JPS629789A - Production for titanium clad steel by rolling - Google Patents

Production for titanium clad steel by rolling

Info

Publication number
JPS629789A
JPS629789A JP14676485A JP14676485A JPS629789A JP S629789 A JPS629789 A JP S629789A JP 14676485 A JP14676485 A JP 14676485A JP 14676485 A JP14676485 A JP 14676485A JP S629789 A JPS629789 A JP S629789A
Authority
JP
Japan
Prior art keywords
titanium
nickel
rolling
titanium material
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14676485A
Other languages
Japanese (ja)
Inventor
Shigeharu Hinotani
日野谷 重晴
Junichiro Murayama
村山 順一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14676485A priority Critical patent/JPS629789A/en
Publication of JPS629789A publication Critical patent/JPS629789A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill

Abstract

PURPOSE:To improve the joining strength by forming a nickel plated layer after crashing a nickel particle on the surface of a titanium material, then by cladding with rolling the titanium material to a base steel plate at the specified temp. via the nickel plated layer. CONSTITUTION:The thin oxide film on the surface of a titanium material 23 is destroyed by crashing the nickel particle in 0.2-2mm mean grain diameter on the surface of at least one side of the titanium material 23. Thereafter a nickel plated layer 22 is immediately formed on the surface of the titanium material 23 by an electrolytic method or electroless method. The titanium material 23 and base steel plate 21 are joined at the interval of the nickel plated layer 22 and the periphery thereof is sealed by a carbon steel plate 24. The clad steel plate is obtd. with the cladding by rolling after heating at 600-850 deg.C of clad assembly stock 20. The joining strength is increased because of the joining of the titanium material 23 and base metal 21 being performed via the nickel plated layer 22 by removing the effect of the titanium oxide film.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、界面の接合強度に優れた、圧延によるチタ
ンクラッド鋼の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing titanium clad steel by rolling, which has excellent interface bonding strength.

(従来の技術) 従来、チタンクラッド鋼は主として爆着法によって製造
されており、製品の寸法、寸法精度、生産性および製造
コストの点で、爆着法としての製法に起因する著しい制
約を受けている。最近、爆着後、圧延する爆着圧延法が
考案され、製造可能寸法範囲と、寸法精度が改善されつ
つあるが、生成する合金相の種類や空孔欠陥の発生に起
因する問題が残されている。さらに最近、圧延法によっ
てチタンクラッド鋼板を製造する方法として、母材に極
低炭素鋼を用いる方法、鋼中の炭素を固定する特定成分
を配合した極低炭素鋼を用いる方法、さらに表面に20
μm以上の脱炭層を形成させた鋼板を用いる方法や、中
間層としてチタン材と鋼母材との間に第3の金属板を挿
入、介在させる方法、あるいはチタン板と母材鋼板の合
せ面に薄い酸化膜を生成させこれによって金属元素の拡
散を抑える方法など多くの方法が考案されている。
(Prior art) Titanium clad steel has traditionally been manufactured mainly by the explosion bonding method, and has been subject to significant limitations due to the explosion bonding method in terms of product dimensions, dimensional accuracy, productivity, and manufacturing costs. ing. Recently, an explosion rolling method has been devised in which rolling is performed after explosion bonding, and the dimensional range that can be manufactured and the dimensional accuracy are being improved. However, problems caused by the type of alloy phase produced and the occurrence of void defects remain. ing. Furthermore, recently, methods for manufacturing titanium clad steel sheets by rolling methods include methods using ultra-low carbon steel as the base material, methods using ultra-low carbon steel containing specific components that fix carbon in the steel, and methods using ultra-low carbon steel containing specific components that fix carbon in the steel.
A method using a steel plate on which a decarburized layer of μm or more is formed, a method in which a third metal plate is inserted or interposed between the titanium material and the steel base material as an intermediate layer, or a mating surface of the titanium plate and the base steel plate. Many methods have been devised, including a method to suppress the diffusion of metal elements by forming a thin oxide film on the surface of the metal.

一方、冶金学的見地からチタン材と鋼母材との間にいわ
ゆるインサート材を設けることの優位性が認められてお
り、そのようなインサート材あるいはインサート材相当
中間層としてニッケル、ニオブ、タンタルetc、を使
用することもいくつか提案されている。
On the other hand, from a metallurgical point of view, it is recognized that it is advantageous to provide a so-called insert material between the titanium material and the steel base material, and nickel, niobium, tantalum, etc. are used as such an insert material or an intermediate layer equivalent to the insert material. , some proposals have also been made to use .

例えば、特開昭53−10347号公軸は、ニッケルを
中間層とするチタン/ニッケル/鋼からなる三層クラッ
ドにおいて、チタンとニッケル間を爆着させ、次いで5
50〜850℃で圧延する、爆着圧延法を開示している
For example, in the public shaft of JP-A-53-10347, titanium and nickel are explosively bonded in a three-layer cladding made of titanium/nickel/steel with nickel as an intermediate layer, and then 5
An explosion rolling method is disclosed in which rolling is performed at 50 to 850°C.

さらに、特開昭58−41688号公報は一旦、爆着法
によりニオブ、タンタルおよびそれらの合金を介在させ
たチタンと鋼とのクラツド鋼を製造し、次いでこのチタ
ンクラッド鋼を間に介在させて別のチタンと鋼とのクラ
ツド化を爆着法、圧延法など適宜手段で行う方法を開示
している。しかしながら、これらの方法はいずれも爆着
法を利用するなど処理コストが高く、脆弱な金属間化合
物の生成の防止も必ずしも十分でなかった。
Furthermore, Japanese Patent Application Laid-open No. 58-41688 discloses that a clad steel of titanium and steel with niobium, tantalum, and their alloys interposed therein is manufactured by an explosion bonding method, and then this titanium clad steel is interposed therebetween. Another method is disclosed for cladding titanium and steel using appropriate means such as an explosion bonding method or a rolling method. However, all of these methods require high processing costs, such as using an explosive bonding method, and are not always sufficient to prevent the formation of fragile intermetallic compounds.

(発明が解決しようとする問題点) このように、従来のチタンクラッド鋼の製造法はいずれ
も界面接合性に有害なチタン炭化物や金属間化合物層の
形成を抑えることによってチタン材と鋼材との接合性を
改善しようとするものである。
(Problems to be solved by the invention) As described above, all conventional titanium clad steel manufacturing methods suppress the formation of titanium carbide and intermetallic compound layers that are harmful to interfacial bonding properties, thereby improving the bond between titanium and steel materials. This is an attempt to improve bonding properties.

しかし、チタン炭化物の接合面近傍での形成は容易に防
ぐことができても拡散によって生じる合金層、金属間化
合物層の形成をまぬがれることはできない。
However, even if the formation of titanium carbide near the joint surface can be easily prevented, the formation of alloy layers and intermetallic compound layers caused by diffusion cannot be avoided.

そこで1つの問題は接合性に対し無害な、あるいはむし
ろそれを−要改善する合金層あるいは金属間化合物層を
いかに形成するかということである。すでに述べたよう
に、この点に関しては冶金学的見地から、“ニッケル、
タンタル、ニオブ等の使用が提案されているが、その具
体的適用手段という点で未だ十分な解決法とはいえなか
った。
One problem, then, is how to form an alloy layer or an intermetallic compound layer that is harmless to bonding properties, or rather improves them. As already mentioned, from a metallurgical point of view, “nickel,
Although the use of tantalum, niobium, etc. has been proposed, it has not yet been a sufficient solution in terms of specific means of application.

ここに、この発明の目的は、簡便な手段でもって製造で
きる、接合強度が大きいチタンクラッド鋼の圧延による
製造法を提供することである。
An object of the present invention is to provide a method for manufacturing titanium clad steel by rolling, which can be manufactured by simple means and has a high joint strength.

(問題点を解決するための手段) ところで、チタンは酸化性の著しい金属であるため、そ
の表面への金属めっきは容易でなく、したがって、密着
性の良い金属めっきを行うのは困難であった。
(Means for solving the problem) By the way, since titanium is a highly oxidizing metal, metal plating on its surface is not easy, and therefore it has been difficult to perform metal plating with good adhesion. .

チタンと鋼の接合において、界面で生じるチタン炭化物
と合金層の形成は、その接合性に大きな影響を与える。
When joining titanium and steel, the formation of titanium carbide and an alloy layer at the interface has a large effect on the joining property.

すでに従来技術として述べたように、かかるチタン炭化
物の形成は、母材として純鉄に近い極低炭素鋼を用いた
り、これをチタンと鋼の界面に挿入したり、母材の鋼の
表面に脱炭層を形成させたり、さらにニッケルなどの金
属板を挿入することによって比較的容易に除去できるが
、合金層の形成をまぬがれることは困難である。特に、
チタンと全率固溶する元素が限られていることや、これ
らの金属が高価である、加工性が良くない等実用性に欠
けることから、圧延によるチタンクラッド鋼の製造にお
いては金属間化合物層の生成を念頭に置きながら、この
脆弱な金属間化合物の形成を制御することによって接合
性を向上させる方法を見い出さねばならない。
As already mentioned in the prior art, such titanium carbides can be formed by using ultra-low carbon steel, which is close to pure iron, as the base material, by inserting it into the interface between titanium and steel, or by applying it to the surface of the base steel. Although it can be removed relatively easily by forming a decarburized layer or further inserting a metal plate such as nickel, it is difficult to avoid the formation of an alloy layer. especially,
Due to the limited number of elements that can form a complete solid solution with titanium, and the fact that these metals are expensive, have poor workability, and lack practicality, in the production of titanium clad steel by rolling, an intermetallic compound layer is We must find ways to improve bonding by controlling the formation of this fragile intermetallic compound, keeping in mind the formation of intermetallic compounds.

この発明の発明者らは、上述のような目的を達成すべく
鋭意検討を重ね、チタンクラッド鋼の接合部の破壊の原
因が金属間化合物層の形成そのものでなく、金属間化合
物層の微視的な生成挙動に大きく依存すること、すなわ
ちチタンと挿入金属板との界面に形成する酸化物の分散
生成が、金属間化合物を一層脆弱なものにしているとい
うことを知見し、この研究結果に着目し、チタン板に挿
入金属、1例えばニッケルをタイトにめっきすることに
よって圧延によるチタンクランド鋼板の製造が可能とな
ることを見い出した。
In order to achieve the above-mentioned objectives, the inventors of this invention have made extensive studies and discovered that the cause of fracture in titanium clad steel joints is not the formation of the intermetallic compound layer itself, but the microscopic observation of the intermetallic compound layer. We found that the dispersion of oxides that form at the interface between titanium and the inserted metal plate makes the intermetallic compound even more brittle. The inventors have found that by tightly plating a titanium plate with an insert metal such as nickel, it is possible to produce a titanium crand steel plate by rolling.

すなわち、発明者らは、ニッケルを挿入金属板として用
いる場合には、チタンとの拡散合金化によってNi5T
i s NiTi5 NiTig等の金属間化合物が形
成され、破壊が元の接合界面およびNi3Ttで主とし
て生じることを明らかにするとともに、この金属間化合
物層が第1図のように適正な範囲内にあると強度が増加
することを知った。さらに、この接合強度が破壊界面で
のオージェ電子分光器による酸素の量に大きく依存し、
第1図に示すように、オージェ電子分光器における、酸
素のKLLピークとニッケルのLMMビークの比におい
て、この比が小さくなる程より厚い金属間化合物層が形
成しても良好な接合強度が得られることを見い出した。
That is, the inventors found that when using nickel as an insert metal plate, Ni5T is formed by diffusion alloying with titanium.
It is clarified that intermetallic compounds such as NiTi5 NiTig are formed and that destruction occurs mainly at the original bonding interface and Ni3Tt, and that this intermetallic compound layer is within an appropriate range as shown in Figure 1. I learned that the strength increases. Furthermore, this bonding strength greatly depends on the amount of oxygen at the fracture interface, as determined by Auger electron spectroscopy.
As shown in Figure 1, the smaller the ratio of the KLL peak of oxygen to the LMM peak of nickel in an Auger electron spectrometer, the better the bonding strength can be obtained even if a thicker intermetallic compound layer is formed. I found out that it can be done.

このような研究成果から、チタン板と挿入金属板界面で
の酸化の防止、言い換えれば酸素の除去が接合硬度の改
善に大きく寄与することをつきとめた。しかしながら、
チタン板と挿入金属板および母材となる綱の界面の空気
は、溶接組立ののち真空ポンプで引き抜くことが可能で
あるが実際の製造ラインにおいては、接合強度を向上さ
せる程にまで到達真空度を高めることは容易でない。そ
こであらかじめチタン板の表面に密着性のよいニッケル
めっきを施したのち、0.10%以上の炭素を含む鋼と
ニッケルめっき面が会合するように合わせたのち、85
0℃から600℃の温度範囲で圧延することにより接合
性のよい圧延チタンクラッド鋼の製造が可能となること
を見い出してこの発明を完成した。
From these research results, we have found that preventing oxidation at the interface between the titanium plate and the inserted metal plate, in other words, removing oxygen, greatly contributes to improving the bonding hardness. however,
The air at the interface between the titanium plate, the inserted metal plate, and the base steel can be extracted with a vacuum pump after welding and assembly, but in actual production lines, the vacuum level that can be reached is sufficient to improve the joint strength. It is not easy to increase Therefore, after applying nickel plating with good adhesion to the surface of the titanium plate in advance, and then aligning it so that the nickel plating surface meets the steel containing 0.10% or more carbon, 85
The present invention was completed by discovering that rolling titanium clad steel with good bondability can be produced by rolling at a temperature range of 0°C to 600°C.

この発明は、このような現状に鑑み、従来の圧延による
チタンクラッド鋼の接合性をはるかに凌ぐ、圧延チタン
クラッド鋼の製造のために、チタン材表面にニッケルを
密着よくめっきする方法を提供すべく考案されたもので
、その要旨とするところは、圧延によるチタンクラッド
鋼の製造法において、チタン材の表面にニッケル粒子を
衝突させ、該表面に形成された薄い酸化膜を破壊させる
とともに前記ニッケル粒子を部分的に該チタン材表面に
埋めこませたのち、ニッケルめっき層を形成させ、次い
で該ニッケルめっき層を介して母材鋼板に該チタン材を
600〜850℃に加熱して圧延圧着する、圧延による
チタンクラッド鋼の製造法である。
In view of the current situation, this invention provides a method of plating nickel on the surface of titanium material with good adhesion in order to manufacture rolled titanium clad steel, which has a bondability far superior to that of conventional rolled titanium clad steel. The gist of this method is to collide nickel particles onto the surface of a titanium material, destroy the thin oxide film formed on the surface, and destroy the nickel. After partially embedding the particles in the surface of the titanium material, a nickel plating layer is formed, and then the titanium material is heated to 600 to 850°C and rolled and crimped to a base steel plate via the nickel plating layer. , a method for producing titanium clad steel by rolling.

ここに、この発明はそのl好適態様によれば、チタンの
片側表面の薄い酸化膜を平均粒径で0.2mlから21
1II11のニッケル粒子を衝突させるいわゆるショツ
トブラスト法によって破壊させ、かつニッケル粒子を部
分的にチタン表面に埋め込ませたの井 ちただちにワットZを用いて2〜IOA/dm”の電流
密度でニッケルめっき層を厚さで10μm以上形成させ
るか、あるいはただちに水11に対して80gのN15
O,と25gの次亜リン酸ソーダを含む水溶液に安定剤
として微量のコハク酸ソーダを添加した溶液を60〜9
5℃の温度に加熱して塗布して、10μm以上の無電解
ニッケルめっき層を形成させ、次いでこのニッケルめっ
き処理したチタン板をニッケルめっき層と0.10%以
上の炭素を含む鋼を会合するように合わせたのち周囲を
溶接でシールしたのち850℃以下600℃以上の温度
範囲に加熱して圧延することから成る、接合性に優れ、
しかも溶接組立ののちのガス抜きを省略できる、圧延に
よるチタンクランド鋼の製造法である。
According to a preferred embodiment of the present invention, the thin oxide film on one surface of titanium has an average particle size of 0.2 ml to 21 ml.
The nickel plating layer was destroyed by the so-called shot blasting method in which 1II11 nickel particles were collided with each other, and the nickel particles were partially embedded in the titanium surface. Form a layer with a thickness of 10 μm or more, or immediately add 80 g of N15 to 11 parts of water.
O, and a solution containing a trace amount of sodium succinate as a stabilizer to an aqueous solution containing 25 g of sodium hypophosphite.
Apply by heating to a temperature of 5°C to form an electroless nickel plating layer of 10 μm or more, and then combine this nickel-plated titanium plate with the nickel plating layer and steel containing 0.10% or more carbon. It has excellent bonding properties and is made by sealing the periphery by welding, heating it to a temperature range of 850°C to 600°C and rolling it.
Furthermore, this is a method for manufacturing titanium crand steel by rolling, which eliminates degassing after welding and assembly.

このように、この発明によれば、ニッケルめっき層の存
在によって酸素の影響を排除して接合強度を高めるとと
もに、ニッケルめっきを行うに先立ってニッケル粒子の
ショツトブラスト処理により被処理表面を清浄にするば
かりでな(、一部粒子を表面に埋め込むことによりその
後行われるニッケルめっき層との接合強度を機械的接合
効果によってさらに一層改善するのである。もちろん、
かかる相乗的な接合強度の改善が行われる限り、ニッケ
ル粒子のショツトブラスト処理の操作あるも、いずれで
あっても、特にこのニッケルめっき層設ける手段として
は多くのものが考えられるが、この発明の1つの特徴が
圧延工程に先立って真空引きを省略することにあるから
、密着性の良いものであればいずれであってもよい。例
えば、溶射ニッケル被覆法等によってめっき層を設けて
もよい。
As described above, according to the present invention, the presence of the nickel plating layer eliminates the influence of oxygen and increases the bonding strength, and the surface to be treated is cleaned by shot blasting with nickel particles prior to nickel plating. Not only that, by embedding some of the particles into the surface, the strength of the bond with the nickel plating layer that will be applied later is further improved by the mechanical bonding effect.Of course,
As long as such a synergistic improvement in bonding strength is achieved, there are many possible means for providing this nickel plating layer, including shot blasting of nickel particles, but the present invention provides One feature is that vacuuming is omitted prior to the rolling process, so any material with good adhesion may be used. For example, the plating layer may be provided by a thermal spray nickel coating method or the like.

(作用) すでに良く知られているように、チタンは酸化性の著し
い金属であり、空気との接触によって容易に酸化膜を形
成する。したがって、これにニッケルめっきを行うには
前処理としてこの酸化膜を破壊除去するいわゆる表面の
活性化処理を行わないと密着性の良いニッケルめっき層
を形成させ得ない。この点、この発明によれば、I平径
粒径が0.2a+mから21111のニッケル粒子をチ
タン表面に衝突するいわゆるショツトブラスト法によっ
て表面酸化膜を破壊するとともに、部分的にニッケル粒
子がチタン表面に埋めこまれて、密着性のよいニッケル
めっきが行えるのである。この目的のためには、好まし
くは、ニッケル粒子の平均粒径が0゜21以上でないと
酸化膜の破壊が完全に行えないことや2+1111を超
えるとニッケ・ル粒子のチタン表面への埋めごみの面積
率が低下して密着性のよいニッケルめっきを行うことが
できない。ショツトブラスト処理操作それ自体は通常よ
く知られたものであればよい。一般に5秒〜10分間処
理するだけでほぼ100%表面酸化膜は除去され、清浄
面が得られる。
(Function) As is already well known, titanium is a highly oxidizing metal and easily forms an oxide film when it comes into contact with air. Therefore, in order to perform nickel plating on this, a nickel plating layer with good adhesion cannot be formed unless a so-called surface activation treatment is performed to destroy and remove this oxide film as a pretreatment. In this regard, according to the present invention, the surface oxide film is destroyed by the so-called shot blasting method in which nickel particles having an I-average particle size of 0.2a+m to 21111 collide with the titanium surface, and the nickel particles are partially exposed to the titanium surface. This allows for nickel plating with good adhesion. For this purpose, it is preferable that the oxide film cannot be completely destroyed unless the average particle size of the nickel particles is 0°21 or more, and that if it exceeds 2+1111, the nickel particles will be buried in the titanium surface. The area ratio decreases, making it impossible to perform nickel plating with good adhesion. The shot blasting operation itself may be generally well known. Generally, approximately 100% of the surface oxide film is removed by treatment for 5 seconds to 10 minutes, resulting in a clean surface.

このようにして調製した清浄面は速やかにニッケルめっ
き層によって被覆される。ニッケルめっき法としては大
別すれば電気めっきと無電解めっきとがあるが、それ以
外であってもよい。電解によるニッケルめっきに用いる
ワンド浴(NiSOn  240g/ Il、  Ni
C1t  7g/ j!、ホウ酸 30g八〇へ一般的
によく知られたものであるが、チタン表面にめっきする
場合には電流密度が2^/dll!以上でないと作業性
が劣ることやIOA/d■2以上になると緻密なめっき
層を形成させることができない。また、無電解めっき液
(NiSOJOg/ 12 、次亜リン酸ソーダ25g
/ It 、 mWのコハク酸ソーダ)もよく知られた
めっき液である。ニッケルめっきそれ自体よく知られて
いることであり、それらにしたがって処理すれば十分で
ある。
The clean surface thus prepared is immediately covered with a nickel plating layer. Nickel plating methods can be broadly classified into electroplating and electroless plating, but other methods may be used. Wand bath used for electrolytic nickel plating (NiSOn 240g/Il, Ni
C1t 7g/j! , boric acid 30g80 It is generally well known that when plating on a titanium surface, the current density is 2^/dll! If it is not above, the workability will be poor, and if IOA/d is more than 2, it will not be possible to form a dense plating layer. In addition, electroless plating solution (NiSOJOg/12, sodium hypophosphite 25g
/It, mW of sodium succinate) is also a well-known plating solution. Nickel plating itself is well known and it is sufficient to treat it accordingly.

このようなニッケルめっきは溶接組立と圧延加熱時のチ
タンとニッケル界面の酸化防止と鋼中の炭素がチタン中
へ拡散して接合性に有害なチタン炭化物の形成を抑制す
るために行うもので、この目的のためにはこの発明の圧
延加熱温度の範囲で10μ1以上あれば充分である。
This type of nickel plating is performed to prevent oxidation of the titanium-nickel interface during welding assembly and rolling heating, and to suppress the formation of titanium carbides that are harmful to bonding properties due to carbon in the steel diffusing into the titanium. For this purpose, it is sufficient if the rolling heating temperature range of the present invention is 10μ1 or more.

次いで、上述のようにニッケルめっきを施したチタン材
と母材鋼板とをニッケルめっき側を間にして会合させ、
その周囲を軟鋼板などで包囲し溶接封止する。第2図は
、このクラッド組立素材20の略式断面図であり、母材
の炭素鋼母材21のうえにはニッケルめっきN22が配
置され、このニッケルめっき層22はチタン材23のう
えに設けられたものである。チタン材23の全体は軟鋼
の炭素w424によって包囲され、その周囲26は炭素
鋼母材21に溶接シールされている。
Next, as described above, the nickel-plated titanium material and the base steel plate are brought together with the nickel-plated side in between,
It is surrounded by a mild steel plate and sealed by welding. FIG. 2 is a schematic cross-sectional view of this clad assembly material 20, in which nickel plating N22 is placed on a carbon steel base material 21, and this nickel plating layer 22 is provided on a titanium material 23. It is something that The entire titanium material 23 is surrounded by carbon w424 of mild steel, and its periphery 26 is welded and sealed to the carbon steel base material 21.

かくして溶接組立てられたクラッド組立素材は圧延によ
って密着接合されるが、その場合、圧延の加熱温度は、
850℃を超えるとチタン材の組織がベータ相に変態す
ることや金属間化合物の形成が著しくなり有害である。
The clad assembly materials thus welded and assembled are tightly joined by rolling, but in that case, the heating temperature for rolling is
If the temperature exceeds 850°C, the structure of the titanium material will transform into a beta phase and the formation of intermetallic compounds will become significant, which is harmful.

また600℃を下回るとニッケルと綱の接合性が著しく
劣化して所定の接合強度を得ることができない。
Further, if the temperature is lower than 600°C, the bondability between the nickel and the steel deteriorates significantly, making it impossible to obtain a predetermined bonding strength.

この発明の好適B様にあって母材として0.10%以上
の炭素を含有する鋼を選んだのはクラツド鋼としての母
材強度が低(なることを抑えるためである。
The reason why a steel containing 0.10% or more of carbon was selected as the base material in preferred embodiment B of this invention is to prevent the base material strength from being low as a clad steel.

次に、実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 10m+w板厚のチタン板に第1表に示すような条件で
ニッケルをめっきしくめっき層:15μl11)または
150μ−のニッケル箔を挿入し、第2図に示すような
溶接シールによる組立を行った。ショツトブラスト処理
条件は、圧力5kgf/Cl11!、吹付量1000g
/1Ilin 、時間2分であった。炭素鋼としては0
゜15%Cのものを用い板厚は90mmであった。これ
を溶接シールの際に取り付けた導管で真空ガス抜きする
かあるいはガス抜きを行わないで、同じく第1表に示す
圧延加熱条件で201111厚さに圧延し剪断引張試験
でその接合性を評価した。その結果は第1表に、剪断強
度が15kg/ms”以下は否、それ以上を良として表
示した。
Example 1 A titanium plate with a thickness of 10m+w was plated with nickel under the conditions shown in Table 1, and a plating layer of 15μl (11) or 150μ- nickel foil was inserted, and assembled by welding and sealing as shown in Figure 2. Ta. The shot blasting conditions are a pressure of 5kgf/Cl11! , spraying amount 1000g
/1Ilin, time was 2 minutes. 0 for carbon steel
A plate containing 15% C was used and the plate thickness was 90 mm. This was rolled to a thickness of 201111 under the same rolling heating conditions shown in Table 1, either by vacuum degassing with the conduit attached at the time of welding sealing, or without degassing, and its bondability was evaluated by a shear tensile test. . The results are shown in Table 1, with a shear strength of 15 kg/ms" or less being judged as failure, and a shearing strength of 15 kg/ms" or less being judged as good.

第1表 (注)電気めっき: 電流密度 酵 無電気めっき:Table 1 (Note) Electroplating: Current density fermentation Electroless plating:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、オージェ電子分光分析の結果と接合強度との
関係を示すグラフ;および 第2図は、クラッド組立素材の略式断面図である。
FIG. 1 is a graph showing the relationship between the results of Auger electron spectroscopy and bonding strength; and FIG. 2 is a schematic cross-sectional view of the clad assembly material.

Claims (1)

【特許請求の範囲】[Claims] 圧延によるチタンクラッド鋼の製造法において、チタン
材の表面にニッケル粒子を衝突させ、該表面に形成され
た薄い酸化膜を破壊させるとともに前記ニッケル粒子を
部分的に該チタン材表面に埋めこませたのち、ニッケル
めっき層を形成させ、次いで該ニッケルめっき層を介し
て母材鋼板に該チタン材を600〜850℃に加熱して
圧延圧着する、圧延によるチタンクラッド鋼の製造法。
In a method for manufacturing titanium clad steel by rolling, nickel particles are collided with the surface of a titanium material to destroy a thin oxide film formed on the surface and partially embed the nickel particles in the surface of the titanium material. A method for manufacturing titanium clad steel by rolling, in which a nickel plating layer is then formed, and then the titanium material is heated to 600 to 850°C and rolled and crimped to a base steel plate through the nickel plating layer.
JP14676485A 1985-07-05 1985-07-05 Production for titanium clad steel by rolling Pending JPS629789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14676485A JPS629789A (en) 1985-07-05 1985-07-05 Production for titanium clad steel by rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14676485A JPS629789A (en) 1985-07-05 1985-07-05 Production for titanium clad steel by rolling

Publications (1)

Publication Number Publication Date
JPS629789A true JPS629789A (en) 1987-01-17

Family

ID=15415033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14676485A Pending JPS629789A (en) 1985-07-05 1985-07-05 Production for titanium clad steel by rolling

Country Status (1)

Country Link
JP (1) JPS629789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299385A (en) * 1988-05-26 1989-12-04 Toyooki Kogyo Co Ltd Flow rate control valve
US5169057A (en) * 1989-08-10 1992-12-08 Emc Technology, Inc. Method for soldering and apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299385A (en) * 1988-05-26 1989-12-04 Toyooki Kogyo Co Ltd Flow rate control valve
US5169057A (en) * 1989-08-10 1992-12-08 Emc Technology, Inc. Method for soldering and apparatus therefor

Similar Documents

Publication Publication Date Title
DE60031915T2 (en) Method for connecting a target to a carrier plate
JPS5823495B2 (en) Heat exchanger and its manufacturing method
JP2003523830A (en) Joining method of copper and stainless steel
EP0117671A1 (en) Bonding metals
JPS629789A (en) Production for titanium clad steel by rolling
JP2877020B2 (en) Manufacturing method of titanium clad thin steel sheet
JP2003524143A (en) Cooling element and method for manufacturing cooling element
JPS61235594A (en) Ni plated steel sheet having superior workability and corrosion resistance and its manufacture
JPS629788A (en) Production for titanium clad steel by rolling
US5180099A (en) Process of joining of a galvanized steel sheet
JPH0813522B2 (en) Titanium-based metal clad steel and its manufacturing method
JP3126946B2 (en) Joining method between aluminum member and dissimilar metal member
JP3355199B2 (en) Arc spraying wire
RU2136466C1 (en) Bimetallic wire manufacturing method
KR850000796B1 (en) Method for producting clad steel plate
JPS60238093A (en) Production of composite aluminum-stainless steel material
JPH04182023A (en) Manufacture of clad metallic tube
JP2851570B2 (en) Soldering method for metal members
JPH0677858B2 (en) Method for manufacturing titanium clad steel sheet
JPS6293090A (en) Production of titanium clad steel
JP3020649B2 (en) Manufacturing method of clad steel
JPH0471635B2 (en)
SU691270A1 (en) Method for the manufacture of plated metals
JPS59140914A (en) Nut and its manufacture
JP2501826B2 (en) Titanium-based metal clad steel and its manufacturing method