JPS63100327A - Impeller type flow rate measuring instrument - Google Patents

Impeller type flow rate measuring instrument

Info

Publication number
JPS63100327A
JPS63100327A JP24719286A JP24719286A JPS63100327A JP S63100327 A JPS63100327 A JP S63100327A JP 24719286 A JP24719286 A JP 24719286A JP 24719286 A JP24719286 A JP 24719286A JP S63100327 A JPS63100327 A JP S63100327A
Authority
JP
Japan
Prior art keywords
impeller
circuit
flow rate
detection
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24719286A
Other languages
Japanese (ja)
Inventor
Yoshihiko Sunakawa
砂川 慶彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP24719286A priority Critical patent/JPS63100327A/en
Publication of JPS63100327A publication Critical patent/JPS63100327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To measure a flow rate up to a small flow rate range and to expand range ability by detecting the rotation of an impeller to which magnetic bodies are fitted by a detection coil, driving an oscillator connected to a resonance circuit with the output of the coil, and shaping the waveform of the detection output and counting it by a counter. CONSTITUTION:When fluid flows from piping 2 to piping 3, the impeller 5 has magnetic bodies 6 fitted to blades 5a rotates. Its rotation is detected by the detection coil 8. The oscillator 12 connected to the parallel resonance circuit 7 is driven with the output. The oscillation output of frequency which is nearly equal to the resonance frequency of the circuit and higher than the number of turns of the impeller 5 per second is outputted by the oscillator 12. The output signal is passed through an amplifier 13, a detecting circuit 14, and a waveform shaping circuit 16 and counted by a counter circuit 17 to measure the flow rate of the fluid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 末完IJIは、流体流路中に配置した羽根車の回転数を
検出して流体の流、?を測定する羽根車式流量測定装置
に関し、特に小流量域まで精度よく測定が行なえる羽根
車式流量測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] Seikan IJI detects the rotational speed of an impeller placed in a fluid flow path and detects the flow of fluid. The present invention relates to an impeller type flow rate measuring device that measures , and particularly relates to an impeller type flow rate measuring device that can accurately measure up to a small flow rate range.

〔従来の技術〕[Conventional technology]

従来の羽根車式流i4計は、第3因に概略して示すよう
な構成となっている。この第3図で、両端に配’i?2
2.23が接続される筒体のハウジング21は、被測定
波体が流れる流路と羽根車を収納する羽根車収納部を構
成している。このハウジング21の突出部21aの下方
には、f+b24に回転「1在な羽根車25が設けられ
ており1羽根車25のそれぞれの羽根25aにはマグネ
ット2Bが設けられている。
The conventional impeller type flow i4 meter has a configuration as schematically shown in the third factor. In this figure 3, 'i' is placed at both ends? 2
The cylindrical housing 21 to which 2.23 is connected constitutes a flow path through which the wave body to be measured flows and an impeller accommodating portion that accommodates the impeller. Below the protruding portion 21a of the housing 21, there is provided a rotating impeller 25 on f+b24, and each blade 25a of the impeller 25 is provided with a magnet 2B.

このようなハウジング21中を、配管22から配管23
方向に被測定流体が流れると、上記羽根車25に流体が
当たって1羽根3115は図中矢印方向に回転する。こ
の羽根車25の単位時間当りの回転数(回転率)は、被
測定流体の単位時間当りの流量(流量率)に比例する。
Inside such a housing 21, pipes 22 to 23
When the fluid to be measured flows in the direction, the fluid hits the impeller 25 and one blade 3115 rotates in the direction of the arrow in the figure. The number of revolutions (rotation rate) of the impeller 25 per unit time is proportional to the flow rate (flow rate) of the fluid to be measured per unit time.

また、非磁性体からなる上記ハウジング21の隔壁を隔
てて、上記羽根車25と対向した位置には、コイル27
が配設されている。これにより、回転する羽根車25の
羽根25aに取り付けられたマグネット2Bが、コイル
27の近傍を通過するときにコイル27に起電力が発生
するようになり、この起電力を検出することで羽根車2
5の回転が検出される。
Further, a coil 27 is provided at a position facing the impeller 25 across the partition wall of the housing 21 made of a non-magnetic material.
is installed. As a result, when the magnet 2B attached to the blade 25a of the rotating impeller 25 passes near the coil 27, an electromotive force is generated in the coil 27, and by detecting this electromotive force, the impeller 2
5 rotation is detected.

上記コイル27は、増幅器28に接続されており、コイ
ル27に誘起した起電力がこの増幅器28で増幅される
。そして、次段に設けられた波形整形回路2Sで矩形波
に整形される。この矩形波信号は、カウンター回路30
によって計数され、これにより羽根車25の回転数が計
数されて、被測定流体のv1箕li量が測定される。
The coil 27 is connected to an amplifier 28, and the electromotive force induced in the coil 27 is amplified by the amplifier 28. Then, the waveform shaping circuit 2S provided at the next stage shapes the signal into a rectangular wave. This rectangular wave signal is transmitted to the counter circuit 30
The number of revolutions of the impeller 25 is counted, and the amount of v1 of the fluid to be measured is measured.

〔発明が解決しようとする問題点〕 このように従来では、羽根車25の回転の検出を羽根車
25に取り付けたマグネット28がコイル27の前面を
よぎる時に発生するコイル27の起電力を検出すること
で行なっている。
[Problems to be Solved by the Invention] As described above, conventionally, the rotation of the impeller 25 is detected by detecting the electromotive force of the coil 27 that is generated when the magnet 28 attached to the impeller 25 passes over the front surface of the coil 27. This is what we do.

このため、コイル27から起電力を(するために、羽根
車25がある程度の速さで回転している必要があり、回
転数が少なくなるとコイル27の起電力が低下し、羽根
車25の回転の検出が不可能となる。
Therefore, in order to generate an electromotive force from the coil 27, the impeller 25 must be rotating at a certain speed, and as the rotation speed decreases, the electromotive force of the coil 27 decreases, causing the impeller 25 to rotate. becomes impossible to detect.

したがって、従来では測定可能な最大流量と最小vt;
、?の比であるレンジアビリティ−が最大でも5対1程
度以上に取りにくいという欠点があった。
Therefore, conventionally the maximum measurable flow rate and the minimum vt;
,? The disadvantage was that it was difficult to achieve a range ability ratio of more than 5:1 at maximum.

そこで本発明は、このような従来の問題点を解決するた
めに提案されたものであり、小ill 71域まで充分
に測定が行なえ、レンジアビリティ−を拡大できる羽根
車式流量測定装置を提供することを目的とする。
Therefore, the present invention was proposed to solve these conventional problems, and provides an impeller type flow rate measuring device that can sufficiently measure up to the small illumination range of 71 and expand rangeability. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため本発明の羽根車式流量測定装置
は、被測定流体が流される配管を両端に接続した非磁性
体からなる筒状のハウジング内に、羽根に磁性体を取り
付けた羽根車を回転自在に設けて流れる被測定流体によ
り回転させ、上記ハウジング外であり上記羽根車の対向
近傍位置に、上記磁性体の通過によるインダクタンスの
変化から上記羽根車の回転を検出する検出コイルを設け
、この検出コイルを有する共振回路を設けて、この共振
回路に上記羽根車の毎秒回転数よりも充分高く上記共振
回路の共振周波数にほぼ等しい周波数を発振する発振器
を取り付け、上記共振回路の出力端に接続される検波回
路を設け、この検波回路に接続される波形整形回路を設
けて、検波出力を矩形波信号に波形整形し、上記波形整
形回路に接続されるカウンター回路を設けて、上記矩形
波信号が計数されて上記被測定流体の流量が測定される
ことを特徴とする。
In order to achieve this object, the impeller type flow rate measuring device of the present invention has an impeller equipped with a magnetic material attached to the blades in a cylindrical housing made of a non-magnetic material connected to both ends of piping through which the fluid to be measured flows. is rotatably provided to be rotated by the flowing fluid to be measured, and a detection coil is provided outside the housing and in the vicinity of facing the impeller to detect rotation of the impeller from a change in inductance due to passage of the magnetic material. , a resonant circuit having this detection coil is provided, an oscillator is attached to this resonant circuit that oscillates a frequency that is sufficiently higher than the number of revolutions per second of the impeller and approximately equal to the resonant frequency of the resonant circuit, and the output terminal of the resonant circuit is connected to the resonant circuit. A detection circuit connected to the waveform shaping circuit is provided, a waveform shaping circuit connected to the detection circuit is provided to shape the detected output into a rectangular wave signal, a counter circuit connected to the waveform shaping circuit is provided, and the waveform shaping circuit is connected to the waveform shaping circuit. The method is characterized in that the flow rate of the fluid to be measured is measured by counting wave signals.

〔作用〕[Effect]

上述の本発明によれば、羽根車が回転して羽根車の磁性
体が、共振回路を構成する上記検出コイルに接近すると
、検出コイルのインダクタンスが変化し、共振回路の共
振周波数が変化するようになっているので、上記発振器
を有するこの共振回路の出力端からは、発振器の発振波
を振幅変調した検出信号が得られる0羽根車の回転を検
出したこの検出信号は、羽根車の回転速度に依存するこ
となく取り出せる。
According to the present invention described above, when the impeller rotates and the magnetic body of the impeller approaches the detection coil forming the resonant circuit, the inductance of the detection coil changes, and the resonant frequency of the resonant circuit changes. Therefore, from the output end of this resonant circuit having the above-mentioned oscillator, a detection signal obtained by amplitude modulating the oscillation wave of the oscillator is obtained. It can be extracted without depending on.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1因は、本発明の一実施例を示す羽根車式流量測定装
置の構成図である。
The first factor is a configuration diagram of an impeller type flow rate measuring device showing an embodiment of the present invention.

この第1図で、筒状のハウジングlの両端には配管2.
3が接続され、ハウジングlに形成された突出部1aの
下方には、4jh 4に回転自在に軸支された羽根車5
が設けられている。ハウジングl内に収納されたこの羽
根車5には、各羽根5aに磁性体6が設けられている。
In FIG. 1, piping 2.
3 is connected, and below the protrusion 1a formed on the housing l, there is an impeller 5 rotatably supported by the 4jh 4.
is provided. In this impeller 5 housed in the housing l, a magnetic body 6 is provided on each blade 5a.

上記羽根車5は、配管2から配管3方向へ被Δ11定浣
体が流れると、ハウジングl中を通過する被測定流体が
名って図中矢印方向に回転する。
In the impeller 5, when the Δ11 constant object flows from the pipe 2 to the pipe 3, the fluid to be measured passing through the housing l rotates in the direction of the arrow in the figure.

また羽根車5の磁性体6を検出する検出コイル8を有す
る並列共振回路7が設けられている。検出コイル8とコ
ンデンサ9から成るこの並列共振回路7には、発信器1
2が並列接続されており、この並列接続の一方の接続点
(A点)は増幅器13に接続され、他方の接続点(B点
)は接地されている。上記発振器12の発振周波数は、
羽根車5の毎秒回転数よりも充分大きい値(たとえば1
0倍以上)に設定されている。また上記並列共振回路7
の共振周波数は、この発振器12の発振周波数にほぼ等
しく設定されている。
Further, a parallel resonant circuit 7 having a detection coil 8 for detecting the magnetic body 6 of the impeller 5 is provided. This parallel resonant circuit 7 consisting of a detection coil 8 and a capacitor 9 includes an oscillator 1
2 are connected in parallel, one connection point (point A) of this parallel connection is connected to the amplifier 13, and the other connection point (point B) is grounded. The oscillation frequency of the oscillator 12 is
A value sufficiently larger than the number of rotations per second of the impeller 5 (for example, 1
0 times or more). In addition, the parallel resonant circuit 7
The resonant frequency of is set approximately equal to the oscillation frequency of this oscillator 12.

ここで、上記検出コイル8は、非磁性体からなる上記ハ
ウジング1外であり、羽根車5と対向した羽根車5近傍
位訝に設けられている。
Here, the detection coil 8 is provided outside the housing 1 made of a non-magnetic material and in the vicinity of the impeller 5, facing the impeller 5.

したがって、羽根車5が回転して上記磁性体6が検出コ
イル8に接近すると、検出コイル8のインダクタンスに
変化が生じ、並夕1共振回路7の共振周波数が変化する
。この結果、AIj天、B点間から取り出される並列共
振回路7の出力は、磁性体6が近接した場合とそうでな
い場合で発振器12の発振波の振幅値に変化が生じ、第
2図aに示すように振幅変調された出力となる。
Therefore, when the impeller 5 rotates and the magnetic body 6 approaches the detection coil 8, the inductance of the detection coil 8 changes, and the resonant frequency of the parallel resonance circuit 7 changes. As a result, the output of the parallel resonant circuit 7 taken out between points AIj and B changes in the amplitude value of the oscillation wave of the oscillator 12 depending on whether or not the magnetic body 6 is close to it, as shown in Fig. 2a. The output is amplitude modulated as shown.

羽根車5の回転を検出した並列共振回路7の出力は、増
幅器13で増幅される。第2図すには増幅された波形が
示されている。
The output of the parallel resonant circuit 7 that detects the rotation of the impeller 5 is amplified by the amplifier 13. The amplified waveform is shown in FIG.

増幅器13の出力は、次段に設けられた検波回路14で
検波され、第2図Cに示すように、増幅器13の出力波
形の包路線の上半分に和名する波形が11tられる。
The output of the amplifier 13 is detected by a detection circuit 14 provided at the next stage, and as shown in FIG.

上記検波回路14の検波出力は、カップリング用のコン
デンサ15を介して波形整形回路16に供給される。コ
ンデンサ15を通過することで、第2図dに示すように
十−の両極性を持った波形となる。波形整形回路!8で
は、矩形波に波形整形される。なお、」二記コンデンサ
15は、最小流量での波形の周波数帯を充分にカバーす
る値に設定する必要がある。
The detection output of the detection circuit 14 is supplied to a waveform shaping circuit 16 via a coupling capacitor 15. By passing through the capacitor 15, the waveform becomes a waveform with both polarities, as shown in FIG. 2d. Waveform shaping circuit! 8, the waveform is shaped into a rectangular wave. Note that the capacitor 15 must be set to a value that sufficiently covers the frequency band of the waveform at the minimum flow rate.

上記波形整形回路16は、次段に設けられたカウンター
回路17に接続され、このカウンター回路17で矩形波
信号が計数されることで、被測定流体の流量の積算値が
得られる。
The waveform shaping circuit 16 is connected to a counter circuit 17 provided at the next stage, and the counter circuit 17 counts the rectangular wave signals to obtain an integrated value of the flow rate of the fluid to be measured.

このように」〕記羽根車式流量測定装鐙では、並列共振
回路7の構成する検出コイル8のインダクタンスが、磁
性体6を取り付けた羽根車5の回転によって変化し並列
共振回路7の共振周波数が変化することを利用して、羽
根車5の回転を検出しているため1羽根車5の回転の少
ない小流量域でも流量の測定が可能であり、従来に比較
してレンジアビリティ−の拡大が図れる。
In this manner, in the impeller-type flow rate measuring device described above, the inductance of the detection coil 8 that constitutes the parallel resonant circuit 7 changes with the rotation of the impeller 5 to which the magnetic body 6 is attached, and the resonant frequency of the parallel resonant circuit 7 changes. Since the rotation of the impeller 5 is detected by utilizing the change in the rotation of the impeller 5, it is possible to measure the flow rate even in a small flow range where the rotation of each impeller 5 is small, and the rangeability is expanded compared to the conventional method. can be achieved.

なお、カップリング用のコンデンサ15を用いずに、検
波回路14と゛波形整形回路16を直結することも可能
である。
Note that it is also possible to directly connect the detection circuit 14 and the waveform shaping circuit 16 without using the coupling capacitor 15.

また、上述の実施例では積算1N、量の測定の例につい
て説明したが、羽根車5の単位時間当りの回転fi(回
転率)が、被測定流体の単位時間当りの流樋(流Li率
)に比例することを利用して、上記羽根車式流量測定装
置を瞬時流量の測定に利用することもできる。この場合
でも、羽根車5の回転数の少ない小IQ量域の1111
定が可能である。
In addition, in the above-mentioned embodiment, an example was explained in which the integration amount is 1N and the amount is measured. ) The above impeller type flow rate measuring device can also be used to measure instantaneous flow rate. Even in this case, 1111 in the small IQ quantity range where the rotation speed of the impeller 5 is low
can be determined.

また並列共振回路7を利用するのではなく、検出コイル
8を有する直列共振回路を構成し、この直列共振回路に
発振器12を取り付けて羽根車5の回転を検出するよう
にしてもよい。
Further, instead of using the parallel resonant circuit 7, a series resonant circuit having a detection coil 8 may be configured, and the oscillator 12 may be attached to this series resonant circuit to detect the rotation of the impeller 5.

c発1jの効果〕 以−ヒ説明したように本発明では、羽根車に取り付けた
磁性体を検出する検出コイルを有する共振回路を設け、
この共振回路に、共振周波数にほぼ等しい周波数を発振
する発振器を取り付けるようにしている。この検出コイ
ルのインダクタンスは、上記磁性体の接近により変化す
ることから、共振回路の共振周波数が変化して、共振回
路の出力が振幅変調されるようになる。
Effects of C-1j] As explained below, in the present invention, a resonant circuit having a detection coil for detecting the magnetic material attached to the impeller is provided,
An oscillator that oscillates at a frequency approximately equal to the resonant frequency is attached to this resonant circuit. Since the inductance of the detection coil changes as the magnetic body approaches, the resonant frequency of the resonant circuit changes, and the output of the resonant circuit is amplitude-modulated.

これにより、共振回路の出力端から、羽根車の回転を検
出した検出信号が取り出せる。
Thereby, a detection signal that detects the rotation of the impeller can be extracted from the output end of the resonant circuit.

このように本発明では検出コイルのインダクタンスの変
化から羽根車の回転を検出するようにしているので、羽
根車の回転数が少ない小流か域まで充分に被測定波体の
植立流量または瞬時流量の測定が可俺であり、従来に比
べてレンジアビリティ−を拡大することができる。
In this way, in the present invention, since the rotation of the impeller is detected from the change in the inductance of the detection coil, the flow rate or instantaneous Flow rate measurement is easy, and rangeability can be expanded compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す羽根車式流量測定装置
の構成図、第2図は上記羽根車式流量測定装置の動作を
説明するための波形図、第3図は従来の羽根車式流星計
の構造図である。 図中 1・φ・ハウジング 2.3@−・配管4・・・軸  
     5・・・羽根車Sa日・羽根      8
・1磁性体7・・・並列共振回路 8拳Φ・検出コイル
301コンデンサ  12日・発振器 13・・・増幅器    14−−−検波回路15−φ
争コンデンサ  18+1・争波形整形回路!?−−・
カウンター回路
Fig. 1 is a configuration diagram of an impeller type flow measuring device showing an embodiment of the present invention, Fig. 2 is a waveform diagram for explaining the operation of the impeller type flow measuring device, and Fig. 3 is a conventional impeller type flow measuring device. It is a structural diagram of a vehicle-type meteor meter. In the diagram: 1・φ・Housing 2.3@-・Piping 4・Shaft
5... Impeller Sa day/blade 8
・1 magnetic body 7...parallel resonant circuit 8 fist Φ・detection coil 301 capacitor 12th・oscillator 13...amplifier 14---detection circuit 15-φ
Conflict capacitor 18+1・Conflict waveform shaping circuit! ? ---・
counter circuit

Claims (1)

【特許請求の範囲】[Claims] 被測定流体が流される配管を両端に接続した非磁性体か
らなる筒状のハウジング内に、羽根に磁性体を取り付け
た羽根車を回転自在に設けて流れる被測定流体により回
転させ、上記ハウジング外であり上記羽根車の対向近傍
位置に、上記磁性体の通過によるインダクタンスの変化
から上記羽根車の回転を検出する検出コイルを設け、こ
の検出コイルを有する共振回路を設けて、この共振回路
に上記羽根車の毎秒回転数よりも充分高く上記共振回路
の共振周波数にほぼ等しい周波数を発振する発振器を取
り付け、上記共振回路の出力端に接続される検波回路を
設け、この検波回路に接続される波形整形回路を設けて
、検波出力を矩形波信号に波形整形し、上記波形整形回
路に接続されるカウンター回路を設けて、上記矩形波信
号が計数されて上記被測定流体の流量が測定されること
を特徴とする羽根車式流量測定装置。
An impeller with a magnetic material attached to its blades is rotatably provided in a cylindrical housing made of a non-magnetic material with pipes through which the fluid to be measured is connected at both ends, and the impeller is rotated by the flowing fluid to be measured. A detection coil for detecting the rotation of the impeller from a change in inductance due to the passage of the magnetic material is provided in the vicinity of the impeller, and a resonant circuit having this detection coil is provided. An oscillator that oscillates at a frequency that is sufficiently higher than the number of rotations per second of the impeller and approximately equal to the resonant frequency of the resonant circuit is installed, a detection circuit is provided that is connected to the output end of the resonant circuit, and a waveform that is connected to this detection circuit is provided. A shaping circuit is provided to shape the detection output into a rectangular wave signal, and a counter circuit connected to the waveform shaping circuit is provided to count the rectangular wave signal and measure the flow rate of the fluid to be measured. An impeller type flow measuring device featuring:
JP24719286A 1986-10-16 1986-10-16 Impeller type flow rate measuring instrument Pending JPS63100327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24719286A JPS63100327A (en) 1986-10-16 1986-10-16 Impeller type flow rate measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24719286A JPS63100327A (en) 1986-10-16 1986-10-16 Impeller type flow rate measuring instrument

Publications (1)

Publication Number Publication Date
JPS63100327A true JPS63100327A (en) 1988-05-02

Family

ID=17159810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24719286A Pending JPS63100327A (en) 1986-10-16 1986-10-16 Impeller type flow rate measuring instrument

Country Status (1)

Country Link
JP (1) JPS63100327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155222A (en) * 1990-10-17 1992-05-28 Osaka Kiko Co Ltd Liquid quantity meter with pulse transmitter
KR100716585B1 (en) 2005-07-22 2007-05-09 김신호 Impeller Type Flowmeter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534899A (en) * 1978-09-01 1980-03-11 Warner Electric Brake & Clutch Step motor
JPS58124955A (en) * 1982-01-22 1983-07-25 Aisin Seiki Co Ltd Rotating signal generating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534899A (en) * 1978-09-01 1980-03-11 Warner Electric Brake & Clutch Step motor
JPS58124955A (en) * 1982-01-22 1983-07-25 Aisin Seiki Co Ltd Rotating signal generating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155222A (en) * 1990-10-17 1992-05-28 Osaka Kiko Co Ltd Liquid quantity meter with pulse transmitter
KR100716585B1 (en) 2005-07-22 2007-05-09 김신호 Impeller Type Flowmeter

Similar Documents

Publication Publication Date Title
US4275291A (en) Rotation sensor
US3776033A (en) Vortex-type mass flowmeters
US4922757A (en) Apparatus for precise detection of blade passing times in a steam turbine
HUT73364A (en) Fluid flow meter
JPH0285762A (en) Speed measuring device
US4324144A (en) Turbine flowmeter
US4123940A (en) Transmission system for vortex-shedding flowmeter
SE8100344L (en) FLODESMETARE
US3796096A (en) Vortex flowmeter
EP2034280A1 (en) Coriolis flow meter with at least three sensors
JPS63100327A (en) Impeller type flow rate measuring instrument
US3762876A (en) Driven vane anemometers
JPS63100326A (en) Impeller type flow rate measuring instrument
US5419189A (en) Method for obtaining zero flowmeter reading for zero flow
JPS60502228A (en) Device for measuring the liquid part of a two-phase flow of gas and liquid
US5101662A (en) Harmonically filtered speed sensing system
JP2781203B2 (en) Positive flow meter
GB1591974A (en) Mass throughflow meter
SU606105A1 (en) Flowmeter
JPH06160403A (en) Pulse generator
JPS63132116A (en) Impeller type flow rate measuring instrument
JP3251852B2 (en) Flowmeter
SU1525581A1 (en) Velocity transducer
JP3248021B2 (en) Vortex flow meter
SU861950A1 (en) Batcher for loose materials