as a mating member was conducted in the same manner and under the same conditions as in Example 1. The results of these wear tests are shown in Table 8 below.

画表8に於て、ブロック試験片の摩耗量比率とはそれぞ
れ試験片H,−Loの摩耗量に対するブロック試験片H
,−L、の摩耗量(摩耗痕深さμl11)の百分率を意
味し、円筒試験片の摩耗量の上段及び下段の数値はそれ
ぞれブロック試験片H1〜L1及びHO−Loと摩擦さ
れた円筒試験片の摩耗量(摩耗減量a+g)である。
In Table 8, the wear amount ratio of the block test piece is the wear amount ratio of the block test piece H to the wear amount of test pieces H and -Lo, respectively.
, -L, means the percentage of the wear amount (wear scar depth μl11), and the upper and lower numbers of the wear amount of the cylindrical test piece are for the cylindrical test rubbed with the block test pieces H1 to L1 and HO-Lo, respectively. This is the wear amount of the piece (wear loss a+g).

表8より、マトリックス金属がマグネシウム合金、亜鉛
合金、鉛合金、スズ合金、及び銅合金である場合にも、
強化粒子及び固体潤滑剤のモース硬度や体積率等が本発
明の範囲内にある場合には、マトリックス金属のみより
なる材料に比して相手材の摩耗量を実質的に増大させる
ことなく複合材料の摩耗量を大幅に低減し得ることが解
る。
From Table 8, even when the matrix metal is magnesium alloy, zinc alloy, lead alloy, tin alloy, and copper alloy,
When the Mohs hardness, volume fraction, etc. of the reinforcing particles and the solid lubricant are within the range of the present invention, the composite material can be manufactured without substantially increasing the wear amount of the mating material compared to the material made only of matrix metal. It can be seen that the amount of wear can be significantly reduced.

以上に於ては本発明を本願発明者等が行った実験的研究
との関連に於て詳細に説明したが、本発明はこれらの実
施例に限定されるものではなく、本発明の範囲内にて他
の種々の実施例が可能であることは当業者にとって明ら
かであろう。
Although the present invention has been explained in detail above in connection with the experimental research conducted by the inventors of the present invention, the present invention is not limited to these examples, and any invention within the scope of the present invention. It will be apparent to those skilled in the art that various other embodiments are possible.

表 1(その1) 表 1(その2) 注:1)JIS規格5UJ2 2)JIS規格SCr 20 3)JIS規格SUS420J2Table 1 (Part 1) Table 1 (Part 2) Note: 1) JIS standard 5UJ2 2) JIS standard SCr 20 3) JIS standard SUS420J2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は互いに均一に混合された強化粒子としての窒化
ケイ素粒子と固体潤滑剤としてのBN粒子とよりなる成
形体を示す斜視図、第2図は第1図に示された成形体を
用いて行われる高圧鋳造による複合材料の製造の鋳造工
程を示す解図、第3図は第2図の高圧鋳造により形成さ
れた凝固体を示す斜視図、第4図は種々の複合材料につ
いて窒化ケイイ素粒子とBN粒子とにより複合化された
アルミニウム合金よりなる複合材料及び比較例の複合材
料について種々の硬さの鋼を相手材として行われた摩耗
試験の結果を示すグラフ、第5図は種々の強化粒子とW
 03粒子とにより複合化されたアルミニウム合金より
なる複合材料についてクロム鋼を相手材として行われた
摩耗試験の結果を示すグラフ、第6図は種々の固体潤滑
剤とアルミナ粒子とにより複合化されたアルミニウム合
金よりなる複合材料についてクロム鋼を相手材として行
われた摩耗試験の結果を示すグラフ、第7図は種々の直
径の強化粒子とPbO粒子とにより複合化されたアルミ
ニウム合金よりなる複合材料についてステンレス鋼を相
手材として行われた摩耗試験の結果を示すグラフ、第8
図は種々の直径の固体潤滑剤とアルミナ−シリカ粒子と
により複合化されたアルミニウム合金よりなる複合材料
についてステンレス鋼を相手材として行われた摩耗試験
の結果を示すグラフ、第9図は種々の体積率のWC粒子
とPbO粒子とにより複合化されたアルミニウム合金よ
りなる複合材料について軸受鋼を相手材として行われた
摩耗試験の結果を示すグラフ、第10図は種々の体積率
のBN粒子とアルミナ粒子とにより複合化されたアルミ
ニウム合金よりなる複合材料についてクロム鋼を相手材
として行われた摩耗試験の結果を示すグラフである。 1・・・成形体、11・・・複合材料、2a・・・強化
粒子。 2b・・・BN粒子、3・・・鋳型、4・・・モールド
キャビティ、5・・・溶湯、6・・・プランジャ、7・
・・凝固住持 許 出 願 人  トヨタ自動車株式会
社代   理   人  弁理士  明石 昌毅第11
   第3図 第2図 “第4図 第5図 日5 第6図 第7図 第8図
FIG. 1 is a perspective view showing a molded body made of silicon nitride particles as reinforcing particles and BN particles as a solid lubricant uniformly mixed with each other, and FIG. Fig. 3 is a perspective view showing the solidified body formed by the high-pressure casting of Fig. 2, and Fig. 4 is a diagram showing the casting process of manufacturing composite materials by high-pressure casting. Graphs showing the results of wear tests conducted on composite materials made of aluminum alloys made of elementary particles and BN particles, and composite materials of comparative examples, using steels of various hardness as mating materials. reinforcement particles and W
Figure 6 is a graph showing the results of a wear test conducted on a composite material made of an aluminum alloy composited with 03 particles, using chromium steel as a partner material. A graph showing the results of wear tests conducted on composite materials made of aluminum alloys using chromium steel as a partner material. Figure 7 shows composite materials made of aluminum alloys composited with reinforcing particles of various diameters and PbO particles. Graph showing the results of a wear test conducted using stainless steel as a mating material, No. 8
Figure 9 is a graph showing the results of wear tests conducted on composite materials made of aluminum alloys made of solid lubricants of various diameters and alumina-silica particles, using stainless steel as the mating material. Figure 10 is a graph showing the results of a wear test conducted on a composite material made of an aluminum alloy made up of WC particles and PbO particles with various volume fractions, using bearing steel as the mating material. It is a graph showing the results of a wear test conducted on a composite material made of an aluminum alloy composited with alumina particles using chromium steel as a mating material. DESCRIPTION OF SYMBOLS 1... Molded object, 11... Composite material, 2a... Reinforcement particle. 2b... BN particles, 3... Mold, 4... Mold cavity, 5... Molten metal, 6... Plunger, 7...
...Coagulation Chief Priest Applicant Toyota Motor Corporation Representative Patent Attorney Masatake Akashi No. 11
Figure 3 Figure 2 "Figure 4 Figure 5 Day 5 Figure 6 Figure 7 Figure 8

Claims (4)

【特許請求の範囲】[Claims] (1)互いに当接して相対的に摺動する第一の部材と第
二の部材とよりなる摺動用部材にして、前記第一の部材
の少なくとも前記第二の部材に対する摺動面部はモース
硬度が6以上であり直径が30μm以下である体積率3
〜40%の強化粒子と、モース硬度が4.5以下であり
直径が100μm以下である短繊維、粒子、及びそれら
の混合物よりなる群より選択された体積率3〜50%の
固体潤滑剤との混合物を強化材とし、アルミニウム、マ
グネシウム、銅、亜鉛、鉛、スズ及びそれらの何れかを
主成分とする合金よりなる群より選択された金属をマト
リックス金属とする複合材料にて構成されており、前記
第二の部材の少なくとも前記第一の部材に対する摺動面
部は硬さHv(10kg)が180以上の鋼にて構成さ
れていることを特徴とする摺動用部材。
(1) A sliding member consisting of a first member and a second member that are in contact with each other and slide relative to each other, and at least the sliding surface portion of the first member relative to the second member has a Mohs hardness. is 6 or more and the diameter is 30 μm or less
~40% of reinforcing particles, and a solid lubricant with a volume fraction of 3 to 50% selected from the group consisting of short fibers, particles, and mixtures thereof having a Mohs hardness of 4.5 or less and a diameter of 100 μm or less. It is composed of a composite material in which the reinforcing material is a mixture of the following, and the matrix metal is a metal selected from the group consisting of aluminum, magnesium, copper, zinc, lead, tin, and alloys containing any of these as main components. A sliding member, wherein at least the sliding surface of the second member relative to the first member is made of steel having a hardness Hv (10 kg) of 180 or more.
(2)特許請求の範囲第1項の摺動用部材に於て、前記
固体潤滑剤は酸化物、窒化物、及びそれらの混合物の何
れかであることを特徴とする摺動用部材。
(2) The sliding member according to claim 1, wherein the solid lubricant is any one of an oxide, a nitride, and a mixture thereof.
(3)特許請求の範囲第1項又は第2項の摺動用部材に
於て、前記強化粒子のモース硬度及び直径はそれぞれ7
以上、20μm以下であり、前記固体潤滑剤のモース硬
度、直径、体積率はそれぞれ4以下、50μm以下、5
〜45%であることを特徴とする摺動用部材。
(3) In the sliding member according to claim 1 or 2, the Mohs hardness and diameter of the reinforcing particles are respectively 7.
The Mohs hardness, diameter, and volume fraction of the solid lubricant are 4 or less, 50 μm or less, and 5, respectively.
45%.
(4)特許請求の範囲第3項の摺動用部材に於て、前記
固体潤滑剤のモース硬度及び体積率はそれぞれ3以下、
10〜40%であることを特徴とする摺動用部材。
(4) In the sliding member according to claim 3, the solid lubricant has a Mohs hardness and a volume fraction of 3 or less, respectively;
A sliding member characterized in that the ratio is 10 to 40%.
JP24679986A 1986-10-17 1986-10-17 Sliding member Pending JPS63103037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24679986A JPS63103037A (en) 1986-10-17 1986-10-17 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24679986A JPS63103037A (en) 1986-10-17 1986-10-17 Sliding member

Publications (1)

Publication Number Publication Date
JPS63103037A true JPS63103037A (en) 1988-05-07

Family

ID=17153849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24679986A Pending JPS63103037A (en) 1986-10-17 1986-10-17 Sliding member

Country Status (1)

Country Link
JP (1) JPS63103037A (en)

Similar Documents

Publication Publication Date Title
JP4215285B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
JP6577173B2 (en) Cu-based sintered alloy and manufacturing method thereof
JPH0625782A (en) High ductility aluminum sintered alloy and its manufacture as well as its application
JPS61169154A (en) Fiber reinforced composite metallic material
Monikandan et al. High temperature tribological behaviors of aluminum matrix composites reinforced with solid lubricant particles
US3983615A (en) Sliding seal member for an internal combustion engine
JP3304021B2 (en) Copper alloy with excellent high-temperature wear resistance
JP4116166B2 (en) Slide bearing and manufacturing method thereof
JPH07166278A (en) Coppery sliding material and production thereof
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JPS63103037A (en) Sliding member
JP3897416B2 (en) Powder aluminum alloy cylinder liner
JPS63103036A (en) Sliding member
JPH0665734B2 (en) Metal-based composite material with excellent friction and wear characteristics
JPS63103038A (en) Sliding member
JPS63190127A (en) Metal-base composite material excellent in strength as well as in frictional wear characteristic
JPS63192831A (en) Sliding member
JPS63103035A (en) Sliding member
JPS63190128A (en) Metal-base composite material excellent in strength as well as in frictional wear characteristic
JPS63192832A (en) Sliding member
KR0183227B1 (en) A metal sintered body composite material and method for producing the same
JPS63103033A (en) Sliding member
JP2790807B2 (en) Composite piston
JPH0525591A (en) Wire for piston ring and its manufacture
JP2584488B2 (en) Processing method of wear resistant aluminum alloy