JPS63100648A - Magneto-optical information reproducing device - Google Patents

Magneto-optical information reproducing device

Info

Publication number
JPS63100648A
JPS63100648A JP24661886A JP24661886A JPS63100648A JP S63100648 A JPS63100648 A JP S63100648A JP 24661886 A JP24661886 A JP 24661886A JP 24661886 A JP24661886 A JP 24661886A JP S63100648 A JPS63100648 A JP S63100648A
Authority
JP
Japan
Prior art keywords
magneto
recording medium
light
photodetector
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24661886A
Other languages
Japanese (ja)
Other versions
JPH07101525B2 (en
Inventor
Osamu Koyama
理 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24661886A priority Critical patent/JPH07101525B2/en
Priority to US07/106,787 priority patent/US4813032A/en
Priority to DE8787309126T priority patent/DE3783307T2/en
Priority to EP87309126A priority patent/EP0264284B1/en
Publication of JPS63100648A publication Critical patent/JPS63100648A/en
Publication of JPH07101525B2 publication Critical patent/JPH07101525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve C/N in terms of signal detection by using a polarization beam splitter with an optimum polarization characteristic for a magneto-optical information reproducing device and setting the optical axial orientation of a detection means most suitable. CONSTITUTION:A semiconductor laser 21 emits a P polarization luminous flux, and projects a light spot with an intensity I0 to a recording medium 26 through the polarization beam splitter 12. The reflected luminous is modulated to be polarized, and led to a photodetector 27. Here the mean of the intensity of a polarization component which is not subjected to modulation due to an magnetic optical effect is denoted as IR, the mean of the squared fluctuation of intensity in a magneto-optical signal observation frequency as DELTAI<2>, xsi is shown by equiation 1, the luminous energy of light incident on the recording medium 26, is denoted as I0, amplitude reflectance as R, light usage efficiency from the recording medium to a photodetector 29 except for the splitter 12 and a light detection means as epsilon, amplitude transmissivity as tA, a quenching rate as etaA, photoelectric conversion efficiency as (kappa), the thermal noise of an amplification means as T, the band width of a detection signal as DELTAB, amplitude reflectance with respect to the polarization component in the prescribed direction of the splitter 12 as rP, amplitude reflectance with respect to the polarization components in the prescribed and vertical directions and an angle made by the optical axis of the light detection means and the prescribed direction as thetaA. All of them satisfy equations II-IV.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、磁気光学効果を利用して記録媒体に磁気的に
記録された情報を再生する光磁気情報再生装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a magneto-optical information reproducing device that reproduces information magnetically recorded on a recording medium by utilizing the magneto-optical effect.

〔従来技術〕[Prior art]

近年、半導体レーザ光により記録再生を行なう光メモリ
は、高密度記録メモリとして、実用化への研究開発が盛
んである。この内、既に製品化されたコンパクトディス
ク等に代表される再生専用光ディスクやDRAWタイプ
光ディスクとともκ、特に消去・書き換えが可能な光磁
気ディスクが有望視されてきている。光磁気ディスクは
、レーザスポット照射による磁性薄膜の局所的温度上昇
を利用して磁気的に情報を記録し、磁気光学効果(特に
カー効果)により情報を再生するものである。ここでカ
ー効果とは、光が磁気記録媒体によって反射された場合
κ、偏光面が回転する現象をさす。
In recent years, optical memories that perform recording and reproduction using semiconductor laser light have been actively researched and developed for practical use as high-density recording memories. Among these, in addition to read-only optical disks typified by already commercialized compact disks and DRAW type optical disks, magneto-optical disks that are particularly erasable and rewritable are becoming promising. Magneto-optical disks magnetically record information using the local temperature rise of a magnetic thin film caused by laser spot irradiation, and reproduce the information using the magneto-optic effect (particularly the Kerr effect). The Kerr effect here refers to a phenomenon in which the plane of polarization rotates when light is reflected by a magnetic recording medium.

従来の光磁気ディスク装置の基本的構成を第9図に示す
。第9図において、lは半導体レーザ、2はコリメータ
レンズ、llはハーフミラ−14は対物レンズ、6は光
磁気記録媒体、7は検光子、8は集光レンズ、9は光検
出器で、P偏光方向は紙面に平行、S偏光方向は垂直で
ある。
FIG. 9 shows the basic configuration of a conventional magneto-optical disk device. In FIG. 9, l is a semiconductor laser, 2 is a collimator lens, 11 is a half mirror, 14 is an objective lens, 6 is a magneto-optical recording medium, 7 is an analyzer, 8 is a condensing lens, 9 is a photodetector, P The polarization direction is parallel to the plane of the paper, and the S polarization direction is perpendicular.

次κ、上記装置において、光磁気情報を再生する場合に
ついて説明する。半導体レーザ1からP偏光方向の直線
偏光として射出された光束は、コリメータレンズ2によ
り平行光束とされ、ハーフミラ−11を通過する。P偏
光成分振幅透過率をtl・、S偏光成分振幅透過率をt
sとすれば、11においては1tp l”= l ts
 I”=0.5である。光束は、対物レンズ4により、
光磁気記録媒体6上に微小なスポットとして結像される
。媒体6上にあらかじめ磁区(ピット)が形成されてい
る場合には、第1O図に示す様に媒体6からの反射光は
、カー効果によりスポット照射領域の磁化方向(上向き
か又は下向きか)に応じて、各々±θにの偏光面の回転
を受ける。ここで記録媒体6の振幅反射率のP偏光成分
をRSS偏光成分をKとすれば、次式が成り立つ。
Next, the case where magneto-optical information is reproduced in the above device will be explained. The light beam emitted from the semiconductor laser 1 as linearly polarized light in the P polarization direction is converted into a parallel light beam by the collimator lens 2, and passes through the half mirror 11. The amplitude transmittance of the P polarized light component is tl・, and the amplitude transmittance of the S polarized light component is t.
s, in 11, 1tp l"= l ts
I”=0.5.The light beam is transmitted by the objective lens 4,
An image is formed on the magneto-optical recording medium 6 as a minute spot. When magnetic domains (pits) are formed on the medium 6 in advance, the reflected light from the medium 6 is directed in the magnetization direction (upwards or downwards) of the spot irradiation area due to the Kerr effect, as shown in Figure 1O. Accordingly, the plane of polarization is rotated by ±θ, respectively. Here, if the P polarization component of the amplitude reflectance of the recording medium 6 is K and the RSS polarization component is K, the following equation holds true.

光磁気変調された反射光は、対物レンズ4で再び平行光
束とされ、ハーフミラ−11で反射された後、検光子7
で強度変調された光束に変換される。すなわち、第10
図において反射光束は、その振幅の検光子光学軸への正
射影として検光されるので、光磁気媒体への入射光強度
をIo、検光子の光学軸のP偏光方向からの角度θ^を
信号光が最大となる様に45°に設定すれば、カー回転
角±θKに応じて、検光子を透過した光束の強度I十〇
κ、1−θには各々、(2)式のようにあられせる。
The magneto-optically modulated reflected light is again converted into a parallel beam by the objective lens 4, reflected by the half mirror 11, and then passed through the analyzer 7.
is converted into an intensity-modulated luminous flux. That is, the 10th
In the figure, the reflected light flux is analyzed as the orthogonal projection of its amplitude onto the optical axis of the analyzer, so the intensity of the light incident on the magneto-optical medium is Io, and the angle θ^ of the optical axis of the analyzer from the P polarization direction is If the signal light is set at 45° to maximize the signal light, then the intensity of the light flux transmitted through the analyzer I00κ and 1−θ will be calculated as shown in equation (2), depending on the Kerr rotation angle ±θK. make it rain.

θに−10であるから、IRI2)IK12が成り立つ
ので、(2)式は、 ■− とあられせる。(3)式の括弧内箱2項が光磁気変調成
分、第1項が比変調成性である。このように強度変調に
変換された光束は、集光レンズ8を経て、光検出器9に
より光磁気信号として検出される。
Since θ is -10, IRI2)IK12 holds true, so equation (2) can be expressed as -. The second term in the parentheses of equation (3) is the magneto-optical modulation component, and the first term is the ratio modulation property. The light flux converted into intensity modulation in this manner passes through a condenser lens 8 and is detected by a photodetector 9 as a magneto-optical signal.

しかしながら、このような、従来の偏光特性を持たない
ハーフミラ−11を用いた光学系では、以下の様な欠点
があった。
However, such a conventional optical system using a half mirror 11 without polarization characteristics has the following drawbacks.

l)カー回転角θには10 程度であり、これによる光
磁気変調成分は非常に微小な量であるので、偏光特性を
持たないハーフミラ−を通過することにより、光磁気変
調成分の光量が半分以上損なわれ、検出信号のC/N 
(搬送波と雑音との比)が低下する。
l) The Kerr rotation angle θ is approximately 10°, and the resulting magneto-optical modulation component is extremely small, so by passing through a half mirror that does not have polarization characteristics, the amount of light from the magneto-optical modulation component can be halved. C/N of the detection signal is
(ratio of carrier wave to noise) decreases.

2)検出信号に重畳される雑音は、複数の種類があり、
それぞれ異なったθ^依存性をもつので、これらを考慮
せずに信号が最大となるθへ=45゜に検光子光学軸を
設定したのでは、検出信号のC/Nが低下する。
2) There are multiple types of noise superimposed on the detection signal.
Since each has a different θ^ dependence, if the analyzer optical axis is set at 45° toward θ where the signal is maximum without taking these into account, the C/N of the detection signal will decrease.

3)C/Nが低いため、従来の装置は光磁気信号の検出
に複雑な検出系、例えば作動検出や増幅作用をもつ光検
出器(アバランシフォトダイオードなど)を用いた検出
を行なわなければならず、コスト面及び信頼性で不利で
ある。
3) Due to the low C/N, conventional devices must use complex detection systems to detect magneto-optical signals, such as photodetectors with motion detection and amplification functions (such as avalanche photodiodes). However, it is disadvantageous in terms of cost and reliability.

〔発明の概要〕[Summary of the invention]

本発明の目的は、上記従来技術の欠点を改良し、ビンフ
ォートダイオードなどの増幅作用のない安価な光検出器
を用いて、簡単な構成でC/ Nの良好な光磁気信号の
再生が可能な光磁気情報再生装置を提供することにある
The purpose of the present invention is to improve the above-mentioned drawbacks of the prior art, and to enable reproduction of magneto-optical signals with good C/N with a simple configuration using an inexpensive photodetector that does not have an amplifying effect such as a Vinfort diode. The object of the present invention is to provide a magneto-optical information reproducing device.

本発明の上記目的は、光磁気情報再生装置を、所定の方
向に偏光した光束を磁気的に情報が記録された記録媒体
上に照射する手段と、磁気光学効果により前記情報に応
じて偏光状態に変調を受けた前記記録媒体からの反射又
は透過光束を、その偏光成分に応じた所定の割合で反射
および透過する偏光ビームスプリッタと、該偏光ビーム
スプリッタで反射された光束を検光する検光手段と、該
検光手段を透過した光束を光電検出する増幅作用のない
光検出器と、前記光検出器の検出信号を増幅し前記情報
を再生する増幅手段とから構成し、前記偏光ビームスプ
リッタの偏光反射率−透過率特性及び検出手段の光学軸
方位を以下の式を満足するように設定す・ることによっ
て達成される。即ち、光検出器が偏光ビームスプリッタ
の反射光を検出する場合、 、1 、−:“ ) 1r、1″〜1 又、光検出器が偏光ビームスプリッタの透過光を検出す
る場合、 l ts l ”〜1 である。但し、ここで、前記検光手段の光学軸と前記所
定の方向とのなす角度をθA、前記偏光ビームスプリッ
タの前記所定方向の偏光成分に対する振幅反射率及び振
幅透過率を各々rp、  ts、前記所定方向と垂直方
向の偏光成分に対する振幅反射率及び振幅透過率を各々
rS、  t、、前記光検出器に入射する磁気光学効果
により変調を受けない偏光成分強度の平均をTR1光磁
気信信号測周波数におけるこの強度ゆらぎの2乗平均を
△I2R9ξ=△I2+< /馬、前記記録媒体上にお
ける入射光束の光量をI0、前記記録媒体の振幅反射率
をR1前記偏光ビームスプリッタ及び検光手段を除(記
録媒体より光検出器に至る光学系の光利用効率をε、前
記光検出器の光電変換効率をk、光磁気信号観測周波数
における前記増幅手段の熱雑音をT1検出信号のバンド
幅をΔB1前記検光手段の振幅透過率をtA、同じく検
光手段の消光比ηAとした。
The above-mentioned object of the present invention is to provide a magneto-optical information reproducing device with a means for irradiating a light beam polarized in a predetermined direction onto a recording medium on which information is magnetically recorded; a polarizing beam splitter that reflects and transmits the reflected or transmitted light beam from the recording medium modulated by the recording medium at a predetermined ratio according to its polarization component; and an analyzer that analyzes the light beam reflected by the polarization beam splitter. a non-amplifying photodetector for photoelectrically detecting the light beam transmitted through the analyzing means; and an amplifying means for amplifying the detection signal of the photodetector and reproducing the information, and the polarizing beam splitter This is achieved by setting the polarized light reflectance-transmittance characteristics and the optical axis direction of the detection means so as to satisfy the following equation. That is, when the photodetector detects the reflected light of the polarizing beam splitter, , 1 , -: " ) 1r, 1" ~ 1 Also, when the photodetector detects the transmitted light of the polarizing beam splitter, l ts l 1. However, here, the angle between the optical axis of the analyzer and the predetermined direction is θA, and the amplitude reflectance and amplitude transmittance of the polarization beam splitter for the polarized light component in the predetermined direction are rp, ts, respectively, the amplitude reflectance and amplitude transmittance for the polarized light component in the direction perpendicular to the predetermined direction, and rS, t, respectively, the average intensity of the polarized light component that is not modulated by the magneto-optic effect incident on the photodetector. TR1 is the root mean square of this intensity fluctuation at the magneto-optical signal measurement frequency, △I2R9ξ=△I2+< /horse, the light intensity of the incident light beam on the recording medium is I0, and the amplitude reflectance of the recording medium is R1 the polarizing beam splitter. and excluding the light analysis means (the light utilization efficiency of the optical system from the recording medium to the photodetector is ε, the photoelectric conversion efficiency of the photodetector is k, and the thermal noise of the amplification means at the magneto-optical signal observation frequency is T1 detected) The signal bandwidth is ΔB1, the amplitude transmittance of the analyzer is tA, and the extinction ratio of the analyzer is ηA.

〔実施例〕〔Example〕

以下、本発明を図面を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

第1図及び第2図は、本発明に基づく光磁気情報再生装
置の第1実施例を示し、夫々第1図は光学系の概略構成
図、第2図は信号処理回路の概略構成図である。第1図
において、21は半導体レーザ、22はコリメータレン
ズ、12は偏光ビームスプリッタ、24は対物レンズ、
26は光磁気記録媒体、27は検光子、28は集光レン
ズ、29はピントフォトダイオード等の増幅作用のない
光検出器で、P偏光方向は紙面に平行、S偏光方向は垂
直である。また、13は検光子27を透過した光束を示
し、この検出光束13は第2図のように光検出器29で
光電変換され、負荷抵抗16を含む増幅器15によって
電圧増幅されて、端子14より再生信号として出力され
る。
1 and 2 show a first embodiment of a magneto-optical information reproducing apparatus based on the present invention, respectively. FIG. 1 is a schematic configuration diagram of an optical system, and FIG. 2 is a schematic configuration diagram of a signal processing circuit. be. In FIG. 1, 21 is a semiconductor laser, 22 is a collimator lens, 12 is a polarizing beam splitter, 24 is an objective lens,
26 is a magneto-optical recording medium, 27 is an analyzer, 28 is a condensing lens, and 29 is a non-amplifying photodetector such as a focusing photodiode, in which the P polarization direction is parallel to the plane of the paper and the S polarization direction is perpendicular. Further, reference numeral 13 indicates a luminous flux transmitted through the analyzer 27, and this detected luminous flux 13 is photoelectrically converted by a photodetector 29 as shown in FIG. It is output as a playback signal.

上記装置において、半導体レーザ21はP偏光光束を出
射する。この出射光束は、コリメータレンズ22で平行
光となり、偏光ビームスプリッタを透過して、対物レン
ズ24によって記録媒体26上に強度I0の光スポット
として照射される。そして、記録媒体26で反射された
光束は、該記録媒体26に磁気的に記録された情報に応
じて偏光状態に変調を受け、再び対物レンズ24を通っ
て偏光ビームスプリッタ12で反射し、検光子27に導
かれる。検光子27を通過した検出光13は強度変調さ
れ、集光レンズ28を介して光検出器29で受光される
。ここで、前記偏光ビームスプリッタのP偏光及びS偏
光の振幅透過率を各々tp、  ts、振幅反射率を各
々rp、  rSs前記検光子27の振幅透過率をtA
(P、S偏光方向で同等)、消去比をη^とすると、前
記検出光13の強度は、以下の(4)式で表せる。
In the above device, the semiconductor laser 21 emits a P-polarized light beam. This emitted light flux becomes parallel light by the collimator lens 22, passes through the polarizing beam splitter, and is irradiated onto the recording medium 26 by the objective lens 24 as a light spot with an intensity I0. The light beam reflected by the recording medium 26 is modulated in its polarization state according to the information magnetically recorded on the recording medium 26, passes through the objective lens 24 again, is reflected by the polarizing beam splitter 12, and is detected. Guided by photon 27. The detection light 13 that has passed through the analyzer 27 is intensity-modulated and is received by a photodetector 29 via a condenser lens 28 . Here, the amplitude transmittance of the P-polarized light and the S-polarized light of the polarizing beam splitter are tp and ts, respectively, and the amplitude reflectance is rp, rSs, and the amplitude transmittance of the analyzer 27 is tA.
(equivalent in the P and S polarization directions), and when the erasure ratio is η^, the intensity of the detection light 13 can be expressed by the following equation (4).

l Rl”> l K 1*であることを考慮して(4
)式はとあられされる。
Considering that l Rl”> l K 1*, (4
) formula is called.

(5)式は括弧内筒2項が光磁気変調成分、第1項が非
変調成分であり、各々の強度を1K、I+tとおくこと
にする。
In equation (5), the second term in the parentheses is a magneto-optical modulated component, and the first term is a non-modulated component, and the intensities of each are assumed to be 1K and I+t.

Ik〜−1o1tAl”lRI IK l l nl 
l rSl (1−77A) 5in20^(6)!*
〜IoltΔl”lR1”1rpl” (COS2OA
+ 77A  sin”θA)           
(7)なお、入射光■。は所定の光量となる様に偏光ビ
ームスプリッタの振幅透過率tp、 t5にかかわらず
、半導体レーザの出力を調節するものとする。
Ik~-1o1tAl”lRI IK l l nl
l rSl (1-77A) 5in20^(6)! *
~IoltΔl”lR1”1rpl” (COS2OA
+77A sin”θA)
(7) Incident light ■. The output of the semiconductor laser is adjusted so that a predetermined amount of light is obtained, regardless of the amplitude transmittance tp, t5 of the polarizing beam splitter.

このように強度変調された光束は、第2図に示す光検出
器29で光電流に変換される。光電変換効率には、eを
電荷型、hをブランク定数、ρを光検出器の量子効率、
νを光束の振動数として1次式で与えられる。
The light beam intensity-modulated in this way is converted into a photocurrent by a photodetector 29 shown in FIG. For the photoelectric conversion efficiency, e is the charge type, h is the blank constant, ρ is the quantum efficiency of the photodetector,
It is given by a linear equation where ν is the frequency of the light flux.

本発明では、検出信号に重畳される雑音を多数の実験に
より詳細に検討した結果、雑音には以下に示す4種があ
り、それぞれ異なった検光子の方位角角度θΔ依存性を
もつことが判明した。
In the present invention, as a result of detailed examination of the noise superimposed on the detection signal through numerous experiments, it was found that there are four types of noise as shown below, each of which has a different dependence on the azimuth angle θΔ of the analyzer. did.

l)非変調成分光IRの2乗平均強度ゆらぎ△12Rに
起因する雑音 2)変調成分光Iにの2乗平均強度ゆらぎ△I2Kに起
因する雑音 3)光検出器のショット雑音 4)増幅器による熱雑音 1)の△I2Rによる雑音及び2)の△12Kによる雑
音は、記録媒体の表面粗さや不均質性、半導体レー′ 
ザーの強度変動等により生じ、媒体や半導体レーザーな
どの雑音源によって決まる定数を各々、ξ。
l) Noise caused by the root mean square intensity fluctuation Δ12R of the non-modulated component light IR 2) Noise caused by the root mean square intensity fluctuation ΔI2K of the modulated component light I 3) Shot noise of the photodetector 4) Due to the amplifier Thermal noise 1) △I2R noise and 2) △12K noise are caused by surface roughness and non-uniformity of the recording medium, semiconductor laser
ξ is a constant determined by the noise source such as the medium or semiconductor laser, which is caused by fluctuations in the intensity of the laser.

ζ、非変調成分、変調成分の実効値の平均を各々IR、
Tにとすれば、次式が成り立つ。
ζ, the average of the effective values of the non-modulated component and the modulated component are respectively IR,
If T, then the following formula holds true.

△p、シ=ξ告△B(9) △I2に=ζ&△B           (10)但
し、ΔBは検出信号のバンド幅である。
Δp, si=ξ notice ΔB (9) ΔI2=ζ & ΔB (10) However, ΔB is the bandwidth of the detection signal.

△I2Rに起因する雑音、△I2にに起因する雑音、シ
ョット雑音、熱雑音を各々FR,Fκ、  S、  T
とすれば次式であられせる。
The noise caused by △I2R, the noise caused by △I2, shot noise, and thermal noise are respectively FR, Fκ, S, and T.
Then, it can be calculated by the following formula.

FR=ξK” FR八へ            (H
)Fk=ζに2′PKΔB           (1
2)S = 2 e K T R△B        
    (13)但し、kはボルツマン定数、Teは等
価雑音温度、R+は負荷抵抗16の抵抗値である。
FR=ξK” To FR8 (H
) Fk=ζ2′PKΔB (1
2) S = 2 e K T R△B
(13) where k is the Boltzmann constant, Te is the equivalent noise temperature, and R+ is the resistance value of the load resistor 16.

(6)、  (7)式により、検光子光学軸方位角0Δ
及び消光比η八について、光磁気変調成分強度IKは(
1−ηA) 5in2θΔ、非変調成分強度IRはc 
o s2θΔ+η八s i n2θΔの依存性をもつこ
とから、各雑音のθへ依存性は、次の様にあられせる。
From equations (6) and (7), the analyzer optical axis azimuth 0Δ
and extinction ratio η8, the magneto-optical modulation component intensity IK is (
1-ηA) 5in2θΔ, unmodulated component intensity IR is c
Since there is a dependence of o s2θΔ+η8s in2θΔ, the dependence of each noise on θ can be expressed as follows.

FR(X:(COS”θ人士 ηへ5in2θA)2(
15)FK”  (1−17八)  sin”θA(1
6)Soccos2  θ  A +  η  A  
S  i  n”  θ  八           
          (17)T=const    
           (18)これらを用いて、C/
Nをデシベル表示であられせば、次の様になる。
FR(X: (COS”θJinshi η to 5in2θA)2(
15) FK” (1-178) sin”θA(1
6) Soccos2 θ A + η A
S in” θ 8
(17) T=const
(18) Using these, C/
If N is expressed in decibels, it will be as follows.

t (19)式のC/Nは、偏光ビームスプリッタの振幅反
射率rP、  rS及び検光子光学軸のP偏光方向から
の傾きθΔの関数となるので、(19)式を各々Irp
l、1rSl、  θAで偏微分して、極大値を求めて
やればよい。
t Since C/N in equation (19) is a function of the amplitude reflectance rP, rS of the polarizing beam splitter and the tilt θΔ of the analyzer optical axis from the P polarization direction, equation (19) can be expressed as Irp, respectively.
It is sufficient to partially differentiate with respect to l, 1rSl, and θA to find the maximum value.

以下の条件で、C/Nを最大値とする事ができる。The C/N can be maximized under the following conditions.

0<  l rp l”< 1           
       (21)l  rS l”= 1   
                   (22)第3
図は、本発明の第2実施例を示す光学系の概略構成図で
ある。本実施例は前述の第1実施例を偏光ビームスプリ
ッタ−2の透過光束を検出するように変形したもので、
第3図において第1図と同一の部材には同一の符号を付
し、詳細な説明は省略する。また信号処理回路は第2図
に示すものと同様のものを用いることが出来る。
0< l rp l"< 1
(21) l rS l”= 1
(22) Third
The figure is a schematic configuration diagram of an optical system showing a second embodiment of the present invention. This embodiment is a modification of the first embodiment described above so as to detect the transmitted light flux of the polarizing beam splitter 2.
In FIG. 3, the same members as in FIG. 1 are given the same reference numerals, and detailed explanations are omitted. Moreover, the signal processing circuit similar to that shown in FIG. 2 can be used.

本実施例の場合は、半導体レーザー21の偏光方向を、
紙面に垂直なS偏光方向とし、第1図の説明文中で使用
したP、S偏光方向を各々置きかえて考えれば良い。但
し、(4)〜(7)式においては、rl・をts、  
rSをtpと置き換える必要がある。即ち、1K 〜−
1゜l tΔ121 RI K l ts l tp 
l  (1−r) 八) 5in2θA    (24
)N IR−10l tAI ” l Rl ” l ts 
l ”  (cos”θA+  77 へ5in2θA
)     (25)(19)式のC/Nは偏光ビーム
スプリッタの振幅透過率ts、 tr+及び検光子光学
軸のP偏光方向からの傾きθ^の関数となるので、(1
9)式を各々l ts l 。
In the case of this embodiment, the polarization direction of the semiconductor laser 21 is
The S polarization direction may be set perpendicular to the plane of the paper, and the P and S polarization directions used in the explanatory text of FIG. 1 may be replaced. However, in equations (4) to (7), rl・ is ts,
It is necessary to replace rS with tp. That is, 1K ~-
1゜l tΔ121 RI K l ts l tp
l (1-r) 8) 5in2θA (24
)N IR-10l tAI ” l Rl ” l ts
l” (cos”θA+ 77 to 5in2θA
) (25) The C/N in equation (19) is a function of the amplitude transmittance ts, tr+ of the polarizing beam splitter and the tilt θ^ of the analyzer optical axis from the P polarization direction, so (1
9) Each expression l ts l .

l tp l 、  θAで偏微分して極大値を求めて
やればよい。従って、以下の条件でC/Nを最大値とす
る0≦Its・12≦1(27) 1 t p + ! = 1(28) 第4図は、本発明の第3実施例を示す概略図である。第
4図において第1図と同一の部材には同一の符号を付し
、詳細な説明は省略する。本実施例においても、光検出
器29以後の信号処理系は第2図示の如く構成される。
It is sufficient to partially differentiate l tpl and θA to find the maximum value. Therefore, 0≦Its・12≦1(27) 1 t p + ! where C/N is the maximum value under the following conditions. = 1 (28) FIG. 4 is a schematic diagram showing a third embodiment of the present invention. In FIG. 4, the same members as in FIG. 1 are designated by the same reference numerals, and detailed explanations will be omitted. In this embodiment as well, the signal processing system after the photodetector 29 is constructed as shown in the second diagram.

本実施例では、第1実施例の偏光ビームスプリッタ12
の代わりκ、ビーム整形機能を有する偏光ビームスブリ
ツタ23を用いたものである。これにより、楕円形の遠
視野像をもつ半導体レーザー21の光束を、記録媒体2
6上に効率良く円形スポットとして結像することができ
る。また、面aは光検出器29に迷光が入射しない様に
所定の角度傾けである。
In this embodiment, the polarizing beam splitter 12 of the first embodiment is
Instead of κ, a polarizing beam splitter 23 having a beam shaping function is used. As a result, the light beam of the semiconductor laser 21 having an elliptical far-field pattern is transferred to the recording medium 2.
6 can be efficiently imaged as a circular spot. Further, the surface a is inclined at a predetermined angle so that stray light does not enter the photodetector 29.

記録媒体26上にはトラッキング用の集光された溝(不
図示)が紙面に垂直方向に形成されており、対物レンズ
24により記録媒体26上に集光された光束は、この溝
より回折される。25は、トラックずれによって生ずる
±1次回折光のアンバランスを検出するための光検出器
であり、対物レンズ24の開口周縁に固定されている。
A focusing groove (not shown) for tracking is formed on the recording medium 26 in a direction perpendicular to the paper surface, and the light beam focused on the recording medium 26 by the objective lens 24 is diffracted by this groove. Ru. A photodetector 25 is fixed to the periphery of the aperture of the objective lens 24 for detecting an imbalance of ±1st-order diffracted light caused by track deviation.

このため対物レンズ24がトラック溝と垂直方向に移動
しても、トラッキングエラー信号にオフセットを生じな
い利点がある。
Therefore, even if the objective lens 24 moves in a direction perpendicular to the track groove, there is an advantage that no offset occurs in the tracking error signal.

光検出器29はSi−ビンフォトダイオードなどの増幅
作用のない光検出器であり、光磁気信号及びフォーカス
エラー信号の検出を行う。フォーカスエラー検出には公
知の方法を用いるが、本発明との直接の関係はないので
詳細な説明は省略する。
The photodetector 29 is a photodetector without an amplification effect, such as a Si-bin photodiode, and detects a magneto-optical signal and a focus error signal. A known method is used for focus error detection, but since it has no direct relation to the present invention, detailed explanation will be omitted.

第1図の説明においては、信号レベル低下は、記録媒体
及び光学系により生じないとしたが、実際の光学系でC
/Nを正確に予想するうえでは、考慮しなければぼらな
い。信号レベル低下の原因としては、次の2点が考えら
れる。
In the explanation of Figure 1, it is assumed that the signal level drop does not occur due to the recording medium and optical system, but in an actual optical system,
In order to accurately predict /N, it is necessary to take this into account. The following two points can be considered as causes of the signal level drop.

l)光量損失(吸収やケラレによる振幅の低下)2)P
−3偏光間位相差 光磁気変調成分強度の低下にはl)及び2)が寄与し、
非変調成分強度の低下にはl)のみが寄与する。
l) Light amount loss (decrease in amplitude due to absorption and vignetting) 2) P
−3 l) and 2) contribute to the decrease in the intensity of the magneto-optical modulation component due to the phase difference between polarizations,
Only l) contributes to the reduction of the unmodulated component strength.

光磁気非変調成分強度の低下(光量の損失)を評価する
ため、光利用効率εr(を定義する。本発明では、光利
用高率として記録媒体上の先口と光検出器に到達する光
量の比に注目していることに注意されたい。本実施例で
はεRを求める際に以下の点を考慮した。
In order to evaluate the decrease in the intensity of the magneto-optical non-modulated component (loss of light amount), the light utilization efficiency εr is defined. In the present invention, the light utilization efficiency is defined as the amount of light reaching the tip of the recording medium and the photodetector. Please note that we are focusing on the ratio of εR.In this example, the following points were taken into consideration when determining εR.

l)トラッキング用溝(ピッチ1.6μmX深さλ/8
、λ= 835 n m )からの回折光が対物レンズ
入射瞳内に入射する割合、これを光利用効率ε。とする
l) Tracking groove (pitch 1.6 μm x depth λ/8
, λ = 835 nm) that enters the objective lens entrance pupil, this is called the light utilization efficiency ε. shall be.

2)記録媒体から光検出器に至る光路中にある偏光ビー
ムスプリッタ及び検光子を除くn個の光学素子のP偏光
方向振幅透過率(または反射率)の2乗の光路に沿った
積を考え、光利用効率ε1とする。i番目の光学素子の
振幅透過率をtel、反射率をγPとすれば、ε1は次
式であらゎせる。
2) Consider the product along the optical path of the square of the amplitude transmittance (or reflectance) in the P polarization direction of n optical elements excluding the polarizing beam splitter and analyzer in the optical path from the recording medium to the photodetector. , light utilization efficiency ε1. If the amplitude transmittance of the i-th optical element is tel and the reflectance is γP, ε1 can be expressed by the following equation.

ε+=  II  ltp+l”          
    (30)m1 (30)式においてi番目の光学素子で光束が反射され
る場合にはl tp+ l”のかわりにIrr’i l
”を代入すればよい。なお、偏光ビームスプリッタの偏
光特性1rpl”及び検光子の透過率はC/N計算の際
変化量として取り扱うので、εlから除外しである。
ε+=II ltp+l”
(30) m1 In equation (30), when the luminous flux is reflected by the i-th optical element, Irr'i l instead of l tp+ l''
Note that the polarization characteristic 1rpl of the polarizing beam splitter and the transmittance of the analyzer are treated as the amount of change in the C/N calculation, so they are excluded from εl.

1)、2)より光磁気非変調成分の光利用効率εRは次
式であられせる。
From 1) and 2), the light utilization efficiency εR of the magneto-optical non-modulated component can be calculated by the following equation.

εR:ε0εl             (31)次
に光磁気変調成分の強度低下を考える。そのためには光
量損失の他にp−s偏光間の位相差について考慮しなけ
ればならない。例えば、第5図に示す様に記録媒体から
の反射光は、−膜内には第10図で示した様な直線偏光
ではなく、P偏光成分とS偏光成分の間に生ずる位相差
により、長袖がカー回転角θにだけ傾いた楕円偏光とな
ることが知られている。即ち、記録媒体の振幅反射率の
P、s偏光成分R,Kは(32)式の様にあられせる。
εR: ε0εl (31) Next, consider the decrease in the intensity of the magneto-optical modulation component. For this purpose, it is necessary to consider the phase difference between the p and s polarized lights in addition to the light amount loss. For example, as shown in FIG. 5, the reflected light from the recording medium is not linearly polarized light inside the film as shown in FIG. It is known that long sleeves produce elliptically polarized light tilted only by the Kerr rotation angle θ. That is, the P, s polarization components R, K of the amplitude reflectance of the recording medium are expressed as shown in equation (32).

但し、α0.β0は各振幅反射率の位相成分である。However, α0. β0 is the phase component of each amplitude reflectance.

この場合カー回転角θには、 とあられせる。Δo=nπ(n=整数)ならば記録媒体
からの反射光は直線偏光となるが、それ以外の場合には
θにを減少させ好ましくない。
In this case, the Kerr rotation angle θ is expressed as follows. If Δo=nπ (n=integer), the reflected light from the recording medium becomes linearly polarized light, but in other cases, θ decreases, which is not preferable.

光学素子についても全く同様なことがいえて、本実施例
では光磁気変調成分の強度低下を評価するため、光利用
効率εKを定義し、εKを求める際以下の点を考慮した
The same thing can be said about optical elements, and in this example, in order to evaluate the decrease in the intensity of the magneto-optical modulation component, the light utilization efficiency εK was defined, and the following points were taken into consideration when calculating εK.

即ち、光磁気変調成分に対しては、記録媒体から光検出
器に至る光路中にある偏光ビームスプリッタ及び検光子
を除くn個の光学素子のP、S偏光方向振幅透過率(ま
たは反射率)の光路に沿った積を考え、光利用効率ε2
とする。i番面の光学素子のP、S偏光方向振幅透過率
を夫々tp+、 t3B (反射率ならrr’i、  
rSi)とすれば、次式が成り立つ。
That is, for the magneto-optical modulation component, the amplitude transmittance (or reflectance) in the P and S polarization directions of n optical elements excluding the polarizing beam splitter and analyzer in the optical path from the recording medium to the photodetector Considering the product along the optical path of , the light utilization efficiency ε2
shall be. The amplitude transmittance in the P and S polarization directions of the optical element on the i-th surface are respectively tp+ and t3B (for reflectance, rr'i,
rSi), the following equation holds true.

(34)式を用いてε2を次式の様にあらあす。Using equation (34), calculate ε2 as shown in the following equation.

1冒1                1禦1(35
)式において、i番目の光学素子で光束が反射される場
合にはl tp+ l 、  l tst lのかわり
κ、lr+・+1.lrS口と代入すればよい。なお偏
光ビームスプリッタの偏光特性及び検光子の透過率はC
/N計算の際に変化nとして取り扱うのでε2から除外
しである。
1 Era 1 1 Era 1 (35
), when the luminous flux is reflected by the i-th optical element, instead of l tp+ l, l tst l, κ, lr+·+1. Just substitute lrS口. The polarization characteristics of the polarizing beam splitter and the transmittance of the analyzer are C
/N Since it is handled as a change n during calculation, it is excluded from ε2.

これより光磁気変調成分の利用効率εには次式であられ
される。
From this, the utilization efficiency ε of the magneto-optical modulation component is given by the following equation.

εに=ε0εI(36) 偏光ビームスプリッタに関しては、P、S偏光方向振幅
1反対重を各々γP、γSとすれば、但し、γ、δは各
振幅反射率の位相成分である。
ε=ε0εI (36) Regarding the polarizing beam splitter, let γP and γS be the amplitude 1 opposite gravity in the P and S polarization directions, respectively, where γ and δ are the phase components of each amplitude reflectance.

以上より光磁気変調成分、非変調成分の強度を各々Iκ
、  IRとすれば、 1K 〜−1oε(1’ zlrpl 1rSl IR
I IKI(1n A) 5in2θA COS (Σ
Δ、+Δrns)  (38)1冒I IRN Ioε0εr・ 1rpl”lR1”  (c
os2θA十 ηA sin”θA)=10e n l
 rp l ” l Rl ” (cos”θへ+ r
)Asin”θA)     (39)とあられされる
From the above, the intensities of the magneto-optical modulated component and non-modulated component are respectively Iκ
, IR, then 1K ~-1oε(1' zlrpl 1rSl IR
I IKI (1n A) 5in2θA COS (Σ
Δ, +Δrns) (38) 1 IRN Ioε0εr・1rpl”lR1” (c
os2θA ηA sin”θA)=10e n l
rp l ” l Rl ” (to cos”θ + r
) Asin”θA) (39)

(38)、(39)式を(19)式に代入して、C/N
を最大とする偏光ビームスプリッタの偏光特性及び検光
子の光学軸のP偏光方向からの角度θAを求めると次の
様になる。
Substituting equations (38) and (39) into equation (19), C/N
The polarization characteristics of the polarizing beam splitter and the angle θA of the optical axis of the analyzer from the P polarization direction that maximize the value are as follows.

0≦l rp l”< 1             
 (41)l rS l”= 1          
     (42)以下に計算条件を示す。
0≦l rp l”< 1
(41) l rS l”= 1
(42) The calculation conditions are shown below.

半導体レーザ21はS波長λ=835nmであり、記録
媒体26上で入射光量1o=2xlO−”Wとなる様κ
、偏光ビームスプリッタ透過率l tp l”にかかわ
らず出力を調節されている。
The semiconductor laser 21 has an S wavelength λ=835 nm, and the amount of incident light on the recording medium 26 is κ such that 1o=2xlO−”W.
, the output is adjusted regardless of the polarization beam splitter transmittance l tp l''.

記録媒体26にはGd Tb Fe Coが用いられ、
lR12=O,12、θに=0.74°p、  s偏光
方向振幅反射率の位相成分α0.R0の位相差△0は△
o=20°である。
Gd Tb Fe Co is used for the recording medium 26,
lR12=O,12, θ=0.74°p, phase component α0 of amplitude reflectance in s polarization direction. The phase difference △0 of R0 is △
o=20°.

光利用効率ε0はトラッキング用溝(ピッチ1.6μm
、深さλ/8)からの回折光をN 、 A 、 = 0
 、5の対物レンズで受ける場合、εo=0.6となる
。光利用効率εlは記録媒体から光検出器に至る光路中
にある偏光ビームスプリッタ及び検光子を除(光学素子
の透過率の積を考えεr = 0 、 i 9となる。
The light utilization efficiency ε0 is the tracking groove (pitch 1.6 μm
, depth λ/8) as N , A , = 0
, 5, εo=0.6. The light utilization efficiency εl is obtained by subtracting the polarizing beam splitter and analyzer in the optical path from the recording medium to the photodetector (considering the product of the transmittance of the optical elements, εr = 0, i9).

光利用効率ε2は、記録媒体から光検出器に至る光路中
にある偏光ビームスプリッタ及び検光子を除く光学素子
のP、S振幅透過率の積を考えればよい。本実施例では
透過の際にP−8偏光に位相差を与える光学素子はない
のでε2″= cos (X△i) =1.1電1 また1、I tp+ l = l tst lであるか
らε2=0.79となる。
The light utilization efficiency ε2 can be determined by considering the product of the P and S amplitude transmittances of optical elements other than the polarizing beam splitter and analyzer in the optical path from the recording medium to the photodetector. In this example, there is no optical element that gives a phase difference to the P-8 polarized light during transmission, so ε2''= cos (X△i) = 1.1 electron 1 Also, 1, since I tp+ l = l tst l. ε2=0.79.

光検出器25は、光電変換効率に=0.54のSi −
ピンフォトダイオードである。記録媒体や半導体レーザ
ーなどの雑音源によって決まる定数ξ及びζは、各々以
下の様に与えられる。
The photodetector 25 has a photoelectric conversion efficiency of =0.54 Si −
It is a pin photodiode. Constants ξ and ζ determined by noise sources such as the recording medium and semiconductor laser are given as follows.

ξ=2X10−”  (R,1,N、)ζ=IX10−
”  (R,1,N、)また、熱雑音Tは、ボルツマン
定数K = 1.38 X 10−”、等価雑音温度T
e=300 [K]、負荷抵抗R+=IXIO’〔Ω〕
、信号検出のバンド幅ΔB=3X10’ (1/Hz)
として、T = 5 X 10−”と与えられる。なお
、光検出器のもつ容量などにより熱雑音Tは(14)式
の様な簡単な形で記述できないこともあるので、そのよ
うな場合はこれに従う必要はない。検光子の透過率l 
を八l”=0.84、消光比77Δ=lXIO−3であ
る。
ξ=2X10-” (R,1,N,)ζ=IX10-
” (R, 1, N,) Also, the thermal noise T is Boltzmann constant K = 1.38 x 10-”, equivalent noise temperature T
e=300 [K], load resistance R+=IXIO' [Ω]
, signal detection bandwidth ΔB=3X10' (1/Hz)
, it is given as T = 5 There is no need to follow this.The transmittance of the analyzer l
8l''=0.84, extinction ratio 77Δ=lXIO-3.

第6図は(40) 、  (41) 、  (42’)
式で与えられる偏光特性、l rp 12=o、ts、
  l rS l”=1をもった偏光ビームスプリッタ
を用いた本実施例(実線で示す)とハーフミラ−を用い
た従来の装置(一点鎖線で示す)のC/Nを比較したも
のである。縦軸はC/N、横軸は検光子光学軸のP偏光
方向がらの角度θAである。本実施例ではθ^= 79
.9°でC/Nが最大となり、ハーフミラ−を用い、θ
へ=45° で信号検出を行う従来装置と比較して、1
2dB以上C/Nが向上している。またハーフミラ−を
用いた場合も、C/Nを最大とするθ^= 83.9°
が存在するが、本実施例は、それよりも3dB以上C/
Nが向上している。θAを75°〜85° とすれば、
ハーフミラ−を用いた従来装置と比較して十分良好なC
/Nが得られた。
Figure 6 shows (40), (41), (42')
The polarization characteristic given by the formula, l rp 12=o, ts,
This figure compares the C/N of this embodiment (shown by the solid line) using a polarizing beam splitter with l rS l''=1 and the conventional device using a half mirror (shown by the dashed-dotted line). The axis is C/N, and the horizontal axis is the angle θA from the P polarization direction of the analyzer optical axis. In this example, θ^ = 79
.. C/N is maximum at 9°, and using a half mirror, θ
Compared to a conventional device that detects signals at an angle of 45°,
The C/N has improved by more than 2 dB. Also, when using a half mirror, θ^ = 83.9° to maximize C/N.
However, in this embodiment, the C/
N has improved. If θA is 75° to 85°,
Sufficiently good C compared to conventional equipment using a half mirror
/N was obtained.

第7図は、偏光ビームスプリッタの偏光特性lrI・I
2とC/Nの関係を示す図である。縦軸はC/N、横軸
は1rPl 2であり、いずれも1rSl””+  θ
へ=79.9° としである。これより、l rP l
”を0.08〜0.4とすればハーフミラ−を用いた従
来装置と比較して、十分良好なC/Nが得られた。
Figure 7 shows the polarization characteristics lrI・I of the polarization beam splitter.
2 is a diagram showing the relationship between C/N and C/N. The vertical axis is C/N, and the horizontal axis is 1rPl 2, both of which are 1rSl""+ θ
= 79.9°. From this, l rP l
When `` is set to 0.08 to 0.4, a sufficiently good C/N can be obtained compared to a conventional device using a half mirror.

なお、本実施例では偏光ビームスプリッタにより生じる
P−S偏光方向間位相差△pnsはいずれの場合も△z
+5=160° となっており、記録媒体で生ずる位相
差△ との間に △0+△=π            (44)なる関
係がある。これにより光磁気変調成分強度低下を防止し
ている。このような偏光特性の偏光ビームスプリッタを
作製することは容易である。
In addition, in this example, the phase difference △pns between the P and S polarization directions caused by the polarization beam splitter is △z
+5=160°, and there is a relationship Δ0+Δ=π (44) with the phase difference Δ generated in the recording medium. This prevents a decrease in the intensity of the magneto-optical modulation component. It is easy to manufacture a polarizing beam splitter with such polarization characteristics.

第8図(A)、(B)は夫々本発明の第4実施例を示す
概略図であり、(B)は(A)を矢印A方向から見た図
を示している。第8図(A)、(B)において第4図と
同一の部材には同一の符号を付し、詳細な説明は省略す
る。本実施例においても、光検出器29以後の信号処理
系は、第2図示の如く構成される。本実施例は第3実施
例の偏光ビームスプリッタ23の代わりκ、偏光ビーム
スプリッタ10を用い、この偏光ビームスプリッタ10
の透過光を検出するように構成したものである。偏光ビ
ームスプリッタlOの面すは、光検出器29に迷光が入
射しない様に所定の角度傾けである。
8(A) and 8(B) are schematic diagrams showing a fourth embodiment of the present invention, respectively, and FIG. 8(B) shows a view of FIG. 8(A) viewed from the direction of arrow A. In FIGS. 8(A) and 8(B), the same members as in FIG. 4 are designated by the same reference numerals, and detailed explanations will be omitted. In this embodiment as well, the signal processing system after the photodetector 29 is configured as shown in the second diagram. In this embodiment, a polarizing beam splitter 10 is used instead of the polarizing beam splitter 23 of the third embodiment.
The device is configured to detect transmitted light. The face of the polarizing beam splitter IO is inclined at a predetermined angle so that stray light does not enter the photodetector 29.

本実施例では、第4図の説明文中で使用したP。In this example, P is used in the explanatory text of FIG.

S偏光方向を、各々置き換えて考えれば良い。但し、(
34)、  (35)式においてはrpをtssrSを
tpと置き換えてやる必要がある。即ち、光磁気変調成
分、非変調成分の強度を各々Iκ、  IRとすれば1
K 〜 −1oεoe’  21tsl  1tpl 
 IRI  IKI  (1−η八)汀 5in2θ^・cos (Σ△1+△高)      
 (45)1+O IR−1o εOεI l ts l ” l Rl 
” (cos”θA+η^sinθA)       
(46)とあられせる。
The S-polarization direction may be replaced with each other. however,(
34), In equations (35), it is necessary to replace rp with tssrS and tp. That is, if the intensities of the magneto-optical modulated component and non-modulated component are Iκ and IR, respectively, then 1
K ~ -1oεoe' 21tsl 1tpl
IRI IKI (1-η8) 5in2θ^・cos (Σ△1+△high)
(45) 1+O IR-1o εOεI l ts l ” l Rl
” (cos”θA+η^sinθA)
(46) It will rain.

(45)、(46)式を(19)式に代入しテc/Nを
最大とする偏光ビームスプリッタの偏光特性及び検光子
の光学軸のP偏光方向からの角度は、0≦l ts l
”< 1            (48)l tp 
l”= 1              (49)計算
条件を同一にとれば、第6図、第7図番こ示した結果と
同様のものが得られる。但し、横車由;まl ts l
”となる。
Substituting equations (45) and (46) into equation (19), the polarization characteristics of the polarizing beam splitter and the angle from the P polarization direction of the optical axis of the analyzer that maximize t c/N are 0≦l ts l
”< 1 (48)l tp
l''= 1 (49) If the calculation conditions are the same, results similar to those shown in Figures 6 and 7 can be obtained.
” becomes.

なお、記録媒体で生ずるP−S偏光方向間位1目差を補
償するような偏光特性をもつこのような偏光ビームスプ
リッタを作製することは容易である。
Incidentally, it is easy to manufacture such a polarizing beam splitter having polarization characteristics that compensate for the one-disc difference between the P and S polarization directions that occurs in the recording medium.

本発明は、以上説明した実施例の仕置こも種々の応用が
可能である。例えば、実施例で(ま光磁気記録媒体の反
射光を検出したが、光磁気記録媒体を透過して、ファラ
デー効果によって変調を受番すた光束を検出するように
構成しても良シA0〔発明の効果〕 以上説明したようκ、本発明は従来の光磁気情報再生装
置において、最適な偏光特性を持ツtこ偏光ビームスプ
リッタを用い、検光手段の光学軸方位を最適に設定する
ことにより、信号検出のC/Nを向上させる効果を有す
る。更には、本発明により高いC/Nが得られるので、
従来の装置の様な複雑な検出系が不要となり、装置の信
頼性を高め、且つ、製造コストを低減することが出来る
The present invention can be applied in various ways including the embodiments described above. For example, although the reflected light from the magneto-optical recording medium was detected in the embodiment, it may also be configured to detect the light flux that passes through the magneto-optical recording medium and is modulated by the Faraday effect. [Effects of the Invention] As explained above, the present invention uses a polarizing beam splitter with optimal polarization characteristics in a conventional magneto-optical information reproducing device to optimally set the optical axis direction of the analyzer. This has the effect of improving the C/N of signal detection.Furthermore, since a high C/N can be obtained by the present invention,
A complicated detection system like the conventional device is not required, and the reliability of the device can be improved and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光学系を示す概略図、第2
図は第1図示の実施例の信号処理系を示す概略図、第3
図及び第4図は夫々本発明の他の実施例を示す概略図、
第5図は光磁気記録媒体からの反射光の偏光状態を示す
図、第6図及び第7図は夫々本発明における検光子の光
学軸方位及び偏光ビームスプリッタの偏光特性とC/N
との関係を示す図、第8図(A)、(B)は夫々本発明
の更に他の実施例を示す概略図、第9図は従来の光磁気
情報再生装置の例を示す概略図、第10図は一般的な光
磁気信号検出の原理を示す図である。 12・・・偏光ビームスプリッタ、13・・・検出光、
21・・・半導体レーザ、  22・・・コリメータレ
ンズ、24・・・対物レンズ、   26・・・光磁気
記録媒体、27・・・検光子、     28・・・集
光レンズ、29・・・光検出器。
FIG. 1 is a schematic diagram showing an optical system according to an embodiment of the present invention, and FIG.
The first figure is a schematic diagram showing the signal processing system of the embodiment shown in the third figure.
and FIG. 4 are schematic diagrams showing other embodiments of the present invention, respectively.
FIG. 5 is a diagram showing the polarization state of reflected light from the magneto-optical recording medium, and FIGS. 6 and 7 are the optical axis direction of the analyzer and the polarization characteristics and C/N of the polarizing beam splitter in the present invention, respectively.
FIGS. 8A and 8B are schematic diagrams showing still other embodiments of the present invention, and FIG. 9 is a schematic diagram showing an example of a conventional magneto-optical information reproducing device. FIG. 10 is a diagram showing the principle of general opto-magnetic signal detection. 12... Polarizing beam splitter, 13... Detection light,
21... Semiconductor laser, 22... Collimator lens, 24... Objective lens, 26... Magneto-optical recording medium, 27... Analyzer, 28... Condensing lens, 29... Light Detector.

Claims (2)

【特許請求の範囲】[Claims] (1)所定の方向に偏光した光束を磁気的に情報が記録
された記録媒体上に照射する手段と、磁気光学効果によ
り前記情報に応じて偏光状態に変調を受けた前記記録媒
体からの反射又は透過光束を、その偏光成分に応じた所
定の割合で反射および透過する偏光ビームスプリッタと
、該偏光ビームスプリッタで反射された光束を検光する
検光手段と、該検光手段を透過した光束を光電検出する
増幅作用のない光検出器と、前記光検出器の検出信号を
増幅し前記情報を再生する増幅手段とから成り、前記光
検出器に入射する磁気光学効果により変調を受けない偏
光成分強度の平均を@I@_R、光磁気信号観測周波数
におけるこの強度ゆらぎの2乗平均をΔI^2_R、ξ
=ΔI^2_R/@I^2@_R、前記記録媒体上にお
ける入射光束の光量をI_0、前記記録媒体の振幅反射
率をR、前記偏光ビームスプリッタ及び検光手段を除く
記録媒体より光検出器に至る光学系の光利用効率をε、
前記検光手段の振幅透過率をt_A、同じく検光手段の
消光比をη_A、前記光検出器の光電変換効率をκ、光
磁気信号観測周波数における前記増幅手段の熱雑音をT
、検出信号のバンド幅をΔBとした時、前記偏光ビーム
スプリッタの前記所定方向の偏光成分に対する振幅反射
率r_P、前記所定方向と垂直方向の偏光成分に対する
振幅反射率r_S及び前記検光手段の光学軸と前記所定
の方向とのなす角度θ_Aが夫々以下の条件、 |r_P|^2〜√{[T/(ξ・ΔB)]・/(k・
ε|t_A|^2|R|^2I_0)}、0≦|r_P
|^2≦1|r_S|^2〜1 sinθ_A〜1/{√[1+√(ηA)]}を満足す
ることを特徴とした光磁気情報再生装置。
(1) A means for irradiating a recording medium on which information is magnetically recorded with a light beam polarized in a predetermined direction, and reflection from the recording medium whose polarization state is modulated according to the information by the magneto-optic effect. or a polarizing beam splitter that reflects and transmits the transmitted light beam at a predetermined ratio according to its polarization component, an analysis means that analyzes the light beam reflected by the polarization beam splitter, and a light beam that has passed through the analysis means. a non-amplifying photodetector that photoelectrically detects polarized light that is not modulated by the magneto-optic effect that is incident on the photodetector, and an amplification means that amplifies the detection signal of the photodetector and reproduces the information. The average of the component intensities is @I@_R, and the square mean of this intensity fluctuation at the magneto-optical signal observation frequency is ΔI^2_R, ξ
=ΔI^2_R/@I^2@_R, the light intensity of the incident light beam on the recording medium is I_0, the amplitude reflectance of the recording medium is R, the photodetector is from the recording medium excluding the polarizing beam splitter and the analyzing means. The light utilization efficiency of the optical system leading to ε,
The amplitude transmittance of the analyzing means is t_A, the extinction ratio of the analyzing means is η_A, the photoelectric conversion efficiency of the photodetector is κ, and the thermal noise of the amplifying means at the magneto-optical signal observation frequency is T.
, when the bandwidth of the detection signal is ΔB, the amplitude reflectance r_P of the polarizing beam splitter for the polarized light component in the predetermined direction, the amplitude reflectance r_S of the polarized light component in the direction perpendicular to the predetermined direction, and the optics of the analyzer. The angle θ_A between the axis and the predetermined direction is under the following conditions, |r_P|^2~√{[T/(ξ・ΔB)]・/(k・
ε|t_A|^2|R|^2I_0)}, 0≦|r_P
A magneto-optical information reproducing device characterized by satisfying |^2≦1|r_S|^2~1 sin θ_A~1/{√[1+√(ηA)]}.
(2)所定の方向に偏光した光束を磁気的に情報が記録
された記録媒体上に照射する手段と、磁気光学効果によ
り前記情報に応じて偏光状態に変調を受けた前記記録媒
体からの反射又は透過光束を、その偏光成分に応じた所
定の割合で反射および透過する偏光ビームスプリッタと
、該偏光ビームスプリッタを透過した光束を検光する検
光手段と、該検光手段を透過した光束を光電検出する増
幅作用のない光検出器と、前記光検出器の検出信号を増
幅し前記情報を再生する増幅手段とから成り、前記光検
出器に入射する磁気光学効果により変調を受けない偏光
成分強度の平均を@I@_R、光磁気信号観測周波数に
おけるこの強度ゆらぎの2乗平均をΔI^2_R、ξ=
ΔI^2_R /@I^2@_R、前記記録媒体上にお
ける入射光束の光量をI_0、前記記録媒体の振幅反射
率をR、前記偏光ビームスプリッタ及び検光手段を除く
記録媒体より光検出器に至る光学系の光利用効率をε、
前記検光手段の振幅透過率をt_A、同じく検光手段の
消光比をη_A、前記光検出器の光電変換効率をκ、光
磁気信号観測周波数における前記増幅手段の熱雑音をT
、検出信号のバンド幅をΔBとした時、前記偏光ビーム
スプリッタの前記所定方向の偏光成分に対する振幅透過
率t_S、前記所定方向と垂直方向の偏光成分に対する
振幅透過率t_P及び前記検光手段の光学軸と前記所定
の方向とのなす角度θAが夫々以下の条件、 |t_S|^2〜√{[T/(ξ・ΔB)]・[1/(
k・ε|t_A|^2|R|^2I_0)]}、0≦|
t_S|^2≦1|t_S|^2〜1 sinθ_A〜1/{√[1+√(ηA)]}を満足す
ることを特徴とした光磁気情報再生装置。
(2) A means for irradiating a recording medium on which information is magnetically recorded with a light beam polarized in a predetermined direction, and reflection from the recording medium whose polarization state is modulated according to the information by the magneto-optic effect. Alternatively, a polarizing beam splitter that reflects and transmits the transmitted light beam at a predetermined ratio according to its polarization component, an analysis means that analyzes the light beam that has passed through the polarization beam splitter, and an analysis means that analyzes the light beam that has passed through the analysis means. It consists of a photodetector that performs photoelectric detection without an amplification effect, and an amplification means that amplifies the detection signal of the photodetector and reproduces the information, and the polarized light component that is incident on the photodetector is not modulated by the magneto-optic effect. The average intensity is @I@_R, the square mean of this intensity fluctuation at the magneto-optical signal observation frequency is ΔI^2_R, ξ=
ΔI^2_R /@I^2@_R, the light intensity of the incident light beam on the recording medium is I_0, the amplitude reflectance of the recording medium is R, from the recording medium excluding the polarizing beam splitter and the analyzing means to the photodetector. The light utilization efficiency of the optical system is ε,
The amplitude transmittance of the analyzing means is t_A, the extinction ratio of the analyzing means is η_A, the photoelectric conversion efficiency of the photodetector is κ, and the thermal noise of the amplifying means at the magneto-optical signal observation frequency is T.
, when the bandwidth of the detection signal is ΔB, the amplitude transmittance t_S of the polarizing beam splitter for the polarized light component in the predetermined direction, the amplitude transmittance t_P for the polarized light component in the direction perpendicular to the predetermined direction, and the optics of the analyzer. The angle θA between the axis and the predetermined direction is under the following conditions, |t_S|^2~√{[T/(ξ・ΔB)]・[1/(
k・ε|t_A|^2|R|^2I_0)]}, 0≦|
A magneto-optical information reproducing device characterized by satisfying t_S|^2≦1|t_S|^2~1 sin θ_A~1/{√[1+√(ηA)]}.
JP24661886A 1986-10-17 1986-10-17 Magneto-optical information reproducing device Expired - Fee Related JPH07101525B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24661886A JPH07101525B2 (en) 1986-10-17 1986-10-17 Magneto-optical information reproducing device
US07/106,787 US4813032A (en) 1986-10-17 1987-10-13 Magneto-optical information reproducing apparatus in which the azimuth angle of the transmission axis of an analyzer is optimized so that the C/N ratio of a reproducing signal is maximum
DE8787309126T DE3783307T2 (en) 1986-10-17 1987-10-15 MAGNETO-OPTICAL INFORMATION DISPLAY DEVICE.
EP87309126A EP0264284B1 (en) 1986-10-17 1987-10-15 Magneto-optical information reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24661886A JPH07101525B2 (en) 1986-10-17 1986-10-17 Magneto-optical information reproducing device

Publications (2)

Publication Number Publication Date
JPS63100648A true JPS63100648A (en) 1988-05-02
JPH07101525B2 JPH07101525B2 (en) 1995-11-01

Family

ID=17151082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24661886A Expired - Fee Related JPH07101525B2 (en) 1986-10-17 1986-10-17 Magneto-optical information reproducing device

Country Status (1)

Country Link
JP (1) JPH07101525B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432760A (en) * 1989-04-19 1995-07-11 Olympus Optical Co., Ltd. Method of measuring phase difference of opto-magnetic record medium and apparatus for carrying out said method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432760A (en) * 1989-04-19 1995-07-11 Olympus Optical Co., Ltd. Method of measuring phase difference of opto-magnetic record medium and apparatus for carrying out said method

Also Published As

Publication number Publication date
JPH07101525B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
US5105399A (en) Magneto-optical means for reading disks by comparing signals at leading and trailing edges of laser beam
JPS63100644A (en) Magneto-optical information reproducing device
JPH07101523B2 (en) Magneto-optical signal reproducing device
EP0264284B1 (en) Magneto-optical information reproducing apparatus
US5898661A (en) Optical information storage unit
US6118748A (en) Optical information storage unit having phase compensation means for applying different phase compensation quantities with respect to signals detected from land and groove of recording medium
JPS63100648A (en) Magneto-optical information reproducing device
US6504811B1 (en) Optical information storage unit
US6741528B1 (en) Magneto-optical head device
JPS63100647A (en) Magneto-optical information reproducing device
JPH0327977B2 (en)
JPS63100646A (en) Magneto-optical information reproducing device
JPH07169129A (en) Optical head
JPH04229427A (en) Optical position-error detecting system
JP2551129B2 (en) Magneto-optical disk device
JPS6255222B2 (en)
JPH03104041A (en) Magneto-optical disk device
JPS60157745A (en) Photomagnetic recorder
JP2862024B2 (en) Magneto-optical signal reproducing device
JPS63100645A (en) Magneto-optical information reproducing device
JPS63247938A (en) Magneto-optical recording and reproducing head
JPH03268252A (en) Optical information recording and reproducing system
JP3413496B2 (en) Magneto-optical information reproducing device
JPH08221838A (en) Magneto-optical recording and reproducing device
JPH02192053A (en) Magneto-optical disk device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees