JPS629712A - Estimating method for mean temp. inside cross section of rolling stock in continuous hot rolling of steel bar and wire - Google Patents

Estimating method for mean temp. inside cross section of rolling stock in continuous hot rolling of steel bar and wire

Info

Publication number
JPS629712A
JPS629712A JP60151004A JP15100485A JPS629712A JP S629712 A JPS629712 A JP S629712A JP 60151004 A JP60151004 A JP 60151004A JP 15100485 A JP15100485 A JP 15100485A JP S629712 A JPS629712 A JP S629712A
Authority
JP
Japan
Prior art keywords
cooling
rolling
temperature
temp
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60151004A
Other languages
Japanese (ja)
Other versions
JPH0580282B2 (en
Inventor
Koro Takatsuka
公郎 高塚
Mitsuru Moritaka
森高 満
Eiichi Suzuki
栄一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60151004A priority Critical patent/JPS629712A/en
Publication of JPS629712A publication Critical patent/JPS629712A/en
Publication of JPH0580282B2 publication Critical patent/JPH0580282B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0224Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for wire, rods, rounds, bars

Abstract

PURPOSE:To correctly estimate the average temp. inside the cross section of a rolling stock by making in advance the table showing the relation between the surface temp. of the rolling stock and average temp. inside the cross section under the representative operation conditions and by estimating based on the extract temp. of a billet from a heating furnace measured actually and others. CONSTITUTION:The average temp. inside he water cooling finished cross section after forcible cooling of the case executing a control cooling in a rear step cooling zone 25 is found. In this case the temp. distribution state is determined by the temp., cooling water flow and cooling time of the rolling stock at the inlet side of the rear step cooling zone 25. The temp. of the rolling stock at the inlet side of the rear step cooling zone 25 is determined by the extraction temp. and rolling speed of the billet fed from a heating furnace 20. The average temp. inside the water cooled finishing cross section of the rolling stock can be therefore correctly estimated by measuring the surface temp. of the rolling stock after knowing of the water cool finishing temp. distribution state by the extraction temp. and rolling speed of the billet and cooling water flow in one of pass schedule of the rolling stock.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、棒鋼、線材の熱間連続圧延における圧延材の
断面内平均温度の推定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for estimating the average temperature within a cross section of a rolled material during continuous hot rolling of steel bars and wire rods.

(従来の技術) 加熱炉で加熱されたビレ・ノドを粗圧延機列から中間圧
延機を経て仕上圧延機列に達する多数の圧延機を通して
棒鋼、線材等の圧延材を連続して圧延する熱間連続圧延
においては、中間圧延機列の後で圧延材を強制水冷する
制御圧延と、仕上圧延機列の後で圧延材を強制水冷する
制御冷却とが行われて、圧延材の材質改善が行われる。
(Prior technology) Heat is used to continuously roll rolled materials such as steel bars and wire rods through a large number of rolling mills that pass the fillets and throats heated in a heating furnace through a rough rolling mill train, an intermediate rolling mill, and a finishing rolling mill train. In continuous continuous rolling, controlled rolling in which the rolled material is forcedly water-cooled after the intermediate rolling mill row and controlled cooling in which the rolled material is forcedly water-cooled after the finishing mill row are performed to improve the material quality of the rolled material. It will be done.

ところで、従来においては、制御圧延時あるいは制御冷
却後の水冷上り温度等については、主として放射温度計
による表面温度の把握のみであって、仕上り温度等の温
度制御は表面温度に基づいてなされており、圧延材の品
質確保には重要な断面内平均温度を把握した上での各種
制御(主トシて水冷制御)はなされていなかった。
By the way, in the past, with regard to water-cooling temperature during controlled rolling or after controlled cooling, only the surface temperature was mainly determined using a radiation thermometer, and temperature control such as finishing temperature was performed based on the surface temperature. However, various controls (mainly water cooling control) were not performed based on understanding the average temperature within the cross section, which is important for ensuring the quality of rolled materials.

即ち、従来においては、表面温度のみによっ。That is, in the past, only the surface temperature was used.

圧延材の温度を把握しており、この実測表面温度に基づ
いて、制御圧延時及び制御冷却後の水冷上り温度等を把
握していた。
The temperature of the rolled material was known, and based on this measured surface temperature, the water cooling temperature during controlled rolling and after controlled cooling was known.

(発明が解決しようとする問題点) 然し乍ら、熱間連続圧延工程では、ビレット及び圧延材
に関しては、加工発熱、ロールとの接触、強制水冷等に
よる冷却及びその後の復熱と云うような工程の繰り返し
であるため、圧延材はその断面内において温度分布を有
し、又、その表面温度は、熱間連続圧延ラインにおける
測定位置、即ち、復熱時間等に影響される。  ゛ 従って、圧延材の表面温度は、圧延材の温度を代表する
ものではなく、この実測表面温度に基づいた各種制御は
、目標とする品質を得る上で充分なものではない。
(Problems to be Solved by the Invention) However, in the continuous hot rolling process, billets and rolled materials suffer from process heat generation, contact with rolls, cooling by forced water cooling, etc., and subsequent reheating. Due to the repeated rolling process, the rolled material has a temperature distribution within its cross section, and its surface temperature is influenced by the measurement position in the continuous hot rolling line, that is, the reheating time, etc. Therefore, the surface temperature of the rolled material is not representative of the temperature of the rolled material, and various controls based on this actually measured surface temperature are not sufficient to obtain the target quality.

このことは、特に、制御圧延、制御冷却時に重要である
This is particularly important during controlled rolling and controlled cooling.

即ち、制御圧延、制御冷却では、目標仕上り温度や水冷
上り温度を得るために、通常、強制水冷を用いるが、強
制水冷後の圧延材の水冷上り温度に関しては、圧延材の
断面内での温度分布における温度差が大きく、又、圧延
材の表面温度は復熱時間と共に急激に変化する。
In other words, in controlled rolling and controlled cooling, forced water cooling is usually used to obtain the target finishing temperature and water cooling temperature, but the water cooling temperature of the rolled material after forced water cooling is determined by the temperature within the cross section of the rolled material. The temperature difference in the distribution is large, and the surface temperature of the rolled material changes rapidly with the reheating time.

従って、上記の場合、圧延材の表面温度の把握のみでは
、圧延材の材質コントロール上極めて不充分なものとな
り、常時、目標とする材質を得ることは極めて困難とな
る。
Therefore, in the above case, simply grasping the surface temperature of the rolled material is extremely insufficient for controlling the material quality of the rolled material, and it is extremely difficult to always obtain the target material quality.

そこで、圧延材の表面温度から、断面内平均温度を推定
して、この温度を圧延材の代表温度として把握すること
が考えられるのであり、このようにすれば、目標とする
材質を得ることが極めて容易となる。
Therefore, it is possible to estimate the average temperature within the cross section from the surface temperature of the rolled material and grasp this temperature as the representative temperature of the rolled material.In this way, it is possible to obtain the target material quality. It becomes extremely easy.

ところで、圧延材の表面温度と断面内平均温度との関係
は、圧延材断面内の温度分布によって異なる。
By the way, the relationship between the surface temperature of the rolled material and the average temperature within the cross section varies depending on the temperature distribution within the cross section of the rolled material.

そして、圧延材断面内の温度分布は、圧延材のパススケ
ジュール(圧延材寸法)、加熱炉からのビレットの抽出
温度、圧延速度、制御圧延や制御冷却時の冷却条件によ
って変化する。
The temperature distribution within the cross section of the rolled material changes depending on the pass schedule (dimensions of the rolled material) of the rolled material, the extraction temperature of the billet from the heating furnace, the rolling speed, and the cooling conditions during controlled rolling and controlled cooling.

従って、上記のような各種の操業条件から、その都度、
圧延材断面内の温度分布を算出して、表面温度と断面内
平均温度の関係を求めることは、オンラインでは、計算
時間、操作の繁雑さ等の問題から極めて難しい。
Therefore, depending on the various operating conditions mentioned above,
Calculating the temperature distribution within a cross section of a rolled material and determining the relationship between the surface temperature and the average temperature within the cross section is extremely difficult online due to problems such as calculation time and complexity of operations.

又、実測表面温度から簡易式等を用いて断面内平均温度
を求める方法も考えられる。
Another possible method is to use a simple formula or the like to determine the average temperature within the cross section from the measured surface temperature.

然し乍ら、熱間連続圧延においては、各種操業条件が広
範であるので、上記のような簡易式等を用いて、断面内
平均温度を算出することは、精度上、適切とは言えない
However, in continuous hot rolling, various operating conditions are wide-ranging, so calculating the average cross-sectional temperature using the above-mentioned simple formula is not appropriate in terms of accuracy.

本発明は上記問題を解決できる棒鋼、線材の熱間連続圧
延における圧延材の断面内平均温度の推定方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for estimating the average temperature within a cross section of a rolled material during continuous hot rolling of steel bars and wire rods, which can solve the above-mentioned problems.

(問題点を解決するための手段) 上記目的を達成するために、本発明の特徴とする処は、
加熱炉20から抽出したビレットを圧延機1〜16を通
して棒鋼、線材等の圧延材に熱間連続圧延すると共に、
中間圧延機22と仕上圧延機列23の間、及び仕上圧延
機列23の後に設けた冷却装置27.28により圧延材
を強制水冷した場合において、強制水冷後の圧延材の断
面内平均温度を推定する方法であって、予定される複数
のパススケジュールの内の一つのパススケジュールにお
いて、加熱炉20からのビレットの抽出温度と圧延速度
の代表的な値を組合せた複数の代表的な操業条件下で圧
延材の代表的な表面温度と断面内平均温度との関係を表
わすテーブルA、Bを予じめ作成しておき、実際に測定
した加熱炉20からのビレットの抽出温度、圧延速度及
び圧延材の表面温度に基き、上記テーブルA、Bから、
復熱時間を考慮して圧延材の断面内平均温度を推定する
点にある。
(Means for solving the problems) In order to achieve the above object, the features of the present invention are as follows:
The billet extracted from the heating furnace 20 is continuously hot-rolled into rolling materials such as steel bars and wire rods through rolling mills 1 to 16, and
In the case where the rolled material is forcedly water-cooled by the cooling devices 27 and 28 provided between the intermediate rolling mill 22 and the finishing rolling mill row 23 and after the finishing rolling mill row 23, the average cross-sectional temperature of the rolled material after forced water cooling is A method for estimating a plurality of representative operating conditions in which representative values of billet extraction temperature and rolling speed from the heating furnace 20 are combined in one pass schedule out of a plurality of planned pass schedules. Below, Tables A and B showing the relationship between the typical surface temperature of the rolled material and the average temperature within the cross section are created in advance, and the actually measured extraction temperature of the billet from the heating furnace 20, rolling speed, and Based on the surface temperature of the rolled material, from the above tables A and B,
The point is to estimate the average temperature within the cross section of the rolled material by taking into account the reheating time.

(実施例) 以下、図示の実施例について本発明を詳述すると、第1
図は熱間連続圧延ラインを示し、20はビレットを加熱
する加熱炉で、この後段には粗圧延機列21、中間圧延
機列22、仕上圧延機列23が直列状に設けられている
。これら圧延機列21,22.23は、第1から第16
の圧延機1〜16により構成されている。24は中間圧
延機列22と仕上圧延機列23との間に設けられた前段
冷却帯、25は仕上圧延機列23と冷却床26との間に
設けられた後段冷却帯であり、これら冷却帯24.25
には圧延材に冷却水を供給する冷却装置27.28が設
けられ、その各冷却装置27゜28はプロセスコントロ
ールコンピュータ29を含む制御装置により冷却水量が
制御される。30は第9圧延機90入側で圧延材の表面
温度を測定する温度計、31は仕上圧延機列23の出側
で強制水冷後の圧延材の表面温度を測定する温度計、3
2は後段冷却帯25の出側で強制水冷後の圧延材の表面
温度を測定する温度計である。
(Example) Hereinafter, the present invention will be described in detail with reference to the illustrated example.
The figure shows a hot continuous rolling line, where 20 is a heating furnace for heating the billet, and a rough rolling mill row 21, an intermediate rolling mill row 22, and a finishing rolling mill row 23 are provided in series at the subsequent stage. These rolling mill rows 21, 22, 23 are the first to sixteenth rolling mill rows.
It is composed of rolling mills 1 to 16. 24 is a front cooling zone provided between the intermediate rolling mill row 22 and the finishing rolling mill row 23; 25 is a rear cooling zone provided between the finishing rolling mill row 23 and the cooling bed 26; Obi 24.25
Cooling devices 27 and 28 are provided for supplying cooling water to the rolled material, and the amount of cooling water in each of the cooling devices 27 and 28 is controlled by a control device including a process control computer 29. 30 is a thermometer that measures the surface temperature of the rolled material on the entry side of the ninth rolling mill 90; 31 is a thermometer that measures the surface temperature of the rolled material after forced water cooling on the exit side of the finishing rolling mill row 23;
2 is a thermometer for measuring the surface temperature of the rolled material after forced water cooling on the exit side of the latter cooling zone 25.

棒鋼、線材等の圧延に際しては、コンピュータ29によ
る自動制御によって中間冷却帯24で圧延材に冷却水を
供給して温度を制御する制御圧延、この制御圧延後の製
品に後段冷却帯25で冷却水を供給して冷却する制御冷
却を夫々行い、圧延材の材質等を改善するのであるが、
これらの場合に、所望の材質を得るためには、制御圧延
時や制御冷却後の圧延材の水冷上り温度を正しく把握す
る必要がある。
When rolling steel bars, wire rods, etc., controlled rolling is performed in which the temperature is controlled by supplying cooling water to the rolled material in an intermediate cooling zone 24 under automatic control by a computer 29, and cooling water is supplied to the product after this controlled rolling in a subsequent cooling zone 25. Controlled cooling is performed by supplying and cooling each material to improve the material quality of the rolled material.
In these cases, in order to obtain the desired material quality, it is necessary to accurately grasp the water-cooling temperature of the rolled material during controlled rolling or after controlled cooling.

而して、従来の熱間連続圧延では、圧延材の表面温度の
みを把握していた。
Therefore, in conventional continuous hot rolling, only the surface temperature of the rolled material is known.

然し乍ら、圧延材においては、その断面内に温度分布を
有しているため、この実測表面温度は、圧延材の温度を
代表するものではない。
However, since a rolled material has a temperature distribution within its cross section, this measured surface temperature is not representative of the temperature of the rolled material.

しかも、表面温度は、熱間連続圧延ラインの測定位置、
即ち、復熱時間等によって大きく異なるものであるから
、制御圧延、制御冷却により、常時目標とする材質を得
るためには、表面温度の把握だけでは極めて不充分であ
る。
Moreover, the surface temperature can be measured at the measurement position of the continuous hot rolling line.
That is, since the surface temperature varies greatly depending on the reheating time, etc., it is extremely insufficient to grasp the surface temperature in order to constantly obtain the target material quality through controlled rolling and controlled cooling.

このため、制御圧延時や制御冷却後に圧延材の代表温度
、即ち、断面円平均温度を把握する必要がある。
For this reason, it is necessary to know the representative temperature of the rolled material, that is, the cross-sectional circular average temperature, during controlled rolling or after controlled cooling.

次に、後段冷却帯25において、制御冷却を実施した場
合の強制水冷後の水冷仕上り断面円平均温度を求める方
法について説明する。
Next, a method for determining the finished water-cooled cross-sectional circle average temperature after forced water cooling when controlled cooling is performed in the latter cooling zone 25 will be described.

まず、後段冷却帯25の冷却装置28の冷却ゾーンが単
−又は使用する冷却ゾーン数が常時同一である場合、即
ち、冷却帯出側から測温位置までの復熱時間の相違を考
慮せずともよい場合について説明する。
First, if the cooling device 28 of the downstream cooling zone 25 has a single cooling zone or the number of cooling zones used is always the same, that is, the difference in recuperation time from the cooling zone exit side to the temperature measurement position is not considered. Let me explain a good case.

制御冷却後の圧延材の水冷上り温度は、後段冷却帯25
人側での圧延材の温度、各種冷却条件(冷却水流量、冷
却時間)によって決まるのであるが、この場合において
、圧延材の断面内での水冷上がり温度分布状態は、後段
冷却帯25人側での圧延材の温度、冷却水流量、冷却時
間によって決まる。
The rising temperature of the rolled material after controlled cooling is determined by the water cooling temperature of the rolled material after controlled cooling.
This is determined by the temperature of the rolled material on the worker's side and various cooling conditions (cooling water flow rate, cooling time). It is determined by the temperature of the rolled material, the flow rate of cooling water, and the cooling time.

又、後段冷却帯25人側での圧延材の温度は、圧延材の
パススケジュール(圧延材寸法)、加熱炉からのビレッ
トの抽出温度、圧延速度により、更に、冷却時間も、圧
延速度により、夫々決まる。
In addition, the temperature of the rolled material in the 25-man side of the latter cooling zone depends on the pass schedule of the rolled material (rolled material dimensions), the extraction temperature of the billet from the heating furnace, and the rolling speed.Furthermore, the cooling time also depends on the rolling speed. It will be decided individually.

従って、圧延材の1つのパススケジュールにおいては、
制御冷却後の圧延材の断面内での水冷上り温度分布状態
を、抽出温度と圧延速度及び冷却水流量とによって知る
ことができるのであり、そ1?7故、上記水冷上り温度
分布状態を知った上で、圧延材の表面温度を測定すれば
、圧延材の水冷上り断面円平均温度を正確に推定できる
Therefore, in one pass schedule for rolled material,
The water-cooling temperature distribution state within the cross section of the rolled material after controlled cooling can be known from the extraction temperature, rolling speed, and cooling water flow rate. Then, by measuring the surface temperature of the rolled material, it is possible to accurately estimate the circular average temperature of the water-cooled section of the rolled material.

第2図は、圧延材の水冷上り断面円平均温度を推定する
ための基本テーブルで、インプットデータとしての圧延
材のパススケジュールD、と、加熱炉20から抽出する
ビレットの平均温度、即ち、抽出温度〒dと、実際の圧
延速度Vfmと、温度計32により測定した圧延材の実
際の表面温度jfffiと、実際の冷却水流量W1とか
ら、圧延材の水冷上り断面円平均温度〒、推定するもの
である。
FIG. 2 is a basic table for estimating the circular average temperature of the water-cooled upward cross section of the rolled material, in which the pass schedule D of the rolled material as input data and the average temperature of the billet extracted from the heating furnace 20, that is, the extracted From the temperature d, the actual rolling speed Vfm, the actual surface temperature jfffi of the rolled material measured by the thermometer 32, and the actual cooling water flow rate W1, estimate the circular average temperature of the water-cooled up cross section of the rolled material. It is something.

ところで、熱間連続圧延ラインにおけるパススケジュー
ルは多数種類あるので、その各スケジュール毎に独立し
て、第2図の基本テーブルAに示すような索引テーブル
■を作成し、又、その各パススケジュールの索引テーブ
ルTの多値を組合わせた各操業条件下毎に推定テーブル
■を作成する。
By the way, since there are many types of pass schedules in continuous hot rolling lines, we created an index table ■ as shown in basic table A in Figure 2 independently for each schedule, and An estimation table (2) is created for each operating condition combining the multiple values of the index table T.

まず、索引テーブルIでは、例えば、3つの代表的な抽
出温度〒d、〜T d 3と、代表的な3つの圧延速度
の最大圧延速度に対する比率を百分率で表したVr+〜
vrsとを組合わせた■〜■の操業条件を設定している
First, in the index table I, for example, three representative extraction temperatures 〒d, ~T d 3 and the ratio of three typical rolling speeds to the maximum rolling speed are expressed as percentages Vr + ~
Operating conditions ① to ② are set in combination with VRS.

又、上記■〜■の操業条件夫々について推定テーブル■
が作成され、推定テーブル■では、4つの代表的な圧延
材の表面温度tfl〜tf4と、表面温度が上記の多値
である場合における圧延材の水冷上り断面円平均温度〒
、1〜〒f4及び冷却水流量W、〜W4とが表示されて
いる。
In addition, estimation table ■ for each of the operating conditions from ■ to ■ above.
is created, and the estimation table (■) shows the surface temperatures tfl to tf4 of four representative rolled materials, and the circular average temperature of the water-cooled up cross section of the rolled materials when the surface temperature has the above multi-values.
, 1 to 〒f4 and the cooling water flow rate W, to W4 are displayed.

尚、表面温度t fl”” t f4、断面円平均温度
〒f。
In addition, the surface temperature t fl"" t f4, the cross-sectional circular average temperature 〒f.

〜〒f4、冷却水流量W1〜W4においては、tfl>
1.、>1.、>1.、、〒fl>〒、2〉〒f3>〒
、4、W l<Wz<W3<Wa とされている。
~〒f4, at cooling water flow rates W1 to W4, tfl>
1. , >1. , >1. ,,〒fl>〒、2〉〒f3>〒
, 4, W l<Wz<W3<Wa.

次に、基本テーブルAの索引テーブル■の■〜■の各操
業条件下で、圧延材の表面温度から断面円平均温度を推
定する手順について説明する。
Next, a procedure for estimating the cross-sectional circular average temperature from the surface temperature of the rolled material under each of the operating conditions (■) to (■) of the index table (■) of the basic table A will be described.

まず、実測表面温度teaが推定テーブル■の表面温度
tf+−t (4のいずれかである場合には、断面円平
均温度を直ちに推定できるのであるが、多くの場合はそ
うではない。
First, if the actually measured surface temperature tea is one of the surface temperatures tf+-t (4) in the estimation table (4), the cross-sectional circular average temperature can be estimated immediately, but in many cases this is not the case.

そこで、実測表面温度tfMが上記表面温度tfl〜t
f4の値でない場合には、下記のような一次補間により
、断面円平均温度〒tmを推定する。
Therefore, the measured surface temperature tfM is the above-mentioned surface temperature tfl~t
If it is not the value of f4, the cross-sectional circular average temperature tm is estimated by linear interpolation as described below.

即ち、今、例えば、t fil<t flI< t f
2とすると、Wa <W、<W3となるが、この場合の
断面円平均温度〒fMは、下記式で求められる。
That is, now, for example, t fil<t flI< t f
2, Wa<W, <W3, and the cross-sectional circular average temperature fM in this case is determined by the following formula.

tf2   trot 次に、後段冷却帯25の冷却装置28の使用される冷却
ゾーン数が常時同一でない場合、即ち、復熱時間の相違
を考慮する必要がある場合について説明する。
tf2 trot Next, a case where the number of cooling zones used in the cooling device 28 of the rear cooling zone 25 is not always the same, that is, a case where it is necessary to take into account the difference in recuperation time will be described.

例えば、上記のように一次補間する場合において、基本
テーブルAの索引テーブル■の冷却水流量W、 、W、
の場合における使用される冷却ゾーン数が異なるときに
は、測温位置までの復熱時間の関係で、基本テーブルA
の推定テーブル■における冷却水装置W2、W、と対応
するテーブル値(tri、〒12)、 (tf:l、〒
f3)からの補間では、実測表面温度tl++に対応す
る断面円平均温度〒1Mを正確に推定できない。
For example, in the case of linear interpolation as described above, the cooling water flow rate W, , W, of the index table ■ of the basic table A,
When the number of cooling zones used is different in the case of
Table values (tri, 〒12), (tf:l, 〒) corresponding to the cooling water devices W2, W in the estimation table ■
By interpolating from f3), it is not possible to accurately estimate the cross-sectional circular average temperature 〒1M corresponding to the actually measured surface temperature tl++.

そこで、実測表面温度tf、が索引テーブル■のテーブ
ル値(tfl〜tf4)間の値であって、補間に用いる
2組のテーブル値の場合における使用冷却ゾーン数が異
なる際には、第3図に示すような補正テーブルBを推定
テーブル■と併せて用いて、補間を行うのである。
Therefore, when the actual measured surface temperature tf is a value between the table values (tfl to tf4) of the index table ■, and the number of cooling zones used is different in the case of two sets of table values used for interpolation, Interpolation is performed by using correction table B as shown in FIG. 2 together with estimation table (2).

第3図の補正テーブルBは、後段冷却帯25の冷却装置
2日が第4図に示すように構成されている場合のもので
ある。
Correction table B in FIG. 3 is for the case where the cooling device 2 of the second stage cooling zone 25 is configured as shown in FIG. 4.

即ち、第4図では、後段冷却帯25の冷却装置28は、
第1〜第3冷却ゾーン34.35.36により構成され
、各冷却ゾーン34x35.36に流量計37.38.
39を介して冷却水が供給される。
That is, in FIG. 4, the cooling device 28 of the rear cooling zone 25 is
Consisting of first to third cooling zones 34.35.36, each cooling zone 34x35.36 has a flow meter 37.38.
Cooling water is supplied via 39.

そして、後段冷却帯25では、圧延材を冷却する冷却水
流量が少ない場合には、第1冷却ゾーン34のみを使用
し、冷却水流量が増加するに従って、第1・第2の2冷
却ゾーン34.35の使用、第1〜第3の3冷却ゾーン
34.35.36の使用を行うようにするのである。
In the latter cooling zone 25, when the flow rate of cooling water for cooling the rolled material is small, only the first cooling zone 34 is used, and as the flow rate of cooling water increases, the second cooling zone 34 is used. .35 and three cooling zones 34, 35, and 36, first to third, are used.

ところで、補正テーブルBでは、W、ば、第1冷却ゾー
ン34のみを使用する際の冷却水流量範囲と、第1・第
2両冷却ゾーン34.35を使用する際の冷却水流量範
囲との境界冷却水流量を示し、WB2は、第1・第2両
冷却ゾーン34.35を使用する際の冷却水流量範囲と
、第1〜第3の3冷却ゾーン34,35.36を使用す
る際の冷却水流量との境界冷却水流量を示している。
By the way, in the correction table B, W, B, the cooling water flow rate range when only the first cooling zone 34 is used, and the cooling water flow rate range when using both the first and second cooling zones 34,35. The boundary cooling water flow rate is shown, and WB2 is the cooling water flow rate range when both the first and second cooling zones 34.35 are used, and when the first to third three cooling zones 34, 35.36 are used. It shows the boundary cooling water flow rate between the cooling water flow rate and the cooling water flow rate.

又、to。〜t04、〒f、。〜〒fb4は、冷却水流
量がO,W□、WB□である場合の各使用冷却Zone
に関する表面温度と断面円平均温度とを夫々示している
Also, to. ~t04, 〒f,. ~〒fb4 is each used cooling zone when the cooling water flow rate is O, W□, WB□
The surface temperature and cross-sectional circular average temperature are shown respectively.

尚、補正テーブルBも、索引テーブル■の■〜■の各操
業条件毎に作成する。
Incidentally, the correction table B is also created for each of the operating conditions (■) to (■) of the index table (■).

これは、抽出温度、圧延速度が異なれば、後段冷却帯2
5人側での圧延材の断面内温度分布状態が異なるものと
なると共に、同一冷却水流量、使用する冷却ゾーン数が
同一であっても、圧延速度により、冷却時間も異なり、
従って、強制水冷後の断面内温度分布状態が大きく異な
るものとなるからである。
If the extraction temperature and rolling speed are different, the second stage cooling zone 2
The cross-sectional temperature distribution state of the rolled material on the 5-person side will be different, and even if the same cooling water flow rate and the same number of cooling zones are used, the cooling time will also differ depending on the rolling speed.
Therefore, the temperature distribution state within the cross section after forced water cooling becomes largely different.

今、例えば、実測表面温度Lfm  が、推定テーブル
■のtflとtriO間にあり (即ち、1,2<1f
m〈j fl) 、j flに対応する冷却水流量W、
が第1°冷却ゾーン34のみを使用した場合の冷却水流
量範囲にあり(即ち、W+ <We+ )、trzに対
応する冷却水流量W2が、第1・第2両冷却ゾーン34
゜35を使用した場合の冷却水範囲にあり(即ち、WB
、<W2<W、□)にあり、実測表面温度jfnである
場合の冷却水流量W1が第1・第2両冷却ゾーン34.
35を使用した場合の冷却水流量範囲にあるとする場合
(尚、to<tflI<tf、であるのでW□<W、<
W、、である)、この実測表面温度jfnに対応する断
面円平均温度〒fm  は下記のようにして求める。
Now, for example, the measured surface temperature Lfm is between tfl and triO in the estimation table (i.e., 1,2<1f
m<j fl), cooling water flow rate W corresponding to j fl,
is in the cooling water flow rate range when only the first cooling zone 34 is used (that is, W+ < We+), and the cooling water flow rate W2 corresponding to trz is within the range of the cooling water flow rate when only the first cooling zone 34 is used.
It is within the cooling water range when using WB
, <W2<W, □), and the cooling water flow rate W1 when the measured surface temperature is jfn is both the first and second cooling zones 34.
If the cooling water flow rate is within the range when using 35 (in addition, to<tflI<tf, so W□<W,<
), and the cross-sectional circular average temperature 〒fm corresponding to this actually measured surface temperature jfn is determined as follows.

即ち、上記の場合には、断面円平均温度〒、Hは、推定
テーブル■のテーブル値(11い〒fl)と(trz、
〒、2)とから補間するのではなく、復熱時間の相違を
考慮して、推定テーブルHのテーブル値(ttz、〒f
Z)と補正テーブルBにおいて、第1冷却ゾーン34と
第1・第2両冷却ゾーン34,35【”)使用冷却水流
量範囲の境界冷却水流量Wl+を第1・第2両冷却ゾー
ン34.35で使用した場合のテーブル値(11,□、
↑7、t)とから、上記(1)式と同様の式により、−
次補間によって・推定する・上記のように、実測表面温
度が、推定テーブル■において、使用する冷却ゾーン数
が異なる表面温度間に位置した場合でも、補正テーブル
Bを用いることによって、冷却ゾーン数が同じの2組の
テーブル値からの補間が可能となり、実測表面温度から
断面円平均温度を正確に推定できる。
That is, in the above case, the cross-sectional circular average temperature 〒, H is the table value (11〒fl) of the estimation table ■ and (trz,
Instead of interpolating from 〒, 2), the table values (ttz, 〒f
Z) and correction table B, the boundary cooling water flow rate Wl+ of the used cooling water flow rate range of the first cooling zone 34 and both the first and second cooling zones 34, 35['') is calculated as follows. Table value when used with 35 (11, □,
From ↑7, t), by a formula similar to the above formula (1), -
Estimate by next interpolation As mentioned above, even if the measured surface temperature is located between the surface temperatures where the number of cooling zones used differs in the estimation table ■, by using the correction table B, the number of cooling zones can be Interpolation from the same two sets of table values becomes possible, and the cross-sectional circular average temperature can be accurately estimated from the measured surface temperature.

又、推定テーブル■に記載した冷却水流量は、復熱時間
の相違を考慮する必要がない操業条件下で断面円平均温
度を推定する場合には、あまり重要性がないが、復熱時
間の相違を考慮する必要がある操業条件下で断面円平均
温度を推定する場合には、推定テーブル■に記載した冷
却水流量を境界冷却水流量と比較することにより、推定
テーブル■の表面温度が、どの冷却ゾーン34,35.
36を使用した場合の値であるかを判定することに使用
するので、重要なものとなる。
In addition, the cooling water flow rate listed in estimation table ■ is not very important when estimating the cross-sectional circle average temperature under operating conditions where there is no need to consider differences in recuperation time, but it is When estimating the cross-sectional circle average temperature under operating conditions that require consideration of differences, the surface temperature in the estimation table ■ can be calculated by comparing the cooling water flow rate listed in the estimation table ■ with the boundary cooling water flow rate. Which cooling zones 34, 35.
This is important because it is used to determine whether the value is the value when 36 is used.

尚、基本テーブルAと補正テーブルBの各テーブル値は
、熱間圧延ラインの温度分布解析モデル及び強制水冷時
の冷却能の実験式を用いて算出する。
Note that each table value of the basic table A and the correction table B is calculated using a temperature distribution analysis model of a hot rolling line and an empirical formula for cooling capacity during forced water cooling.

ところで、実際の圧延時の抽出温度〒6、圧延速度Vf
mの最大圧延速度vfm*x  に対する比率を百分率
で表した場合のvl、”が索引テーブル■の基準の操業
条件以外の場合、例えば、〒4□< T aく〒d3、
vfm <vfm” <V f:Iのときには、牽引テ
ーブル■の■■■■に対応する各推定テーブル■と、必
要であるならば、索引テーブル■の■■■■に対応する
各補正テーブルBとを用いて、実測表面温度tf、、、
に対応する4つの断面円平均温度を求める。
By the way, the actual extraction temperature during rolling is 6, and the rolling speed is Vf.
If vl, which is the ratio of m to maximum rolling speed vfm*x expressed as a percentage, is other than the standard operating conditions in index table ■, for example, 〒4□< Ta〒d3,
When vfm <vfm” <V f:I, each estimation table ■ corresponding to ■■■■ of the traction table ■ and, if necessary, each correction table B corresponding to ■■■■ of the index table ■ Using, the measured surface temperature tf,...
Find the average temperature of the four cross-sectional circles corresponding to .

次に、上記4つの断面円平均温度を、更に、抽出温度、
圧延速度に関して、夫々補間することにより、実際の圧
延条件(抽出温度〒d、圧延速度vrs)時の実測表面
温度t0に対応した正しい断面円平均温度〒fMを求め
ることができる。
Next, the above four cross-sectional circle average temperatures are further added to the extraction temperature,
By interpolating the rolling speed, it is possible to obtain the correct cross-sectional circle average temperature fM corresponding to the actually measured surface temperature t0 under the actual rolling conditions (extraction temperature d, rolling speed vrs).

尚、実際の操業において、断面円平均温度を推定する場
合には、プロセスコントロールコンピュータ29の補助
記憶装置に、基本テーブルAと補正テーブルBの各テー
ブル値を記憶させておき、実測した抽出温度、圧延速度
及び圧延材の表面温度等を上記コンピュータに入力して
、上記のような計算方法で、圧延材の断面円平均温度を
推定させる。
In actual operation, when estimating the cross-sectional circle average temperature, the table values of the basic table A and the correction table B are stored in the auxiliary storage device of the process control computer 29, and the actually measured extraction temperature, The rolling speed, the surface temperature of the rolled material, etc. are input into the computer, and the cross-sectional circular average temperature of the rolled material is estimated using the calculation method described above.

尚、実施例では、後段冷却帯25において、制御冷却を
実施した場合の強制水冷後の水冷上り断面円平均温度を
求める方法について説明したが、本発明は、前段冷却帯
24において、制御圧延を実施した場合の強制水冷後の
仕上り断面円平均温度を求める方法に対しても適用可能
である。
In addition, in the embodiment, a method for determining the water-cooling up cross section circular average temperature after forced water cooling when controlled cooling is performed in the downstream cooling zone 25 has been described. It is also applicable to the method of determining the circular average temperature of the finished cross section after forced water cooling when implemented.

上記のように、熱間連続圧延工程における制御圧延、制
御冷却のための強制水冷後の表面温度の実測値から、こ
れに対応する断面円平均温度を正確且つ容易に求めるこ
とが可能であり、従って、上記断面円平均温度に基いて
、水冷制御等の各種制御を行うようにすれば、圧延材の
材質を目標とする材質とできる。
As mentioned above, it is possible to accurately and easily obtain the corresponding cross-sectional circle average temperature from the actual measured value of the surface temperature after forced water cooling for controlled rolling and controlled cooling in the continuous hot rolling process. Therefore, by performing various controls such as water cooling control based on the cross-sectional circle average temperature, the material of the rolled material can be made to be the target material.

尚、実施例においては、索引テーブルでは、代表的な抽
出温度と、代表的な圧延速度の最大圧延速度に対する比
率を百分率で表わした値とを組合わせて、複数の代表的
な操業条件を設定したが、上記代表的な圧延速度の最大
圧延速度に対する比率を百分率で表わした値に代えて、
代表的な圧延速度自体を用いてもよい。
In addition, in the example, in the index table, a plurality of typical operating conditions are set by combining typical extraction temperatures and values expressed as percentages of the ratio of typical rolling speed to maximum rolling speed. However, instead of the ratio of the typical rolling speed to the maximum rolling speed expressed as a percentage,
The typical rolling speed itself may be used.

(発明の効果) 以上詳述したように、本発明によれば、予定される複数
のパススケジュールの内の一つのバススケジュールにお
いて、加熱炉からのビレットの抽出温度と圧延速度の代
表的な値を組合せた複数の代表的な操業条件下で圧延材
の代表的な表面温度と断面円平均温度との関係を表わす
テーブルを予じめ作成しておき、実際に測定した加熱炉
からのビレットの抽出温度、圧延速度及び圧延材の表面
温度に基き、上記テーブルから、復熱時間を考慮して圧
延材の断面円平均温度を推定するので、強制水冷後の圧
延材の代表温度である断面円平均温度を正確且つ容易に
短時間で推定でき、従って、オンラインであっても何ら
問題は無く、又、この断面円平均温度を水冷制御等の各
種制御に活用することにより、棒鋼、線材の熱間速続圧
延工程における制御圧延制御冷却による圧延材の材質コ
ントロールを良好に行え、圧延材の品質の向上及び品種
の拡大に寄与できる。本発明は上記利点を有し、実益大
である。
(Effects of the Invention) As detailed above, according to the present invention, representative values of the billet extraction temperature and rolling speed from the heating furnace are determined in one bus schedule out of a plurality of planned pass schedules. A table showing the relationship between the typical surface temperature of the rolled material and the cross-sectional circular average temperature under multiple typical operating conditions combining Based on the extraction temperature, rolling speed, and surface temperature of the rolled material, the cross-sectional circle average temperature of the rolled material is estimated from the table above, taking into account the reheating time, so the cross-sectional circle, which is the representative temperature of the rolled material after forced water cooling, is estimated. The average temperature can be estimated accurately and easily in a short time, so there is no problem even if it is done online.Also, by using this cross-sectional circle average temperature for various controls such as water cooling control, it is possible to estimate the temperature of steel bars and wire rods. The material quality of the rolled material can be well controlled by controlled rolling controlled cooling in the intermittent continuous rolling process, which can contribute to improving the quality of the rolled material and expanding the variety of products. The present invention has the above advantages and is of great practical benefit.

【図面の簡単な説明】 図面は本発明の一実施例を示し、第1図は熱間連続圧延
ラインの概略図、第2図及び第3図の各図は圧延材の断
面円平均温度を推定するためのテーブルを示す図、第4
図は後段冷却帯の概略図である。 1〜16−第1〜第16圧延機、2〇−加熱炉、21,
22.23 −  粗・中間・仕上圧延機列、24.2
5−・・前段・後段冷却帯、27.28−・−冷却装置
、34.35.36−第1〜第3冷却ゾーン。
[Brief Description of the Drawings] The drawings show one embodiment of the present invention, and Fig. 1 is a schematic diagram of a continuous hot rolling line, and Fig. 2 and Fig. 3 show cross-sectional circle average temperatures of rolled materials. Diagram showing a table for estimation, 4th
The figure is a schematic diagram of the post-cooling zone. 1 to 16-1st to 16th rolling mills, 20-heating furnace, 21,
22.23 - Roughing, intermediate and finishing mill rows, 24.2
5--Pre-stage/rear-stage cooling zone, 27.28--Cooling device, 34.35.36-First to third cooling zones.

Claims (1)

【特許請求の範囲】[Claims] 1、加熱炉20から抽出したビレットを圧延機1〜16
を通して棒鋼、線材等の圧延材に熱間連続圧延すると共
に、中間圧延機列22と仕上圧延機列23との間及び仕
上圧延機列23の後に設けた冷却装置27、28により
圧延材を強制水冷した場合において、強制水冷後の圧延
材の断面内平均温度を推定する方法であって、予定され
る複数のパススケジュールの内の一つのパススケジュー
ルにおいて、加熱炉20からのビレットの抽出温度と圧
延速度の代表的な値を組合せた複数の代表的な操業条件
下で圧延材の代表的な表面温度と断面内平均温度との関
係を表わすテーブルA、Bを予じめ作成しておき、実際
に測定した加熱炉20からのビレットの抽出温度、圧延
速度及び圧延材の表面温度に基き、上記テーブルA、B
から、復熱時間を考慮して圧延材の断面内平均温度を推
定することを特徴とする棒鋼、線材の熱間連続圧延にお
ける圧延材の断面内平均温度の推定方法。
1. The billet extracted from the heating furnace 20 is transferred to rolling mills 1 to 16
Through the continuous hot rolling into rolled steel bars, wire rods, etc., the rolled materials are forcibly rolled by cooling devices 27 and 28 installed between the intermediate rolling mill row 22 and the finishing rolling mill row 23 and after the finishing rolling mill row 23. A method for estimating the average cross-sectional temperature of a rolled material after forced water cooling in the case of water cooling, in which the extraction temperature of the billet from the heating furnace 20 and the Create tables A and B in advance that represent the relationship between the typical surface temperature of the rolled material and the average temperature in the cross section under a plurality of typical operating conditions combining typical values of rolling speed, Based on the actually measured billet extraction temperature from the heating furnace 20, rolling speed, and surface temperature of the rolled material,
A method for estimating the average temperature within a cross section of a rolled material during hot continuous rolling of steel bars and wire rods, the method comprising estimating the average temperature within the cross section of the rolled material in consideration of reheating time.
JP60151004A 1985-07-08 1985-07-08 Estimating method for mean temp. inside cross section of rolling stock in continuous hot rolling of steel bar and wire Granted JPS629712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60151004A JPS629712A (en) 1985-07-08 1985-07-08 Estimating method for mean temp. inside cross section of rolling stock in continuous hot rolling of steel bar and wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60151004A JPS629712A (en) 1985-07-08 1985-07-08 Estimating method for mean temp. inside cross section of rolling stock in continuous hot rolling of steel bar and wire

Publications (2)

Publication Number Publication Date
JPS629712A true JPS629712A (en) 1987-01-17
JPH0580282B2 JPH0580282B2 (en) 1993-11-08

Family

ID=15509182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60151004A Granted JPS629712A (en) 1985-07-08 1985-07-08 Estimating method for mean temp. inside cross section of rolling stock in continuous hot rolling of steel bar and wire

Country Status (1)

Country Link
JP (1) JPS629712A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160316A (en) * 2005-12-09 2007-06-28 Kobe Steel Ltd Method for controlling water cooling of rolled material
JP2010131644A (en) * 2008-12-05 2010-06-17 Kobe Steel Ltd Method of controlling supply of cooling water in water-cooling apparatus of bar and shape rolling equipment
CN102632089A (en) * 2011-11-29 2012-08-15 首钢总公司 Control method of cooling process of hot-rolled low-carbon boron-containing steel wire rod after rolling

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160316A (en) * 2005-12-09 2007-06-28 Kobe Steel Ltd Method for controlling water cooling of rolled material
JP4648176B2 (en) * 2005-12-09 2011-03-09 株式会社神戸製鋼所 Water cooling control method for rolled material
JP2010131644A (en) * 2008-12-05 2010-06-17 Kobe Steel Ltd Method of controlling supply of cooling water in water-cooling apparatus of bar and shape rolling equipment
CN102632089A (en) * 2011-11-29 2012-08-15 首钢总公司 Control method of cooling process of hot-rolled low-carbon boron-containing steel wire rod after rolling

Also Published As

Publication number Publication date
JPH0580282B2 (en) 1993-11-08

Similar Documents

Publication Publication Date Title
CN103225017B (en) Rod and wire billet heating furnace model control method and apparatus
CN111014307B (en) Rolling mill speed control method for continuous rolling of furnace coil and finishing mill set
CN103008358B (en) Optimization device, optimization method and optimizer
CN101745549A (en) Method for controlling steel feeding temperature of band steel of hot strip mill
CN111079275A (en) Rolled piece temperature obtaining method and device for strip hot rolling production line
CN105344720B (en) A kind of On-Line Control Method of fine-rolling strip steel finishing temperature
CN103920717A (en) Set value calculating device and set value calculating method
CN103990653B (en) Entry temperature at finishing accuracy at target method of assuring
CN109013717A (en) A kind of hot continuous rolling centre base center portion temperature computation method
JPS629712A (en) Estimating method for mean temp. inside cross section of rolling stock in continuous hot rolling of steel bar and wire
CN112387791B (en) Method and system for determining rolling temperature of cold-rolled strip steel
CN104815853A (en) Temperature distribution prediction device
US6096137A (en) Pickling plant and method of controlling the same
CN109092906B (en) A kind of on-line tuning method of five Stands Cold Tandem Mills group slipping phenomenon
CN105451904A (en) Energy-saving-operation recommending system
JPH0442084B2 (en)
KR101018178B1 (en) Wire-rod Manufacturing Method
JP3855429B2 (en) Hot-rolled steel strip rolling method
Guo et al. A semi-analytical solution of work roll thermal crown during hot rolling
CN104001717B (en) The manufacturing process of steel rolling
AT500373B1 (en) METHOD AND DEVICE FOR DETERMINING AND ASSIGNING THE PRODUCTION COSTS OF A PRODUCT
Katzberg et al. Simulation of a pacing control system for a reversing mill
CN117299833A (en) Method for calculating rolling schedule of freely configured rolling production line
SU1704872A1 (en) Method of control of rolled stock cooling process
JP2006055887A (en) Method for controlling cooling of material to be rolled in hot rolling and method for manufacturing hot-rolled metallic sheet