JPS63103015A - Refining method in converter - Google Patents

Refining method in converter

Info

Publication number
JPS63103015A
JPS63103015A JP24901386A JP24901386A JPS63103015A JP S63103015 A JPS63103015 A JP S63103015A JP 24901386 A JP24901386 A JP 24901386A JP 24901386 A JP24901386 A JP 24901386A JP S63103015 A JPS63103015 A JP S63103015A
Authority
JP
Japan
Prior art keywords
molten steel
converter
decarburization
blowing
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24901386A
Other languages
Japanese (ja)
Inventor
Yasunori Muraki
村木 靖徳
Haruyoshi Tanabe
治良 田辺
Masahiro Kawakami
川上 正弘
Junichi Fukumi
純一 福味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP24901386A priority Critical patent/JPS63103015A/en
Publication of JPS63103015A publication Critical patent/JPS63103015A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the efficiency of decarburization of molten steel in the last stage of decarburization and to enhance the yields of iron and manganese by refining the molten steel by blowing in a converter and adding a substance contg. manganese oxide to the molten steel in the converter after decarburization proceeds. CONSTITUTION:Molten steel having a reduced phosphorus content by pretreatment is refined by blowing in a converter. At the time when the concn. of carbon in the molten steel is reduced to a prescribed value by the progress of refining, a solid substance contg. manganese oxide is added to the molten steel in the converter. Since the solid substance is moved in the molten steel over a wide range, the molten steel is efficiently decarburized.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、予備処理して燐含有量を低減させた溶銑を
転炉にて精錬する転炉精錬方法に関し、特に、脱炭末期
における脱炭効率を向上させた転炉精錬方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a converter refining method in which hot metal whose phosphorus content has been pretreated is refined in a converter, and in particular, it relates to a converter refining method in which hot metal whose phosphorus content has been reduced by preliminary treatment is refined in a converter. This invention relates to a converter refining method that improves coal efficiency.

[従来の技術] マンガンMnは鋼における重要な合金成分であり、従来
、転炉吹錬後の溶鋼中にMn含有物質が添加されている
。一方、溶銑中には、0.1%程度の燐が含有されてい
るが、この燐は鋼の材質に悪影響を与えるため、従来、
転炉吹錬中に脱燐剤として石灰石及び軽焼ドロマイト等
の造滓剤を多量に添加して脱燐している。従って、転炉
内には多量のスラグが存在するので、転炉内にMnが添
加されると、その一部がスラグ成分となり、Mn歩留が
低下する。このため、Mnは溶鋼が出鋼された後に合金
鉄として取鍋内に投入される。しかし、合金鉄は高価で
あり製造コストを上昇させる。
[Prior Art] Manganese (Mn) is an important alloying component in steel, and Mn-containing substances have conventionally been added to molten steel after converter blowing. On the other hand, hot metal contains about 0.1% of phosphorus, but this phosphorus has a negative effect on the quality of steel, so conventionally,
During converter blowing, a large amount of sludge-forming agents such as limestone and light calcined dolomite are added as a dephosphorizing agent to dephosphorize. Therefore, since a large amount of slag exists in the converter, when Mn is added to the converter, a part of it becomes a slag component and the Mn yield decreases. For this reason, Mn is charged into the ladle as a ferroalloy after molten steel is tapped. However, ferroalloys are expensive and increase manufacturing costs.

そこで、高価な合金鉄を削減するため、溶銑を予備処理
して燐含有量を減少させておき、転炉にて造滓剤を少量
のみ添加して吹錬し、吹錬前又は吹錬初期から中期にか
けての転炉内にMn鉱石を投入して溶湯にMnを添加す
る技術が提案されている(以下、レススラグ吹錬という
)。この技術においては、溶銑中の燐の含有量が少ない
ため、脱燐剤として転炉内に投入される造滓剤の量が極
めて少量でよい。このため、吹錬中の転炉内にly[n
含有物質を添加しても、スラブjが極めて少ないため、
スラグ中に移行するMnlが少ない。
Therefore, in order to reduce the amount of expensive ferroalloy, the hot metal is pre-treated to reduce the phosphorus content, and the slag-forming agent is added in a small amount in the converter before blowing or at the initial stage of blowing. A technique has been proposed in which Mn ore is added to the molten metal by introducing Mn ore into the converter during the mid- to mid-term period (hereinafter referred to as less slag blowing). In this technique, since the phosphorus content in the hot metal is low, only a very small amount of slag-forming agent is required to be introduced into the converter as a dephosphorizing agent. Therefore, ly[n
Even if the contained substances are added, the slab j is extremely small, so
Less Mnl migrates into the slag.

ま午、吹錬中の転炉内においては、吹錬で使用される酸
素が熱源となるため、Mn含有物質としてMn鉱石を使
用しても、このマンガン鉱石を直接還元することができ
る。従って、この技術により高価な合金鉄の使用量を削
減することができる。
In addition, in the converter during blowing, oxygen used in blowing serves as a heat source, so even if Mn ore is used as the Mn-containing substance, this manganese ore can be directly reduced. Therefore, this technology can reduce the amount of expensive ferroalloy used.

[発明が解決しようとする問題点] しかしながら、脱炭が進み、溶鋼の炭素濃度が低くなる
と、吹錬のための酸素ジェットと′m鋼との衝突面に炭
素が到達する速度が脱炭反応を律速することになるので
溶鋼の炭素濃度の低下に伴い、脱炭速度が低下し、溶鋼
中で脱炭に寄与しない酸素が増加してしまう。従って、
酸素と溶鋼中の鉄Fe及びMnとが反応して生じる酸化
物が増加し、Fe歩留及びl”e歩留が低下してしまう
という問題点がある。
[Problems to be Solved by the Invention] However, as decarburization progresses and the carbon concentration of molten steel decreases, the speed at which carbon reaches the collision surface between the oxygen jet for blowing and the steel becomes decarburized. Therefore, as the carbon concentration of the molten steel decreases, the decarburization rate decreases, and the amount of oxygen that does not contribute to decarburization increases in the molten steel. Therefore,
There is a problem in that the amount of oxides produced by the reaction between oxygen and iron (Fe and Mn) in the molten steel increases, resulting in a decrease in Fe yield and l''e yield.

この発明は斯かる事情に鑑みてなされたものであって、
低炭素域においてもMn歩留、及び、Fe歩留が高い転
炉精錬方法を提供することを目的とする。
This invention was made in view of such circumstances, and
It is an object of the present invention to provide a converter refining method with high Mn yield and high Fe yield even in a low carbon region.

[問題点を解決するための手段〕 この発明に係る転炉Fi&11方法は、予備処理して燐
含有量を低減させた溶銑を転炉にて精錬する転炉精錬方
法であって、脱炭反応が進行して炭素濃度が所定濃度ま
で低下した時点でマンガン酸化物を含有する固体物質を
転炉内の溶鋼に添加することを特徴とする。
[Means for Solving the Problems] The converter Fi & 11 method according to the present invention is a converter refining method in which hot metal whose phosphorus content has been reduced by preliminary treatment is refined in a converter, and the decarburization reaction The method is characterized in that a solid substance containing manganese oxide is added to the molten steel in the converter when the carbon concentration has decreased to a predetermined concentration.

[作用] この発明においては、転炉内でレススラグ吹錬し、脱炭
が進行して炭素濃度が所定量まで減少した時点で酸化マ
ンガンを含有した固体物質を転炉内の溶鋼中に添加する
。そうすると、この物質は溶鋼中を移動し、その過程で
溶鋼中の炭素と反応して脱炭反応が進行するので脱炭効
率が良い。このため、脱炭に寄与しない酸素が減少し、
溶鋼中の炭素1度が減少しても鉄及びマンガンの酸化量
が少ない。従って、鉄歩留及びマンガン歩留が高い。
[Operation] In this invention, less slag blowing is performed in a converter, and when decarburization progresses and the carbon concentration decreases to a predetermined amount, a solid substance containing manganese oxide is added to the molten steel in the converter. . Then, this substance moves through the molten steel and in the process reacts with carbon in the molten steel to advance the decarburization reaction, resulting in good decarburization efficiency. For this reason, oxygen that does not contribute to decarburization is reduced,
Even if the carbon content in molten steel decreases, the amount of oxidation of iron and manganese is small. Therefore, the iron yield and manganese yield are high.

[実施例] 以下、この発明の実施例について具体的に説明する。レ
ススラグ吹錬においては、吹錬前又は吹錬初期から中期
にかけて合金成分として転炉内にMn鉱石が投入される
。このMn鉱石中のMn分は溶鋼とスラグとに分配され
、スラグ中に移行して酸化マンガンMnOになるMnl
はスラグ中の酸化鉄FeO量に依存し、MnOとFeO
との平衡反応は式(1)にて示すことができる。
[Examples] Examples of the present invention will be specifically described below. In less slag blowing, Mn ore is charged into the converter as an alloying component before blowing or during the early to middle stages of blowing. The Mn content in this Mn ore is distributed between molten steel and slag, and migrates into the slag to become manganese oxide MnO.
depends on the amount of iron oxide FeO in the slag, and MnO and FeO
The equilibrium reaction with can be shown by equation (1).

[Mn]+ (Fed)−(MnO)+ [Fe]・・
・(1) 即ち、スラグ中のFeO量が増加すると、スラグ中に移
行してMnOとなるMrlmが増加する。
[Mn] + (Fed) - (MnO) + [Fe]...
- (1) That is, when the amount of FeO in the slag increases, Mrlm that migrates into the slag and becomes MnO increases.

ところで、転炉内での酸素吹錬において、溶鋼中の炭素
濃度が高い場合は、脱炭反応が酸素供給律速であるため
、脱炭速度が速く、スラグ中のFe0fllが実質的に
増加せず、溶鋼のFe歩留及びMn歩留が高く維持され
る。しかし、脱炭反応が進行して溶鋼の炭素含有量が低
下し、脱炭反応が炭素供給律速となると、脱炭速度が低
下する。
By the way, in oxygen blowing in a converter, when the carbon concentration in molten steel is high, the decarburization reaction is rate-limiting by oxygen supply, so the decarburization rate is fast and Fe0fl in the slag does not substantially increase. , Fe yield and Mn yield of molten steel are maintained high. However, as the decarburization reaction progresses and the carbon content of the molten steel decreases, and the decarburization reaction becomes rate-limiting in carbon supply, the decarburization rate decreases.

このため、ランスから供給される酸素のうち脱炭に寄与
する酸素」が減少し、過剰の酸素が増加する。この過剰
な酸素は溶鋼中のFeを酸化させるため、スラグ中のF
e0llが増加してFe歩留が低下し、更に式(1)に
よりスラグ中のMn0Iも増加してMn歩留が低下する
。このため、この実施例においては、溶鋼中の炭素含有
量が所定量(0,3%以下)まで低下した時点(吹錬の
終点より吹錬時間にして5乃至20%手前の時点)で酸
素吹錬を停止し、その後、インジェクションランスを溶
鋼に浸漬させて所定量の粉状又は塊状のMn鉱石を溶鋼
中に吹込む。この場合に、添加すべき全Mn鉱石量のう
ち、残りの炭素を脱炭するのに必要な量をこの吹込みに
使用し、他は吹錬前又は吹錬初期から中期にかけて転炉
内に投入する。
Therefore, of the oxygen supplied from the lance, "oxygen contributing to decarburization" decreases, and excess oxygen increases. This excess oxygen oxidizes Fe in the molten steel, so F in the slag
e0ll increases and the Fe yield decreases, and furthermore, according to equation (1), Mn0I in the slag also increases and the Mn yield decreases. Therefore, in this example, when the carbon content in the molten steel has decreased to a predetermined amount (0.3% or less) (5 to 20% of the blowing time from the end point of blowing), oxygen The blowing is stopped, and then the injection lance is immersed in the molten steel to inject a predetermined amount of powdered or lumpy Mn ore into the molten steel. In this case, out of the total amount of Mn ore to be added, the amount necessary to decarburize the remaining carbon is used for this injection, and the rest is added to the converter before blowing or during the early to middle stages of blowing. throw into.

このように、脱炭末期にMn鉱石を溶鋼中に吹込むこと
により、M、n鉱石が溶鋼中を移動し、その間にMn鉱
石内の酸素が脱炭反応に寄与して脱炭効率が増加する。
In this way, by injecting Mn ore into molten steel at the final stage of decarburization, M and N ores move through the molten steel, and during that time, oxygen in the Mn ore contributes to the decarburization reaction, increasing decarburization efficiency. do.

このため、脱炭に寄与しない酸素量が減少するのでFe
及びMnの酸化量が少なく、Fe歩留及びMn歩留が高
い。
For this reason, the amount of oxygen that does not contribute to decarburization decreases, so Fe
The amount of oxidation of Mn and Mn is small, and the Fe yield and Mn yield are high.

次に、この実膿例の動作について説明する。先ず、高炉
から出銑した溶銑を予備処理して燐含有量を1.01%
にする。そして、この予備処理溶銑を転炉内に挿入して
レススラグ吹錬する。この場合に、吹錬前又は吹錬初期
から中期にかけて転炉内にMn鉱石を投入する。このと
き、溶銑中のスラグが少ないので、予備処理しない溶銑
を使用した場合よりもスラグ中に移行するMn量が少な
くMn歩留が高い。
Next, the operation of this actual example will be explained. First, hot metal tapped from the blast furnace is pre-treated to reduce the phosphorus content to 1.01%.
Make it. Then, this pretreated hot metal is inserted into a converter and subjected to less slag blowing. In this case, Mn ore is charged into the converter before blowing or during the early to middle stages of blowing. At this time, since there is less slag in the hot metal, the amount of Mn transferred into the slag is smaller than when hot metal without pretreatment is used, and the Mn yield is high.

脱炭反応が進行して溶鋼中の炭素濃度が減少すると脱炭
速度が減少し、脱炭に寄与しない酸素が増加する。この
ため、炭素含有量が所定(至)になった時点で転炉吹錬
を停止し、転炉の上方から溶鋼中にインジェクションラ
ンスを浸漬させ、このランスから粉状又は塊状のMn鉱
石をの溶鋼中に吹付ける。そうすると、このMn鉱石は
溶鋼中を移動し、その間にMn鉱石中の酸素と溶鋼中の
炭素とが反応して溶鋼が脱炭される。この場合に、Mn
鉱石は、溶鋼中を広範囲に亘って移動するので、効率良
く溶鋼を脱炭することができる。このため、脱炭末期に
おいて、溶鋼中の炭素濃度が減少しても、脱炭に寄与し
ない酸素の増加量が少ない。従って、溶鋼中の炭素1度
が減少しても、Feの酸化量が少なく、これに伴いMn
の酸化量も少ないので溶鋼中のFe歩留及びMn歩留が
島い。また、溶鋼中に吹込んだMn鉱石のMn分は溶鋼
中の合金成分として有効利用される。
As the decarburization reaction progresses and the carbon concentration in molten steel decreases, the decarburization rate decreases and the amount of oxygen that does not contribute to decarburization increases. For this reason, converter blowing is stopped when the carbon content reaches a predetermined level, and an injection lance is immersed into the molten steel from above the converter, and powdered or lumpy Mn ore is injected from this lance. Spray into molten steel. Then, this Mn ore moves in the molten steel, and during that time, the oxygen in the Mn ore and the carbon in the molten steel react to decarburize the molten steel. In this case, Mn
Since the ore moves over a wide range in the molten steel, the molten steel can be efficiently decarburized. Therefore, even if the carbon concentration in the molten steel decreases at the final stage of decarburization, the amount of oxygen that does not contribute to decarburization increases little. Therefore, even if the carbon content in molten steel decreases, the amount of Fe oxidation is small, and as a result, Mn
Since the amount of oxidation is also small, the Fe yield and Mn yield in the molten steel are low. Moreover, the Mn content of the Mn ore injected into the molten steel is effectively used as an alloying component in the molten steel.

次に、この実施例に係る転炉吹錬方法を実施する具体例
について説明する。250トン転炉において予備処理溶
銑をレススラグ吹錬する。この場合に、吹錬初期に転炉
内にMn鉱石を投入する。
Next, a specific example of implementing the converter blowing method according to this embodiment will be described. The pretreated hot metal is subjected to less slag blowing in a 250-ton converter. In this case, Mn ore is charged into the converter at the initial stage of blowing.

吹錬が進行し溶鋼中の炭素濃度が約0.2%まで低下し
た時点で、転炉の上方に設置された上吹インジェクショ
ンランスから粉状のMn鉱石を溶鋼中に吹込む、この場
合に、吹込みガスとしてアルゴンガスを使用し、ガス流
量を約2000fi/分とする。また、炉底に設置され
たステンレスパイプからアルゴンガスを約10002/
分の流量で溶鋼中に吹込んで溶鋼の攪拌を補助する。こ
のMn鉱石粉の吹込み量は溶鋼1トン当り1乃至101
1とし、吹錬初期に投入したMn鉱石量と合せて溶鋼1
トン当り20乃至40KOになるようにした。第1図は
横軸に溶鋼中の炭素濃度をとり、縦軸に脱炭効率(供給
された酸素の単位重量当りの脱炭量)をとって、溶鋼中
の炭素濃度と一脱炭効率との関係を示すグラフ図である
。図中黒丸は従来方法の場合を示し、白丸はこの具体例
によって転炉精錬した場合を示す。これによれば、従来
の方法の場合には炭素濃度が約0.2%より減少すれば
脱炭効率が低下するが、この具体例の場合には炭素濃度
が0.1%まで減少しても脱炭効率が低下せず、また炭
素濃度が0.1%より減少しても従来よりも脱炭効率が
高い。即ち、この具体例の場合には炭素濃度が0.2%
以下において、従来よりも脱炭効率が著しく向上する。
When the blowing progresses and the carbon concentration in the molten steel drops to about 0.2%, powdered Mn ore is injected into the molten steel from a top blowing injection lance installed above the converter. , Argon gas is used as the blowing gas, and the gas flow rate is about 2000 fi/min. In addition, argon gas is supplied from the stainless steel pipe installed at the bottom of the furnace at approximately 10,002/cm.
It is injected into the molten steel at a flow rate of 100 mL to assist in stirring the molten steel. The amount of Mn ore powder injected is 1 to 101 per ton of molten steel.
1, and combined with the amount of Mn ore introduced at the beginning of blowing, the amount of molten steel is 1.
I tried to get 20 to 40 KOs per ton. In Figure 1, the horizontal axis shows the carbon concentration in molten steel, and the vertical axis shows the decarburization efficiency (amount of decarburization per unit weight of supplied oxygen), and the carbon concentration in molten steel and the decarburization efficiency are plotted on the vertical axis. It is a graph diagram showing the relationship. In the figure, black circles indicate the case of the conventional method, and white circles indicate the case of converter refining according to this specific example. According to this, in the case of the conventional method, the decarburization efficiency decreases if the carbon concentration decreases below about 0.2%, but in this specific example, the carbon concentration decreases to 0.1%. However, the decarburization efficiency does not decrease, and even if the carbon concentration decreases below 0.1%, the decarburization efficiency is higher than that of the conventional method. That is, in this specific example, the carbon concentration is 0.2%.
In the following, the decarburization efficiency is significantly improved compared to the conventional method.

第2図は横軸にスラグ中のFed、Fe203等の全鉄
分濃度(トータルFe濃度)をとり、縦軸にMn歩留を
とってトータルFeとMn歩留との関係を示すグラフ図
である。図中黒丸は従来方法の場合を示し、白丸はこの
具体例によって転炉吹錬した場合を示す。これによれば
、従来方法の場合には脱炭効率が減少してトータルFe
11度が増加することによりMn歩留が約30%まで低
下しているが、この具体例の場合には脱炭効率が高いの
で溶鋼中のトータルFe11度が10%以下となりMn
歩留も70%以上となる。
Figure 2 is a graph showing the relationship between total Fe and Mn yield, with the horizontal axis representing the total iron concentration (total Fe concentration) such as Fed, Fe203, etc. in the slag, and the vertical axis representing the Mn yield. . In the figure, black circles indicate the case of the conventional method, and white circles indicate the case of converter blowing according to this specific example. According to this, in the case of the conventional method, the decarburization efficiency decreased and the total Fe
The Mn yield decreases to about 30% due to the increase in Fe11 degree, but in this specific example, the decarburization efficiency is high, so the total Fe11 degree in the molten steel is less than 10%, and the Mn yield is reduced to about 30%.
The yield is also 70% or more.

なお、この実施例においてはMn1i!化物を含有する
固体物質としてMn鉱石を使用したが、これに限らずフ
ェロマンガン等地の物質を使用することもできる。
In addition, in this example, Mn1i! Although Mn ore is used as the solid material containing the compound, the present invention is not limited to this, and other materials such as ferromanganese may also be used.

[発明の効果] この発明によれば、脱炭末期に溶鋼中に吹込むマンガン
酸化物を含有する固体物質は溶鋼中を広範囲に亘って移
動するので、効率良く溶鋼を脱炭することができる。こ
のため、脱炭末期において、溶鋼中の炭素濃度が減少し
ても、脱炭に寄与しない酸素の増加■が少ない。従って
、鉄の酸化量が少なく、これに伴いマンガン塩も少ない
ので、溶鋼中の炭素濃度が減少しても溶鋼中の鉄歩留及
びマンガン歩留が高い。
[Effects of the Invention] According to the present invention, the solid substance containing manganese oxide, which is injected into the molten steel at the final stage of decarburization, moves over a wide range in the molten steel, so that the molten steel can be efficiently decarburized. . Therefore, at the final stage of decarburization, even if the carbon concentration in the molten steel decreases, the increase in oxygen that does not contribute to decarburization is small. Therefore, since the amount of oxidized iron is small and the amount of manganese salt is also small, the iron yield and manganese yield in the molten steel are high even if the carbon concentration in the molten steel decreases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭素濃度と脱炭効率との関係を示すグラフ図、
第2図はトータルFe31度とMn歩留との関係を示す
グラフ図である。 出願人代理人 弁理士 鈴江武彦 第1図 第2 図
Figure 1 is a graph showing the relationship between carbon concentration and decarburization efficiency.
FIG. 2 is a graph showing the relationship between the total Fe 31 degrees and the Mn yield. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 予備処理して燐含有量を低減させた溶銑を転炉にて精錬
する転炉精錬方法において、脱炭反応が進行して炭素濃
度が所定濃度まで低下した時点でマンガン酸化物を含有
する固体物質を転炉内の溶鋼に添加することを特徴とす
る転炉精錬方法。
In a converter refining method in which hot metal whose phosphorus content has been pretreated is refined in a converter, a solid material containing manganese oxide is produced when the decarburization reaction progresses and the carbon concentration has decreased to a predetermined concentration. A converter refining method characterized by adding to molten steel in a converter.
JP24901386A 1986-10-20 1986-10-20 Refining method in converter Pending JPS63103015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24901386A JPS63103015A (en) 1986-10-20 1986-10-20 Refining method in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24901386A JPS63103015A (en) 1986-10-20 1986-10-20 Refining method in converter

Publications (1)

Publication Number Publication Date
JPS63103015A true JPS63103015A (en) 1988-05-07

Family

ID=17186706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24901386A Pending JPS63103015A (en) 1986-10-20 1986-10-20 Refining method in converter

Country Status (1)

Country Link
JP (1) JPS63103015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074505A (en) * 2007-09-25 2009-04-09 Kubota Corp Engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074505A (en) * 2007-09-25 2009-04-09 Kubota Corp Engine

Similar Documents

Publication Publication Date Title
JPH08225880A (en) Production of and production plant for alloy steel
JPS63103015A (en) Refining method in converter
JP2001288507A (en) Method for producing low phosphorus molten iron
JPS627807A (en) Dephosphorizing method for molten iron
US4190435A (en) Process for the production of ferro alloys
JPS6121285B2 (en)
JPS62109911A (en) Desiliconizing and dephosphorizing method for molten iron
JPS5847450B2 (en) Method for promoting dephosphorization in oxygen top-blown steelmaking process
JPH08134528A (en) Production of extra low carbon steel
SU594181A1 (en) Method of producing stainless steel
JPS6353206A (en) Operational method for high manganese content at blow-end in top-bottom blowing converter
US3304172A (en) Process for the manufacture of low phosphorus pig iron
JPS6114118B2 (en)
JPS62192519A (en) Refining method for molten steel
JPS63157809A (en) Blowing method for converter
JPS55107715A (en) Blowing method of dephosphorizer to bottom blowing converter
RU2114920C1 (en) Method of steel melting in electric-arc furnace
SU819181A1 (en) Method of steel production
JP3680385B2 (en) Demanganese process for hot metal
SU1544812A1 (en) Method of melting steel
JP2005048238A (en) Method for dephosphorizing molten iron
JPS62109912A (en) Desiliconizing and dephosphorizing method for molten iron
JPH0841519A (en) Steelmaking method
JPH0440409B2 (en)
JPH10130711A (en) Turn down operation with high mn yield in converter