JPS6298621A - Fine gap setting up device - Google Patents

Fine gap setting up device

Info

Publication number
JPS6298621A
JPS6298621A JP60237219A JP23721985A JPS6298621A JP S6298621 A JPS6298621 A JP S6298621A JP 60237219 A JP60237219 A JP 60237219A JP 23721985 A JP23721985 A JP 23721985A JP S6298621 A JPS6298621 A JP S6298621A
Authority
JP
Japan
Prior art keywords
gap
wafer
pattern
mask
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60237219A
Other languages
Japanese (ja)
Inventor
Keiichi Okamoto
啓一 岡本
Tomohiro Kuji
久迩 朝宏
Yukio Kenbo
行雄 見坊
Akira Inagaki
晃 稲垣
Yoshihiro Yoneyama
米山 義弘
Ryuichi Funatsu
隆一 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60237219A priority Critical patent/JPS6298621A/en
Publication of JPS6298621A publication Critical patent/JPS6298621A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To measure the gap on-line between a mask and a wafer subject to non-destruction and non-contact by a method wherein the gap between a pattern and a mirror is set up by measuring any positional deflection caused when a pattern and a vertical image of pattern on the mirror are observed in the oblique direction. CONSTITUTION:A wafer 2 below a mask 1 is vacuum-adsorbed on a wafer chuck 3 for setting up by vacuum 5. The wafer chuck 3 controls the wafer 2 set thereon by vertical inching mechanisms 4-1, 4-2 to make specified gap between the wafer 2 and the mask 1. The gap shall be set up with high precision since the gap between the mask 1 and the wafer 2 is radially irradiated with X-rays from a spot type exposure light source so that any transferred pattern width may change in response to the change in gap between the mask 1 and the wafer 2. Therefore, an illumination optical system 6, a detection optical system 7 and a pattern detector 8 are provided to measure the gap. In such a constitution, the gap between the mask 1 and the wafer 2 detected by the pattern detector 8 can be fedback to the vertical inching mechanisms 4-1, 4-2 to set up the gap with high precision.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ミクロンオーダ微小間隙測定技術に関し、特
に半導体製造におけるX線アライナのように、非接触プ
ロキシミティ露光時の、マスクとウェハーの間隙測定に
好適である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to micron-order minute gap measurement technology, and in particular to measurement of the gap between a mask and a wafer during non-contact proximity exposure, such as an X-ray aligner in semiconductor manufacturing. suitable for

〔発明の背景〕[Background of the invention]

従来のプロキシミティアライナにおけるギャップ設定は
、特開昭56−13726号公報に記載のように、オフ
ラインでウェハー及びマスクの高さをそれぞれ別々に測
定し、これを露光位置に移動させて間隙設定を行うよう
になっているっそのため、移送途中でのずれがあっても
これを検知できず、またオフラインでしか測定できない
ので、実際の露光位置での間隙設定精度をサブミクロン
にすることが殆ど不可能で、こ石がX線アライナ実用上
のひとつの障害となっていたつ 〔発明の目的〕 本発明の目的は、X線マスクアライナにおけるマスクと
ウェハーの間隙を非破壊、非接触でオンライン計測し、
その精度としてサブミクロンの確度を得ることにあるう 〔発明の概要〕 マスク上のパターンが、鏡面ウェハー上で反射して虚像
として観測されるっこれを斜方向から見ろと間隙の犬さ
さに対応して、実像と虚像に位置すれが生じ、二重像と
して見える。従ってこの二重像のずれを測定゛「れは、
逆に間隙がいくらかを算出できる。ここでの問題点は、
実像と虚像の間では同一焦点面上にないために、・焦点
ずれが生じることである。そこで、本発明ではあらかじ
め平面上での相対位置精度を測定しておいた複数個の別
パターンを用いる。相対位置関係を。一方の実1オと他
方の虚像が同一焦点平面上に存在するようにできろうそ
こで、この合焦点位置に設けた実像ターゲットパターン
と虚像ターゲットパターンの、焦点平面上の距離を測定
すれば、これは、間隙に換算可能である。
Gap setting in conventional proximity aligners is performed by measuring the heights of the wafer and mask separately off-line and moving them to the exposure position to set the gap, as described in Japanese Patent Application Laid-open No. 13726/1983. Because of this, even if there is a shift during transportation, it cannot be detected, and it can only be measured off-line, so it is almost impossible to achieve submicron gap setting accuracy at the actual exposure position. [Object of the Invention] The object of the present invention is to measure the gap between the mask and the wafer in an X-ray mask aligner online in a non-destructive and non-contact manner. ,
The accuracy lies in obtaining submicron accuracy. [Summary of the Invention] The pattern on the mask is reflected on the mirrored wafer and observed as a virtual image. When viewed from an oblique direction, this corresponds to the size of the gap. As a result, the real image and virtual image are misaligned, and they appear as a double image. Therefore, the deviation of this double image is measured.
Conversely, you can calculate how much the gap is. The problem here is that
Since the real image and the virtual image are not on the same focal plane, a defocus occurs. Therefore, in the present invention, a plurality of separate patterns whose relative positional accuracy on a plane has been measured in advance are used. relative positional relationship. One real image and the other virtual image can be made to exist on the same focal plane. Therefore, if we measure the distance on the focal plane between the real image target pattern and the virtual image target pattern provided at this focal point position, we can can be converted into a gap.

間隙の、絶対値を必要としない場合は、両者が合焦点と
なるように制御することによって、ゼロメソッドによる
間隙設定ができ、間隙設定再現精度を大きく向上できる
If the absolute value of the gap is not required, by controlling the two to become a focused point, the gap can be set using the zero method, and the gap setting reproducibility accuracy can be greatly improved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図は、X線アライナにおけるマスク、ウェハーの間
隙検出を含めた主要部分を示すっマスク1の下のウェハ
ー2はウェハーチャック3に真空5により吸引セットさ
れるうウェハーチャックは、上下微動機構4−1.4−
2によって、その上にセットされたウェハー2を、マス
Figure 1 shows the main parts of the X-ray aligner, including mask and wafer gap detection.The wafer 2 under the mask 1 is set on the wafer chuck 3 by vacuum 5.The wafer chuck has a vertical fine movement mechanism. 4-1.4-
2, the wafer 2 set on it is massed.

り1に対して一定の間隔になるように制御するイ露元々
源のX線は、図に示すように、点光源か゛ら放射状に照
射されるので、マスクlとウェハ。
As shown in the figure, the X-rays from the original source are radially irradiated from a point light source, so that the mask 1 and the wafer are controlled at constant intervals.

−2の間隙か変化すると、X線の広かりに伴って、転写
されるパターン巾か変化するために、・この間隙を高精
度に設定下る必安かある。そこでこの間隙を測定するた
めに、照明光字系6と・検出光字系7.パターン検出器
8を設けている。
If the -2 gap changes, the width of the pattern to be transferred changes as the X-rays become wider. Therefore, it is necessary to set this gap with high precision. Therefore, in order to measure this gap, an illumination beam system 6 and a detection beam system 7. A pattern detector 8 is provided.

パターン検出器8で検出したマスク1.ウェハー2の間
隙は、上下微動機構4−1.4−2にフィードバックさ
れ、この間隙を設定する構造になっているう 第2図は1本発明によるマスク、ウェハーの間隙を検l
1tlTる方式原理を説明する。
Mask 1 detected by pattern detector 8. The gap between the wafers 2 is fed back to the vertical fine movement mechanism 4-1 and 4-2, and the structure is such that this gap is set.
The principle of the 1tlT method will be explained.

マスク1上に形成したターゲットパターン9−1.9−
2は光を遮断し、他の部分は透明で光を通す。通常は、
このパターンはX線に対しても同様の効果を持つ材質、
たとえば金(Au )等で形成されるっマスク1の下に
は、微小間隙dだけ離してウェハー2を設置する。この
場合ウェハー2の境面部分が対向するようにパターンを
配置してBく。このように設定されたマスク1どウニ・
−−2に2いては、ウェハー2が鏡面である1、ニめに
、マスクパターン9−1.9−2はその虚隊9−1’ 
、 9−2’な侍つ。そこで、つ1/”v−2に対して
角度θの方向にパターン検出器8を設fTるっここでパ
ターン9−1とパターン9−2のマスク1上での距離を
1とすると、1を1まく設計するとパターン検出器8に
対しての焦点面10に対して、マスク上のパターン9−
1と虚1?9−2’の両者が、この焦点面10上に載る
よっにすることができる。
Target pattern 9-1.9- formed on mask 1
2 blocks light, and the other parts are transparent and allow light to pass through. Normally,
This pattern is made of a material that has the same effect on X-rays.
A wafer 2 is placed under a mask 1 made of, for example, gold (Au), separated by a minute gap d. In this case, the patterns are arranged so that the boundary surfaces of the wafer 2 face each other. Mask 1 set like this
--2, the wafer 2 has a mirror surface 1, and the mask pattern 9-1.
, 9-2' Samuraitsu. Therefore, the pattern detector 8 is set in the direction of the angle θ with respect to 1/"v-2. Here, if the distance between the patterns 9-1 and 9-2 on the mask 1 is 1, then 1 If one design is carried out, the pattern 9- on the mask will be
1 and the imaginary 1?9-2' can both be placed on this focal plane 10.

すなわち、パターン検出光学系7の結像面11と焦点面
10の距離?:J−0と1−ると、結像面11にバ。
That is, the distance between the imaging plane 11 of the pattern detection optical system 7 and the focal plane 10? : When J-0 and 1-, a bar appears on the imaging plane 11.

ターン検出器8を設置した時、パターン9−1゜9−2
′は合焦点となって」ントラストよく検出でさるか、パ
ターン9−1’、9−2はそれぞれ後ピント、後ビット
となって、コントラス1゛か低下する。
When turn detector 8 is installed, pattern 9-1゜9-2
Patterns 9-1' and 9-2 become the rear focus and rear bit, respectively, and the contrast is lowered by 1.

ここで、目的とするマスク1とウェハー2の間隙dにつ
いて考えろと、dはパターン9−1とその虚像9−1′
の距離の1/2になる。これをθだけ斜方向から観測す
ると、d’、12のように見えろ。
Now, let's consider the target gap d between the mask 1 and the wafer 2. d is between the pattern 9-1 and its virtual image 9-1'
It becomes 1/2 of the distance. If you observe this from an oblique direction by θ, it will look like d', 12.

真の間隙dと斜方向から−4た時の実像9−1と虚滓9
−1′のパターン間距離dlO間には、2danθz 
d 1なる関係が成立するのでd+を求めれば所要のd
が求まる。
Real image 9-1 and imaginary residue 9 when viewed from the true gap d and the oblique direction by -4
-1′ inter-pattern distance dlO is 2danθz
Since the relationship d1 holds true, if we find d+, we will get the required d
is found.

しかしながら、先に述べたようにパターン9−1と虚像
9−1′は、パターン結(家元学系7に対(7て、同一
焦点面に存在できないためにdxを高WI[iで検出測
定することは困難であるっ一方、先に述べたよう罠、パ
ターン9−1と虚像9−2′は同一焦点平面上にあるこ
とから、ともに検出器8に対してコントラストよく合焦
点位置に持ってくることができろうまた。仮りに、合焦
点からはすれた位置に検出器8が位置した場合でも、焦
点ぼけの影響を均等に受けるために、両バクーン間の距
離を後で説明する画像信号で求める場合の距離変化、f
なわち、間隙検出n度変化が少なくて済む利点かあるつ
焦点平面10上でのパターン9−1と、  9−2’の
距@d2 、13を求めnは、CtL、にすdzcoa
 θ =2d なる関係式よりdが求まるっ 次にパターン9−1と9−2′の距離d2を求める方法
について説、明する。
However, as mentioned above, the pattern 9-1 and the virtual image 9-1' cannot exist in the same focal plane, so the pattern 9-1 and the virtual image 9-1' are detected at a high WI [i] because they cannot exist in the same focal plane. Although it is difficult to measure, since the trap pattern 9-1 and the virtual image 9-2' are on the same focal plane as mentioned earlier, they are both in the focused position with good contrast to the detector 8. Even if the detector 8 is located away from the in-focus point, the distance between the two cameras will be explained later in order to be evenly affected by the defocus. Distance change when finding from image signal, f
That is, there is an advantage that the gap detection n degree change is small. Find the distances @d2 and 13 between the patterns 9-1 and 9-2' on the focal plane 10, where n is CtL, and dzcoa.
After d is determined from the relational expression θ = 2d, a method for determining the distance d2 between the patterns 9-1 and 9-2' will be explained.

第3図は、マスク1上に設けたターゲットパター79−
1.9−2の一例を示している。
FIG. 3 shows a target pattern 79- provided on the mask 1.
An example of 1.9-2 is shown.

タトエば、パターンの長さの一例とじ7100μm、パ
ターン線巾を5μm、9−1.9−2の距離を1とする
。これを第1図に示した光学系で照明検出する時の角度
θ=3cfとした場合、設定間隙d=20μmに丁れば 従って、間隙設定用のマーク9−1.9−2のパターン
間隔ヱをこの値25μmに設計しておけばパターン9−
1.9−2’はともに合焦点パターンとして検出できる
。この時、 従って検出器上では約47μm離れたパターンとして捉
えられる。
For example, the length of the pattern is 7100 μm, the pattern line width is 5 μm, and the distance of 9-1.9-2 is 1. If this is the angle θ = 3 cf when illumination is detected using the optical system shown in Fig. 1, then if the set gap d = 20 μm, then the pattern spacing of the marks 9-1 and 9-2 for gap setting. If ヱ is designed to this value of 25 μm, pattern 9-
1.9-2' can both be detected as a focused pattern. At this time, therefore, the patterns are perceived as being approximately 47 μm apart on the detector.

パターンの距離1の検出光学系としては、たとえば第4
図に示すものを用いる。
As a detection optical system for pattern distance 1, for example, the fourth
Use what is shown in the figure.

対物レンズ14によって、たとえば20倍に拡大して撮
像器8上に結像させるとパターン間距離は47 X 2
0−960μmとなる。撮像器8として、一画素13μ
mのりニヤセンサを用いると738画素に相当するつり
ニヤセンサ、8の前に像圧縮のためのシリンドリカルレ
ンズ15を設けてS/Nを向上させている。
When the objective lens 14 magnifies the image by, for example, 20 times and forms it on the imager 8, the distance between the patterns is 47 x 2.
It becomes 0-960 μm. As the imager 8, one pixel is 13μ
When a linear sensor is used, a cylindrical lens 15 for image compression is provided in front of the linear sensor 8 corresponding to 738 pixels to improve the S/N ratio.

リニヤセンサで検出される光強度信号は、信号16−1
.信号16−2 で示されるようなものになるので、こ
れを電気的に計測し、信号間の位置を読みとることは、
従来技術で十分精度よく実現できるっ 以上述べた方式で検出した値を第1図4−1゜4−2に
示す微動上下機構にフィードバックTることによりて、
設計間隙に精密に設定できるので、パターン転写が高精
度になる。
The light intensity signal detected by the linear sensor is the signal 16-1
.. The signal will be as shown by signal 16-2, so measuring this electrically and reading the position between the signals is as follows:
By feeding back the values detected by the method described above, which can be realized with sufficient accuracy using the conventional technology, to the fine movement up and down mechanism shown in Fig. 1, 4-1 and 4-2,
Pattern transfer can be performed with high precision because the designed gap can be precisely set.

〔発明の効果〕〔Effect of the invention〕

本発明をX線アライナに適用した場合、露光位置で、非
接触にマスクとウエノ1−間の間隙を浜:1定でき、ざ
らに、これをオンラインでフィードバックすることによ
り高精度に間隙設定ができる。
When the present invention is applied to an X-ray aligner, it is possible to set the gap between the mask and the substrate 1 without contact at the exposure position, and by feeding this back online, the gap can be set with high precision. can.

才た、露光位置で行えるので、従来技術、特開昭57−
7931に開示されている方法で必要な測定のためのス
テージ退避が不要とな0.大巾なスルーブツト向上がは
かれろ。
Since it can be performed at a different exposure position, the conventional technology, JP-A-57-
The method disclosed in No. 7931 eliminates the need for stage evacuation for necessary measurements. Let's make a huge improvement in throughput.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のX@アライナの間隙設定に
利用する場合の全体説明図、第2図は本発明の原理説明
図、第3図は本発明を適用−「るりに用いるパターンの
説明図、第4−はパターンの距離の検出光学系の説明図
であるう1・・・X線マスク    2・・・ウニ/X
−3・・・微動ステージ   5・・・真空6・・・照
明光学系   7・・・検出光学系8・・・撮像器  
   9・・・マスクパターン10・・・焦点面   
  11・・・結像面14・・・対物レンズ 15・・・シリンドリカルレンズ 16・・・検出信号
Fig. 1 is an overall explanatory diagram of an embodiment of the present invention when used for setting the gap of Explanatory diagram of the pattern, 4th is an explanatory diagram of the optical system for detecting the distance of the pattern. 1... X-ray mask 2... Sea urchin/X
-3... Fine movement stage 5... Vacuum 6... Illumination optical system 7... Detection optical system 8... Imager
9...Mask pattern 10...Focal plane
11... Image forming surface 14... Objective lens 15... Cylindrical lens 16... Detection signal

Claims (1)

【特許請求の範囲】[Claims] 1、パターンとパターンが鏡面に写る虚像を斜方向から
観察した時に生じる位置ずれ量を測定することによって
、該当パターンと鏡面との間隙を設定することを特徴と
する微小間隙設定装置。
1. A minute gap setting device that sets the gap between the pattern and the mirror surface by measuring the amount of positional deviation that occurs when a virtual image of the pattern reflected on the mirror surface is observed from an oblique direction.
JP60237219A 1985-10-25 1985-10-25 Fine gap setting up device Pending JPS6298621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60237219A JPS6298621A (en) 1985-10-25 1985-10-25 Fine gap setting up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60237219A JPS6298621A (en) 1985-10-25 1985-10-25 Fine gap setting up device

Publications (1)

Publication Number Publication Date
JPS6298621A true JPS6298621A (en) 1987-05-08

Family

ID=17012143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60237219A Pending JPS6298621A (en) 1985-10-25 1985-10-25 Fine gap setting up device

Country Status (1)

Country Link
JP (1) JPS6298621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067231A (en) * 1989-04-17 1991-11-26 Honda Giken Kogyo Kabushiki Kaisha System for press-fitting parts into workpiece
JP2013235160A (en) * 2012-05-09 2013-11-21 Hitachi Kokusai Electric Inc Camera coping with vacuum environment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067231A (en) * 1989-04-17 1991-11-26 Honda Giken Kogyo Kabushiki Kaisha System for press-fitting parts into workpiece
JP2013235160A (en) * 2012-05-09 2013-11-21 Hitachi Kokusai Electric Inc Camera coping with vacuum environment

Similar Documents

Publication Publication Date Title
JP3181050B2 (en) Projection exposure method and apparatus
KR100471524B1 (en) Exposure method
JP2734004B2 (en) Positioning device
JP2000200751A (en) Semiconductor wafer containing alignment mark for aligning wafer on aligner, aligning system for generating alignment signal from alignment mark, and method of determining wafer alignment
JP2938187B2 (en) Pattern forming method and apparatus for performing the method
JP2000121324A (en) Thickness measuring apparatus
JPH0743245B2 (en) Alignment device
JPS6298621A (en) Fine gap setting up device
JPS61124809A (en) Inspection and inspecting apparatus
JP2775988B2 (en) Position detection device
JPS6154622A (en) Pattern transfer process and device and applicable prealigner and mask holder
JP2513281B2 (en) Alignment device
JPH08162393A (en) Aligning device
JPH0430175B2 (en)
JP2698388B2 (en) Position detection device
JPS60180118A (en) Positioning apparatus with diffraction grating
JPH1050593A (en) Projection aligner and manufacture of semiconductor device using the same
JPH09120940A (en) Alignment and aligner
JP2797053B2 (en) X-ray exposure equipment
JPH04268403A (en) Method for focusing light-section image
JPH02122517A (en) Method for detecting position and mark for detecting position
JPH03102847A (en) Method and device for detecting orientation flat and reduced projection exposure device
JPH0562810B2 (en)
JP2003100593A (en) Fine clearance setting device
JPS6382315A (en) Position measuring method