JPS63100172A - Superlattice material and its production - Google Patents

Superlattice material and its production

Info

Publication number
JPS63100172A
JPS63100172A JP61245183A JP24518386A JPS63100172A JP S63100172 A JPS63100172 A JP S63100172A JP 61245183 A JP61245183 A JP 61245183A JP 24518386 A JP24518386 A JP 24518386A JP S63100172 A JPS63100172 A JP S63100172A
Authority
JP
Japan
Prior art keywords
ordered phase
alloy
base material
superlattice
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61245183A
Other languages
Japanese (ja)
Other versions
JPH0588311B2 (en
Inventor
Matahiro Komuro
又洋 小室
Yuzo Kozono
小園 裕三
Shinji Narushige
成重 真治
Masanobu Hanazono
雅信 華園
Tetsuo Kuroda
哲郎 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61245183A priority Critical patent/JPS63100172A/en
Publication of JPS63100172A publication Critical patent/JPS63100172A/en
Publication of JPH0588311B2 publication Critical patent/JPH0588311B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To produce a superlattice material having excellent magnetic characteristics by laminating and forming many single-layer films which consists of elements different from an alloy underlying material having an ordered phase and has the artificial period corresponding to the period structure of said ordered phase onto said underlying material. CONSTITUTION:The alloy having the existing ordered phase is used as the underlying material and the many single-layer films are formed thereon in parallel therewith by a thin film forming means such as vacuum deposition method. The above- mentiopned single-layer films are constituted of the elements different from the element constituting the alloy of the above-mentioned underlying material. The elements which satisfy an adequate bond energy relation are selected. The superlattice material of the multi-layered material consisting of the many single-layer films which consist of the above-mentioned different materials, are formed in correspondence to the period structure of the ordered phase of the above-mentioned underlying material and have the artificial period maintaining the periodic structure of the ordered phase is thereby obtd. The above-mentioned material has excellent magnetic characteristics such as anisotropic magnetic field and Kerr rotating angle and is adequate for perpendicular recording media and magneto-optical recording materials.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、多層材料の下地材が規則用から成り、人工周
期が単層膜面内に存在する超格子材料及びその製造方法
に関する。特に、磁気異方性を制御した垂直磁気記録媒
体やヘッドに好適な超格子材料及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superlattice material in which the base material of a multilayer material is a regular layer and artificial periods exist within the plane of a single layer, and a method for manufacturing the same. In particular, the present invention relates to a superlattice material suitable for perpendicular magnetic recording media and heads with controlled magnetic anisotropy, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、超格子については、日本応用磁気学会第43回研
究会資料(1986年)第1頁がら第8頁において論じ
られているように人工格子の周期は単層膜面に垂直な方
向のみ存在している。すなわち、超格子を基板に成長さ
せた時、成長方向に平行な方向における人工周期をもっ
た材料であり、成長方向に垂直な方向、すなわち単層膜
面内における人工周期については考えられていない。
Conventionally, regarding superlattices, the period of the artificial lattice exists only in the direction perpendicular to the monolayer film surface, as discussed in pages 1 to 8 of the Japan Society for Applied Magnetics, 43rd Research Meeting Materials (1986). are doing. In other words, when a superlattice is grown on a substrate, it is a material that has an artificial period in the direction parallel to the growth direction, and no consideration has been given to the artificial period in the direction perpendicular to the growth direction, that is, in the plane of the monolayer film. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では多層膜の単層膜面内の周期については
考慮されておらず原子間距離の変動量は少ない。すなわ
ち単層膜の膜面に垂直な方向のみ人工周期を有する超格
子は、単層膜面に垂直方向の原子間距離変化量が少ない
。このように原子間距離変化量の少ない材料では、人工
周期構造を有しているにもかかわらず、バルク材料の特
性を変えることが困難である。
In the above-mentioned conventional technology, the in-plane period of a single layer of a multilayer film is not considered, and the amount of variation in the interatomic distance is small. In other words, a superlattice having an artificial period only in the direction perpendicular to the surface of the monolayer film has a small amount of change in the interatomic distance in the direction perpendicular to the surface of the monolayer film. In this way, it is difficult to change the properties of a bulk material in a material with a small amount of change in interatomic distance, even though it has an artificial periodic structure.

本発明の目的は、上記のような欠点を解消し、バルク材
料や薄膜材料で得られない磁気特性をもつ、超格子材料
及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a superlattice material and a method for manufacturing the same that eliminate the above-mentioned drawbacks and have magnetic properties that cannot be obtained with bulk materials or thin film materials.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、原子配列に周期性がある規則用を有する合
金を多層膜の下地材として用い、この下地材の規則用の
周期構造を利用して単層膜面内に人工周期を形成させる
ことにより達成される。
The above purpose is to use an alloy with regularity in the atomic arrangement as a base material for a multilayer film, and to use the regular periodic structure of this base material to form an artificial period within the surface of the single layer film. This is achieved by

即ち、本願の第1発明の超格子材料は、規則用を有する
合金からなる下地材と、前記下地材の合金を構成する元
素と異なる元素からなり、前記下地材上にこれと平行に
、前記規則用の周期構造に対応して形成され、前記規則
用の周期構造を保った人工周期を有する多数の単層膜と
、から構成された多層材料からなることを特徴とし、本
願の第2発明の超格子材料は、前記第1発明の超格子材
料において、さらに、単層膜の垂直面に人工周期を有す
る多層材料からなることを特徴とする。また、本願の第
3発明の超格子材料の製造方法は、既存の規則用を有す
る合金を下地材とし、前記下地材の合金を構成する元素
とは異なる元素であって、元素間の所要の結合エネルギ
ー関係を満たす元素を選択し、適宜の薄膜形成手段によ
って、前記界なる元素からなり、かつ、前記規則用の周
期構造に対応して形成され、前記規則用の周期構造を保
った人工周期を有する多数の単層膜を前記下地材上に平
行に形成して多層材料とすることを特徴とする。
That is, the superlattice material of the first invention of the present application is composed of a base material made of an alloy having ordered properties, and an element different from the element constituting the alloy of the base material, and the superlattice material is placed on the base material in parallel thereto. The second invention of the present application is characterized by being made of a multilayer material composed of a large number of single-layer films formed corresponding to a periodic structure for rules and having artificial periods that maintain the periodic structure for rules. The superlattice material according to the first invention is further characterized in that it is made of a multilayer material having an artificial periodicity on the vertical plane of the single layer film. Further, in the method for producing a superlattice material according to the third invention of the present application, an existing alloy having a regular structure is used as a base material, and the element is different from the element constituting the alloy of the base material, and the required relationship between the elements is Selecting an element that satisfies the bond energy relationship, and using an appropriate thin film forming means, an artificial period made of the above-mentioned element and corresponding to the periodic structure for the rule, and maintaining the periodic structure for the rule. A multilayer material is obtained by forming a large number of single-layer films having the following properties in parallel on the base material.

以下に、上記本願発明の構成をさらに具体的に説明する
Below, the configuration of the invention of the present application will be explained in more detail.

合金の結晶構造には規則用と不規則相があり、ある位置
に入る原子が定まっており安定に存在する場合を規則用
といい、定まっていない場合を不規則相という。規則用
においては原子の配列に周期性があり、このように規則
的に原子が配列され、一定の周期構造を有するものを多
層材料の下地材として用いれば、通常では規則用を形成
せず安定な状態で存在しないような材料でも、周期を自
由に制御して、前記規則用土に、この周期構造を保った
人工周期を有する層をっくりうる。規則用として使用で
きるものは以下の通りである。
The crystal structure of alloys has two types: ordered and disordered.When the atoms that enter a certain position are fixed and exist stably, it is called ordered, and when it is not fixed, it is called disordered. In ordered materials, the arrangement of atoms is periodic, and if a material with regularly arranged atoms and a certain periodic structure is used as a base material for a multilayer material, it will not normally form regular materials and will be stable. Even if the material does not exist in a normal state, the period can be freely controlled to form a layer with an artificial period that maintains the periodic structure in the regular soil. The following can be used for rules:

CuA1. Cu、、Aj!、 CuAu、 Cu3A
u、 Cu3Ga+ Cu3Ge。
CuA1. Cu,,Aj! , CuAu, Cu3A
u, Cu3Ga+Cu3Ge.

CuPd、 Cu5Pd、 CuAt、 CuPt3.
 Cu5Sn+ Cu5Sn、CuZn。
CuPd, Cu5Pd, CuAt, CuPt3.
Cu5Sn+ Cu5Sn, CuZn.

uZns CrGaa、 Cr3Ga、 CrGe、、 CrGe
3. Cr、NbTiAl3. Ti3Al、 Ti、
A1. Ti2Cr、 T1Cr2. T1Cu:+。
uZns CrGaa, Cr3Ga, CrGe, CrGe
3. Cr, NbTiAl3. Ti3Al, Ti,
A1. Ti2Cr, T1Cr2. T1Cu:+.

Ti2Cu+ Ti3Cu、 TiMnz、 TtzM
n、 TizZnMnCr、 MnGa4. Mn、G
a+ Mn5Ge+ MnNi、 MnN13. Mn
Ti+nTiz 本発明の超格子材料を具体的に説明する。例えば、規則
用として2元合金から成るAB、化合物を用いた場合、
第1図に示すようにA B 4化合物の最密原子面にお
ける原子配列は1のようにABBBBA・・・の順に配
列する。この規則用を基板としてA元素とほぼ同数のC
元素を蒸着させる。この時C元素はA元素の近傍に配列
させなければならない。そのためには、C元素がB元素
よりもA元素との結合力が強くなければならない。ここ
で、原子間の結合エネルギーをEで表わすと第1図にお
ける4つの原子には、10種類のEが存在する。
Ti2Cu+ Ti3Cu, TiMnz, TtzM
n, TizZnMnCr, MnGa4. Mn,G
a+ Mn5Ge+ MnNi, MnN13. Mn
Ti+nTiz The superlattice material of the present invention will be specifically explained. For example, when AB and compounds made of binary alloys are used for regulation,
As shown in FIG. 1, the atomic arrangement of the A B 4 compound on the closest atomic plane is arranged in the order ABBBBA . . . as shown in 1. Using this rule as a substrate, approximately the same number of C as A elements
Depositing elements. At this time, the C element must be arranged near the A element. For this purpose, element C must have a stronger bonding force with element A than element B. Here, when the bond energy between atoms is expressed by E, there are 10 types of E in the four atoms in FIG.

第1図のような成長を可能にするためには、C元素がA
元素に対してV−W (volmer−@eber)型
の成長、D元素がB元素に対して単層成長する必要があ
る。この2つの成長が起こるためには、Elll<Eo
o+  EaA>Eccでなければならない。また第1
図に示すようなA B a化合物を規則相として用いた
場合には、AB4規則相でE□〉EAAが成立し、同時
にC,D元素からなる相もA B a規則相と同じ周期
で単層膜内に存在するため、E on > E ccと
なる。結局第1図のような周期構造を得るためには、 EDD>Elm> Eaa>ECC(1)のような結合
エネルギーの関係を満足しなければならない。(1)式
の関係は規則相の種類に依存し、A B s規則相の場
合には Ell>EAA>Ecc>EDIl      (2)
となる。また単層膜面内に人工周期が最も短かい超格子
材料を作製するには、第2図に示すようなAB化合物の
規則相を用いる。この場合には、A元素上のC元素及び
8元素上のD元素がVW型成長をする必要があり、 EAA>Ecc、  Egg>Eoo     (3)
の条件となる。
In order to enable growth as shown in Figure 1, the C element must be
It is necessary to grow V-W (volmer-@eber) type for the elements, and for the D element to grow in a single layer with respect to the B element. In order for these two types of growth to occur, Ell<Eo
o+ EaA>Ecc must be satisfied. Also the first
When an A B a compound as shown in the figure is used as an ordered phase, E Since it exists in the layer film, E on > E cc. After all, in order to obtain a periodic structure as shown in FIG. 1, the following binding energy relationship must be satisfied: EDD>Elm>Eaa>ECC (1). The relationship in equation (1) depends on the type of ordered phase, and in the case of A B s ordered phase, Ell>EAA>Ecc>EDIl (2)
becomes. Furthermore, in order to produce a superlattice material with the shortest artificial period within the plane of a single layer film, an ordered phase of an AB compound as shown in FIG. 2 is used. In this case, the C element on the A element and the D element on the 8 elements need to grow in a VW type, EAA>Ecc, Egg>Eoo (3)
The conditions are as follows.

上記の場合以外の規則格子としてD Oy型規則相が挙
げられる。この場合の結合エネルギーの関係式は(3)
式による。
An example of a regular lattice other than the above case is a D Oy type ordered phase. The relational expression of binding energy in this case is (3)
According to the formula.

超格子の元素は上述したように(11〜(3)式に基づ
いて決定する。次に作製条件について説明する。
The elements of the superlattice are determined based on formulas (11 to (3)) as described above. Next, the manufacturing conditions will be described.

第1図、第2図のような人工周期を有する超格子材料を
作製するためには、作製条件として特に到達真空度、基
板温度、基板材料、蒸着速度について制御する必要があ
る。到達真空度は1×1O−9Torr以下、基板温度
は規則−不規則変態点以下の温度にした。また基板材料
は第1相の規則相が単相成長し易い材料を選択し、蒸着
速度は0.1人/lll1n以下にした。この蒸着速度
により規則格子の構成元素の比に応じた原子数の元素を
蒸着させることが可能である。
In order to produce a superlattice material having an artificial period as shown in FIGS. 1 and 2, it is necessary to control the production conditions, particularly the ultimate vacuum degree, substrate temperature, substrate material, and vapor deposition rate. The ultimate degree of vacuum was 1×1 O −9 Torr or lower, and the substrate temperature was lower than the regular-irregular transformation point. Further, the substrate material was selected to be one in which the first ordered phase easily grows as a single phase, and the deposition rate was set to 0.1 person/llln or less. This evaporation rate makes it possible to evaporate elements whose number of atoms corresponds to the ratio of constituent elements of the regular lattice.

本発明の超格子材料は垂直磁気記録媒体、磁気ヘッド、
磁気ディスク、光磁気記録材料等に用いるのに好適であ
る。
The superlattice material of the present invention can be used for perpendicular magnetic recording media, magnetic heads,
It is suitable for use in magnetic disks, magneto-optical recording materials, etc.

〔作 用〕[For production]

本発明の超格子材料を作製するためには結晶成長の機構
を制御できる規則相とその上に成長させる成長相の元素
を選択しなければならない。第1図の1のような規則相
を基板上に、第1層としてC元素(5)をA元素(3)
上に成長させる。この時にC元素をA元素の直上に配置
させるにはA元素とC元素間の結合エネルギーがB元素
とC元素の結合エネルギーよりも強くなければならない
から、EAc〉〉E、cという条件が必要である。次に
成長機構を考慮するとC元素はA元素上に単原子づつ積
層しなければならず、複数のC元素が単層成長すること
はできない条件が必要である。逆にD元素は8元素上に
単層成長しなければならないから、結合エネルギーの条
件はE +u+ < E DD、 E cc < E 
Aaのようになる。A B a型規則格子の最密面は第
1図、1に示すようにA原子対は形成しないから、E 
1111 > E AAという関係があるため+11式
のような条件が、第1図に示す人工周期形成のための条
件になる。また、AB、型規則相の場合、規則格子の最
密面にABABAB・・・を含むため0元素上のB元素
およびA元素上のC元素はVW型成長する必要がある。
In order to produce the superlattice material of the present invention, it is necessary to select an ordered phase that can control the crystal growth mechanism and elements for the growth phase to be grown thereon. An ordered phase like 1 in Figure 1 is placed on a substrate, and the first layer is C element (5) and A element (3).
grow on top. At this time, in order to place C element directly above A element, the bond energy between A element and C element must be stronger than the bond energy between B element and C element, so the conditions EAc〉〉E, c are required. It is. Next, considering the growth mechanism, the C element must be stacked one atom at a time on the A element, and conditions are required that prevent a plurality of C elements from growing in a single layer. Conversely, element D must grow in a single layer on 8 elements, so the binding energy conditions are E + u+ < E DD, E cc < E
It becomes like Aa. A B Since the close-packed plane of the a-type regular lattice does not form A-atom pairs as shown in Figure 1, 1, E
Since there is a relationship 1111 > E AA, a condition like the +11 equation becomes a condition for forming an artificial period as shown in FIG. Further, in the case of AB, a pattern ordered phase, since ABABAB... is included in the closest packed plane of the ordered lattice, the B element on the 0 element and the C element on the A element need to grow in a VW type.

またAB3型規則格子はABABAB・・・配列とB原
子のみの原子配列の2種類の配列が繰り返されており、
EAA<Elllとなっている。以上よりAB3型規則
相の上にAB3型と同様な関係の人工周期をもつ超格子
材料を得るためには、表1に示す条件が必要になる。
In addition, the AB3 type regular lattice has two types of repeating arrangements: the ABABAB... arrangement and the atomic arrangement of only B atoms.
EAA<Ell. From the above, in order to obtain a superlattice material having an artificial periodicity similar to that of AB3 type on an AB3 type regular phase, the conditions shown in Table 1 are required.

(本頁、以下余白) 表  1 さらにAB型、DO3型規則相を基板にし、単層膜面内
に人工的周期を作製するためには結晶成長機構を考慮し
て、表1に示す結合エネルギーの条件が求まる。表1の
人工周期は第1.2図のようにA元素上にC元素、8元
素上にD元素を成長させた場合であるが、A元素上にD
元素、8元素上にC元素を成長させる場合も、結合エネ
ルギーの条件は容易に求められる。
(This page, blank space below) Table 1 Furthermore, in order to create an artificial period in the plane of a monolayer film using an AB type or DO3 type ordered phase as a substrate, the bond energies shown in Table 1 are required, taking into account the crystal growth mechanism. Find the conditions for The artificial period in Table 1 is the case where element C is grown on element A and element D is grown on 8 elements as shown in Figure 1.2.
Even when growing C element on element 8, the bonding energy conditions can be easily determined.

E AA+  E lll+ E CC+ E DDの
大小関係は、それぞれの単金属を基板にした時の膜成長
機構の観察結果から求めることができる。例えば、Fe
を基板としてCuを蒸着すると、CuはVW型成長を行
なうことからE CuCu <E FllFeという結
果が得られる。またNiを基板としてCuを蒸着すると
、Cuは単層成長することからE CuCu > E 
NiNiのようになる。よってE FIIFII > 
E CuCu > E NiNiの順になることがわか
る。
The magnitude relationship of E AA + E ll + E CC + E DD can be determined from the observation results of the film growth mechanism when each single metal is used as a substrate. For example, Fe
When Cu is deposited using the substrate as a substrate, the result that E CuCu <E FlIFe is obtained since Cu performs VW type growth. Also, when Cu is deposited using Ni as a substrate, Cu grows as a single layer, so E CuCu > E
Be like NiNi. Therefore, E FIIFII >
It can be seen that the order is E CuCu > E NiNi.

超格子材料の作製条件として、到達真空度、基板温度、
および蒸着速度が重要であることを述べた。その理由に
ついて以下説明する。薄膜の成長機構には、核発生、成
長による様式と単層成長の2つについて大別できる。前
者はVolmer −Weber型成長(V−W型)と
呼び、これらの成長機構は、理想的な状態では結合エネ
ルギーに依存する。この理想的条件は、膜成長条件を制
御することによって得られる。この条件を見出すために
Fe単結晶上にFe膜を成長させた。同一金属を基板に
した場合、もし理想的条件で膜成長させた場合には、単
層成長になる。従ってFe単結晶を基板としてFe膜が
単層成長する条件を見出せばよい。単層成長が起こって
いることを決定する手段としてはLEED(低エネルギ
ー電子回折)、RHEED(高エネルギー反射電子回折
)がある。第3図は室温で(110)Fe上にO,OS
人/minの蒸着速度で純度99.99%のFeを蒸着
した時のRHEEDパターンを示す。(a)〜td)は
蒸着直前の真空度を変えたものであり、それぞれの真空
度は(a) 5 X 10−”Torr、 (b) I
 X 10−@、 (C)5 Xl0−’、 (d) 
I Xl0−”である。(a)は結晶性が悪く、成長方
位がランダムであり核生成を伴っている。
The conditions for producing superlattice materials include ultimate vacuum, substrate temperature,
and that the deposition rate is important. The reason for this will be explained below. Thin film growth mechanisms can be roughly divided into two types: nucleation and growth mode and monolayer growth mode. The former is called Volmer-Weber type growth (V-W type), and these growth mechanisms depend on binding energy under ideal conditions. This ideal condition can be obtained by controlling the film growth conditions. In order to find this condition, an Fe film was grown on an Fe single crystal. If the same metal is used as the substrate and the film is grown under ideal conditions, it will grow as a single layer. Therefore, it is only necessary to find conditions for growing a single layer of Fe film using Fe single crystal as a substrate. LEED (low energy electron diffraction) and RHEED (high energy reflected electron diffraction) are methods for determining that monolayer growth is occurring. Figure 3 shows O,OS on (110)Fe at room temperature.
The RHEED pattern is shown when Fe with a purity of 99.99% is deposited at a deposition rate of 1 person/min. (a) to td) are obtained by changing the vacuum degree immediately before vapor deposition, and the respective vacuum degrees are (a) 5 X 10-”Torr, (b) I
X 10-@, (C)5 Xl0-', (d)
I Xl0-''. (a) has poor crystallinity, has a random growth direction, and is accompanied by nucleation.

(b)は核生成を伴っていないが、成長方位が一定でな
く基板と成長層間にガス分子が吸着しているためfa)
と同様にバックグラウンドが高い。(C)はバックグラ
ウンドも低くほぼ単層成長となっているが、下地原子配
列と成長層との整合性が悪いためピークがすそをひいて
いる。(d)はほぼ完全な単層成長膜でピークも鋭い0
以上の結果から単層成長するための真空度は、< I 
Xl0−’Torrにしなければならないことがわかる
(b) does not involve nucleation, but the growth direction is not constant and gas molecules are adsorbed between the substrate and the growth layer (fa)
The background is also high. In (C), the background is low and the growth is almost a single layer, but the peak is narrow due to poor matching between the underlying atomic arrangement and the growth layer. (d) is an almost perfect monolayer grown film with a sharp peak of 0.
From the above results, the degree of vacuum for monolayer growth is < I
It can be seen that it must be set to Xl0-'Torr.

第4図は第3図と同じ基板と蒸着源を用い、蒸着速度0
.05人/minで基板温度を変化させた場合のRHE
EDパターンである。それぞれの基板温度はla) 8
00℃、 (b) 750℃、 (C) 700℃、 
+d) 650℃である。基板温度が低いほど単層成長
し易いことがわかる。この結果から、室温付近の基板温
度であれば、十分単層膜の作成が可能であることがわか
る。
Figure 4 uses the same substrate and deposition source as Figure 3, and the deposition rate is 0.
.. RHE when changing substrate temperature at 05 people/min
This is an ED pattern. The temperature of each substrate is la) 8
00℃, (b) 750℃, (C) 700℃,
+d) 650°C. It can be seen that the lower the substrate temperature, the easier it is to grow a single layer. This result shows that it is possible to form a single layer film sufficiently if the substrate temperature is around room temperature.

しかし規則相を基板として用いる場合には、規則−不規
則変態点以上に基板加熱を行なうと、規則相の分解が起
こり、原子配列がランダムになるために、変態点以上に
加熱すると単層膜面内の超格子材料の原子配列に乱れを
生じてしまう。このため基板を規則−不規則変態点以上
に加熱することはできない。
However, when using an ordered phase as a substrate, if the substrate is heated above the ordered-disorder transformation point, the ordered phase will decompose and the atomic arrangement will become random. Disturbance occurs in the atomic arrangement of the superlattice material in the plane. Therefore, the substrate cannot be heated above the regular-disorder transformation point.

第5図は室温において第4図と等しい実験条件で蒸着速
度を変化させた場合のRHEEDパターンである。蒸着
速度は(al 0 、5人/lll1n、 (b)0.
3人/lll1n。
FIG. 5 shows RHEED patterns when the deposition rate is varied under the same experimental conditions as in FIG. 4 at room temperature. The deposition rate is (al 0 , 5 persons/lll1n, (b) 0.
3 people/lll1n.

(C) 0.1人/lll1nであり、蒸着速度が低下
するほど単層成長が起こりやすいことがわかる。(a)
 (blは核発生が生じており回折ピークがブロードに
なっているが、蒸着速度0.1人/minの場合、はぼ
完全に単層成長が生じている。
(C) 0.1 person/llln, and it can be seen that monolayer growth is more likely to occur as the deposition rate decreases. (a)
(In bl, nucleation occurs and the diffraction peak becomes broad, but when the deposition rate is 0.1 person/min, almost complete monolayer growth occurs.

第3〜5図の結果、Fe膜が単層成長する条件は、真空
度< I Xl0−’Torr、基板温度く規則−不規
則変態点、蒸着速度<0.1人/winとなる。従って
本特許請求の範囲の超格子材料を得るためには、上記条
件を満足する蒸着条件で膜成長させなければならない。
As shown in FIGS. 3 to 5, the conditions for single-layer growth of the Fe film are: degree of vacuum < I Xl0-'Torr, substrate temperature: regular-irregular transformation point, and deposition rate <0.1 person/win. Therefore, in order to obtain the superlattice material according to the claims of the present invention, the film must be grown under vapor deposition conditions that satisfy the above conditions.

〔実施例〕〔Example〕

以下、本発明の実施例を述べる。規則相としてAg4型
のNi4Moを選択し、結合エネルギーEを考慮して成
長層はFeAg合金とした。蒸着条件は、表2に示しで
ある。
Examples of the present invention will be described below. Ag4 type Ni4Mo was selected as the ordered phase, and the grown layer was made of a FeAg alloy in consideration of the bond energy E. The vapor deposition conditions are shown in Table 2.

表2 これらの蒸着条件の決定理由は前述した通りである。N
i4Mo規則相を蒸着する時の基板としてSi単結晶+
 5iO1+ガラス基板、金属単結晶があるが、St単
結晶を基板として用いた場合、基板上の第一層目のNi
4M0は、完全な単層成長にならない。従ってNi、M
oの表面における結晶方位は膜厚に依存する* N1J
oの最密面である(111)の強度は、第8図に示すよ
うにNi、Moの膜厚に依存し、約400Å以上の膜厚
になると(111)ピーク以外の面指数からのピークは
生じないことから、400Å以上の膜厚のN1Joを表
2の条件で作製すればよいことがわかる。このN1Jo
膜上に膜厚約2000人のFeAg合金を表2の蒸着条
件で蒸着し、振動試料型磁力計(V S M)によって
Fe原子当りの飽和磁化(B、)を測定した。その結果
を第6図に示す。第6図における加熱温度はNi、Mo
基板の蒸着前における加熱温度を示しており、400℃
以上にするとFeの磁気モーメントが上昇する。この原
因は、室温で蒸着したままのNi4Mo膜の表面に欠陥
が生成しているためであり、加熱により表面原子の再構
成を行なうことによりNi4Mo表面の最密原子配列が
完全になる。N1Joを500℃、lh油加熱、これを
基板としてFeAg合金を蒸着した場合、透過X線回折
で面内周期性に起因する第7図に示すような回折ピーク
が生じた。従ってFe原子とAg原子が基板に平行な面
内において人工周期を有していることが明らかになった
。ここで蒸着に用いたFeおよびAgあるいはFeAg
合金は純度99.999%以上であり、表2に示す蒸着
条件で蒸着速度を求め、シャッター開放時間を制御する
ことによって作製した。シャッター開放時間は最高0.
05秒の精度で制御できる。
Table 2 The reasons for determining these deposition conditions are as described above. N
Si single crystal + as a substrate when depositing i4Mo ordered phase
There are 5iO1+ glass substrates and metal single crystals, but when a St single crystal is used as a substrate, the first layer of Ni on the substrate
4M0 does not result in complete monolayer growth. Therefore, Ni, M
The crystal orientation at the surface of o depends on the film thickness * N1J
As shown in Figure 8, the intensity of (111), which is the closest-packed plane of Since this does not occur, it can be seen that N1Jo having a film thickness of 400 Å or more can be manufactured under the conditions shown in Table 2. This N1Jo
A FeAg alloy with a thickness of approximately 2000 ml was deposited on the film under the deposition conditions shown in Table 2, and the saturation magnetization (B,) per Fe atom was measured using a vibrating sample magnetometer (VSM). The results are shown in FIG. The heating temperature in Fig. 6 is for Ni, Mo
It shows the heating temperature of the substrate before vapor deposition, which is 400℃.
If it is more than that, the magnetic moment of Fe increases. This is because defects are generated on the surface of the Ni4Mo film as deposited at room temperature, and by heating to reconfigure the surface atoms, the close-packed atomic arrangement on the Ni4Mo surface is completed. When N1Jo was heated in lh oil at 500° C. and a FeAg alloy was deposited using it as a substrate, a diffraction peak as shown in FIG. 7 caused by in-plane periodicity was generated in transmission X-ray diffraction. Therefore, it has become clear that Fe atoms and Ag atoms have an artificial period in a plane parallel to the substrate. Fe and Ag or FeAg used for vapor deposition here
The alloy had a purity of 99.999% or more and was produced by determining the deposition rate under the deposition conditions shown in Table 2 and controlling the shutter opening time. The maximum shutter opening time is 0.
It can be controlled with an accuracy of 0.5 seconds.

また2元蒸着とは別にFeAg合金1元の蒸着も試みた
。第6.7図は2元蒸着の場合であるが、合金を蒸着源
に用いた場合(Fe:Ag・4:1) 、Fe当りの飽
和磁化の値は、蒸着速度の影響を受け、第9図に示すよ
うに0.03人/win以下でバルクFeよりもB3が
上昇した。蒸着速度が速くなると83が減少するのは、
規則格子上のFeやAg原子の移動度が高いために、周
期性に乱れが生じることと蒸着する時、蒸着源から基板
までに到達するFe、Ag原子のクラスターの大きさが
変動するためである。
In addition to binary vapor deposition, we also attempted vapor deposition of a single FeAg alloy. Figure 6.7 shows the case of binary evaporation, but when an alloy is used as the evaporation source (Fe:Ag, 4:1), the value of saturation magnetization per Fe is affected by the evaporation rate, and As shown in Figure 9, B3 increased more than bulk Fe at 0.03 persons/win or less. The reason why 83 decreases as the deposition rate increases is because
This is because the high mobility of Fe and Ag atoms on a regular lattice causes disturbances in the periodicity, and during vapor deposition, the size of the clusters of Fe and Ag atoms that reach the substrate from the vapor deposition source varies. be.

規則合金としてAg3型のN1=Sn、  AB型のF
eSn、およびDO3型のFe5A lを基板にし、表
2の条件でCo(99,999%)およびAg(99,
999%)を交互に蒸着した。作製した薄膜の垂直方向
の保磁力(Hc、)を第10図に示す。N9工は膜厚増
加と共に上昇し、膜厚0.4μmでいずれの基板を用い
ても300〜6000eとなる。またHCよは規則相の
周期に依存しABAB・・・配列であるFeSnを基板
として用いるとHCJLは高く、Ni3Snのように周
期が長い規則相の場合には、周期が短かいものに比べH
C上は低くなる。
As ordered alloys, N1=Sn of Ag3 type, F of AB type
Using eSn and DO3 type Fe5Al as substrates, Co (99,999%) and Ag (99,999%) were added under the conditions shown in Table 2.
999%) were deposited alternately. FIG. 10 shows the vertical coercive force (Hc,) of the fabricated thin film. The N9 process increases as the film thickness increases, and at a film thickness of 0.4 μm, it becomes 300 to 6000 e regardless of which substrate is used. In addition, HC depends on the period of the ordered phase, and when FeSn with an ABAB... arrangement is used as a substrate, the HCJL is high, and in the case of a regular phase with a long period like Ni3Sn, H
C is lower.

第11図はFeSn、Fe1^lを基板にしてFe、C
u(99,99%)を表2の蒸着条件で交互に蒸着した
場合のFe −Cu膜のHcよを示す。Co−Ag系に
比べ異方性エネルギーが小さいFe系合金ではHcよも
小さく10〜2000程度である。この場合も規則合金
の周期に依存し、周期が短かい規則相を用いるとIIC
工も大きくなることがわかる。
Figure 11 shows Fe, C using FeSn and Fe1^l as substrates.
The Hc value of the Fe--Cu film is shown when u (99,99%) is alternately deposited under the deposition conditions shown in Table 2. In Fe-based alloys, the anisotropy energy is smaller than that of Co-Ag-based alloys, which is smaller than Hc and is about 10 to 2000. In this case as well, it depends on the period of the ordered alloy, and if an ordered phase with a short period is used, IIC
It can be seen that the construction also becomes larger.

第11図で測定したCo −Ag合金薄膜の異方性磁界
HI1.Lを第12図に示す。HKJLも膜厚および規
則相の周期に依存し、膜厚が厚く、規則相の周期が短か
いほどonは大きくなる。HwlO値は30000e以
上となり、現在注目されている。CoCr1膜の2倍近
い値であり、垂直磁気記録媒体への応用が考えられる。
Anisotropic magnetic field HI1 of Co-Ag alloy thin film measured in FIG. L is shown in FIG. HKJL also depends on the film thickness and the period of the ordered phase, and the thicker the film and the shorter the period of the ordered phase, the larger on becomes. The HwlO value is over 30,000e and is currently attracting attention. This value is nearly twice that of the CoCr1 film, and its application to perpendicular magnetic recording media can be considered.

さらに、第10図に示したCo −Ag超格子材料のカ
ー回転角(θK)を1le−Neレーザ(λ−633n
m)を光源とする極力−効果測定装置を用いて測定した
結果を第13図に示す。)lcLの最も高いFeSn規
則相規則−たCo −Ag超格子材料のθ、は1.0〜
1.7°の範囲にある。特に膜厚0.4μmにおけるC
o −Ag超格子材料は、約1.5°でありMnB1等
の値より高く、光磁気記録材料として期待できるもので
ある。
Furthermore, the Kerr rotation angle (θK) of the Co-Ag superlattice material shown in FIG.
FIG. 13 shows the results of measurement using a maximum effect measurement device using a light source as shown in FIG. ) of the FeSn ordered phase-ordered Co-Ag superlattice material with the highest lcL is 1.0 ~
It is in the range of 1.7°. In particular, C at a film thickness of 0.4 μm
The o -Ag superlattice material has an angle of about 1.5°, which is higher than that of MnB1, etc., and is promising as a magneto-optical recording material.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多層材料において結晶成長面内の周期
性を制御することができ、異方性磁界が30000e以
上の膜を作製することが可能である。
According to the present invention, it is possible to control the periodicity within the crystal growth plane in a multilayer material, and it is possible to produce a film with an anisotropic magnetic field of 30,000 e or more.

また、カー回転角も1.0〜1.7°となり、従来開発
されていたMnB1.希土類遷移金属非晶質、ガーネッ
ト、バリウムフェライトなどよりも大きい材料である。
In addition, the Kerr rotation angle is 1.0 to 1.7°, which was different from the conventionally developed MnB1. It is a larger material than rare earth transition metal amorphous, garnet, barium ferrite, etc.

従って垂直記録媒体や光磁気記録材料へ応用できる。Therefore, it can be applied to perpendicular recording media and magneto-optical recording materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、A B a化合物からなる下地材上に元素C
及びDよりなる人工周期を有する規則相が単相膜面内に
形成される状態を示す図、第2図は、AB化合物からな
る下地材上に元素C及びDよりなる人工周期を有する規
則相が単相膜内に形成される状態を示す図、第3図は、
室温で(110) Fe上にO,OS人/winの蒸着
速度で純度99.99%のFeを蒸着した時のRHEE
Dパターンを示す図、第4図は、第3図と同じ基板と蒸
着源を用い、蒸着速度0.05人/winで基板温度を
変化させた場合のRHEEDパターンを示す図、第5図
は、室温において第4図と等しい実験条件で蒸着速度を
変化させた場合のRHEEDパターンを示す図、第6図
は、Ni4Mo膜上に膜厚約2000人のFeAg合金
を蒸着し、Fe原子当りの飽和磁化(B、)を測定した
結果を示す図、第7図は、Ni4Moを500℃、1h
加熱し、これを基板としてFeAg合金を蒸着した場合
の透過X線回折の結果を示す図、第8図は、Ni、Mo
の膜厚とN1Joの(111)の強度との関係を示す図
、第9図は、合金を蒸着源に用いた場合(Fe:Ag・
4:1)の蒸着速度とFe当りの飽和磁化の値の関係を
示す図、第10図は、Ni3Sn、FeSn、およびF
eJlを基板にし、Co(99,999%)およびAg
(99,999%)を交互に蒸着して作製した薄膜の垂
直方向の保磁力(HcL)を示す図、第11図は、Fe
Sn、 Fe5A lを基板にしてFe、Cu(99,
99%)を表2の蒸着条件で交互に蒸着した場合のFe
 −Cu膜の)lcaを示す図、第12図は、第11図
で測定したCo −Ag合金薄膜の異方性磁界Hに上を
示す図、第13図は、第10図に示したCo −Ag超
格子材料のカー回転角(θK)をHe−Neレーザ(λ
−633nm)を光源とする極力−効果測定装置を用い
て測定した結果を示す図である。
Figure 1 shows element C on a base material made of A B a compound.
A diagram showing a state in which an ordered phase with an artificial period consisting of elements C and D is formed in a single-phase film surface. Figure 2 shows an ordered phase having an artificial period consisting of elements C and D on a base material made of an AB compound Figure 3 is a diagram showing the state in which is formed in a single phase film.
RHEE when Fe with a purity of 99.99% is deposited on (110) Fe at room temperature at a deposition rate of O,OS person/win
Figure 4 is a diagram showing the D pattern, and Figure 5 is a diagram showing the RHEED pattern when the same substrate and evaporation source as in Figure 3 are used, and the substrate temperature is varied at a deposition rate of 0.05 people/win. Figure 6 shows the RHEED pattern when the deposition rate is varied under the same experimental conditions as in Figure 4 at room temperature. Figure 7 shows the results of measuring the saturation magnetization (B,) of Ni4Mo at 500°C for 1 h.
Fig. 8 is a diagram showing the results of transmission X-ray diffraction when heating and using this as a substrate to deposit a FeAg alloy.
Figure 9 shows the relationship between the film thickness of N1Jo and the (111) strength of N1Jo.
Figure 10 shows the relationship between the deposition rate of 4:1) and the value of saturation magnetization per Fe.
Using eJl as a substrate, Co (99,999%) and Ag
Figure 11 is a diagram showing the vertical coercive force (HcL) of a thin film fabricated by alternately depositing Fe (99,999%).
Fe, Cu (99,
99%) was alternately deposited under the deposition conditions shown in Table 2.
12 is a diagram showing the anisotropic magnetic field H of the Co-Ag alloy thin film measured in FIG. 11, and FIG. 13 is a diagram showing the -The Kerr rotation angle (θK) of the Ag superlattice material was determined by the He-Ne laser (λ
It is a figure which shows the result of measurement using the best possible effect measuring device using a light source of -633 nm).

Claims (1)

【特許請求の範囲】 1、規則相を有する合金からなる下地材と、前記下地材
の合金を構成する元素と異なる元素からなり、前記下地
材上にこれと平行に、前記規則相の周期構造に対応して
形成され、前記規則相の周期構造を保った人工周期を有
する多数の単層膜と、から構成された多層材料からなる
ことを特徴とする超格子材料。 2、規則相を有する合金からなる下地材と、前記下地材
の合金を構成する元素と異なる元素からなり、前記下地
材上にこれと平行に、前記規則相の周期構造に対応して
形成され、前記規則相の周期構造を保った人工周期を有
する多数の単層膜と、から構成され、かつ、単層膜の垂
直面に人工周期を有する多層材料からなることを特徴と
する超格子材料。 3、規則相として強磁性体の規則相を用いることを特徴
とする特許請求の範囲第1項又は第2項記載の超格子材
料。 4、超格子材料が高飽和磁束密度、垂直磁気異方性を有
することを特徴とする特許請求の範囲第1項乃至第3項
のいずれかの項記載の超格子材料。 5、既存の規則相を有する合金を下地材とし、前記下地
材の合金を構成する元素とは異なる元素であって、元素
間に所要の結合エネルギー関係を満たす元素を選択し、
適宜の薄膜形成手段によって、前記異なる元素からなり
、かつ、前記規則相の周期構造に対応して形成され、前
記規則相の周期構造を保った人工周期を有する多数の単
層膜を前記下地材上に平行に形成して多層材料とするこ
とを特徴とする超格子材料の製造方法。 6、薄膜形成手段が真空蒸着法であることを特徴とする
特許請求の範囲第5項記載の超格子材料の製造方法。
[Scope of Claims] 1. A base material made of an alloy having an ordered phase, and a periodic structure of the ordered phase formed on the base material and parallel to the base material, comprising an element different from the element constituting the alloy of the base material. 1. A superlattice material comprising a multilayer material formed from a large number of single-layer films having an artificial period that maintains the periodic structure of the ordered phase. 2. A base material made of an alloy having an ordered phase, and a base material made of an element different from the element constituting the alloy of the base material, and formed on the base material in parallel with this, corresponding to the periodic structure of the ordered phase. , a large number of single-layer films having an artificial period that maintains the periodic structure of the ordered phase, and a multilayer material having an artificial period on a vertical plane of the single-layer film. . 3. The superlattice material according to claim 1 or 2, wherein a ferromagnetic ordered phase is used as the ordered phase. 4. The superlattice material according to any one of claims 1 to 3, characterized in that the superlattice material has a high saturation magnetic flux density and perpendicular magnetic anisotropy. 5. Using an existing alloy having an ordered phase as a base material, selecting an element that is different from the elements constituting the alloy of the base material and satisfying the required bond energy relationship between the elements,
Using an appropriate thin film forming means, a large number of single-layer films made of the different elements, formed corresponding to the periodic structure of the ordered phase, and having an artificial period that maintains the periodic structure of the ordered phase are applied to the base material. 1. A method for producing a superlattice material, which comprises forming a superlattice material in parallel on top to form a multilayer material. 6. The method for producing a superlattice material according to claim 5, wherein the thin film forming means is a vacuum evaporation method.
JP61245183A 1986-10-17 1986-10-17 Superlattice material and its production Granted JPS63100172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61245183A JPS63100172A (en) 1986-10-17 1986-10-17 Superlattice material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61245183A JPS63100172A (en) 1986-10-17 1986-10-17 Superlattice material and its production

Publications (2)

Publication Number Publication Date
JPS63100172A true JPS63100172A (en) 1988-05-02
JPH0588311B2 JPH0588311B2 (en) 1993-12-21

Family

ID=17129845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61245183A Granted JPS63100172A (en) 1986-10-17 1986-10-17 Superlattice material and its production

Country Status (1)

Country Link
JP (1) JPS63100172A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184799A (en) * 1983-04-01 1984-10-20 Hisanori Bando Artificial crystal lattice and its preparation
JPS6135847A (en) * 1984-07-27 1986-02-20 Hitachi Ltd Preparation of membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184799A (en) * 1983-04-01 1984-10-20 Hisanori Bando Artificial crystal lattice and its preparation
JPS6135847A (en) * 1984-07-27 1986-02-20 Hitachi Ltd Preparation of membrane

Also Published As

Publication number Publication date
JPH0588311B2 (en) 1993-12-21

Similar Documents

Publication Publication Date Title
JP3320079B2 (en) Magnetic laminate and magnetoresistive element
JP2001523032A (en) Highly oriented magnetic thin film, recording medium using the same, transducer, device, and manufacturing method
JPS62257617A (en) Magnetic recording medium
JPS626426A (en) Magnetic recording medium
US7211340B2 (en) Thin film structures providing strong basal plane growth orientation and magnetic recording media comprising same
JP2006244684A (en) Magnetic recording medium and its manufacturing method, and magnetic storage device
JPH05766B2 (en)
JP2005085338A (en) Magnetic recording medium, magnetic storage device , and method of recording
JP5923337B2 (en) Laminated body and method for producing the laminated body
Nakagawa et al. Highly (0 0 1) oriented FePt ordered alloy thin films fabricated from Pt (1 0 0)/Fe (1 0 0) structure on glass disks without seed layers
JP2003123239A (en) Perpendicular magnetic recording medium
US5772857A (en) Method of manufacturing CoCrTa/CoCrTaPt bi-layer magnetic thin films
US20100215991A1 (en) Perpendicular magnetic recording medium, process for producing perpendicular magnetic recording medium, and magnetic recording/reproducing apparatus
US20120141837A1 (en) Tetragonal manganese gallium films
US6541131B1 (en) Perpendicular recording media with enhanced coercivity
Laughlin et al. Engineering the microstructure of thin films for perpendicular recording
US5001018A (en) Fe-Co base magnetic film and process for producing the same
JPS63100172A (en) Superlattice material and its production
JP3052915B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
JPH0814889B2 (en) Perpendicular magnetic recording media
JP2003022523A (en) Perpendicular magnetic recording medium and method for manufacturing the same
JP3559332B2 (en) Magnetic multilayer film, method of manufacturing the same, and magneto-optical recording medium
JPS61113122A (en) Vertical magnetic recording medium
JPH0582653B2 (en)
JP3559333B2 (en) Magnetic multilayer film, method of manufacturing the same, and magneto-optical recording medium