JPS629510B2 - - Google Patents
Info
- Publication number
- JPS629510B2 JPS629510B2 JP53079612A JP7961278A JPS629510B2 JP S629510 B2 JPS629510 B2 JP S629510B2 JP 53079612 A JP53079612 A JP 53079612A JP 7961278 A JP7961278 A JP 7961278A JP S629510 B2 JPS629510 B2 JP S629510B2
- Authority
- JP
- Japan
- Prior art keywords
- elevator
- oil
- oil temperature
- relay
- car
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000000630 rising effect Effects 0.000 claims description 13
- 230000001174 ascending effect Effects 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Elevator Control (AREA)
- Elevator Door Apparatuses (AREA)
Description
【発明の詳細な説明】
本発明は油圧エレベータ制御装置に係り、特に
油温低下時の粘度増大の影響を除去して、安定し
たエレベータの制御を行うに好適な油圧エレベー
タ制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydraulic elevator control device, and more particularly to a hydraulic elevator control device suitable for eliminating the influence of increased viscosity when oil temperature drops and performing stable elevator control.
第1図は一般的な油圧エレベータの概略構成図
を示すもので、同図中、1はタンク、2は油、3
は電動機、4はポンプ、5は流量制御弁、6はジ
ヤツキ、7はシリンダー、8はプランジヤー、9
はかご、10は主管、11は分岐管をそれぞれ示
すものである。 Figure 1 shows a schematic configuration diagram of a general hydraulic elevator, in which 1 is a tank, 2 is an oil tank, 3 is a tank.
is an electric motor, 4 is a pump, 5 is a flow control valve, 6 is a jack, 7 is a cylinder, 8 is a plunger, 9
10 is a main pipe, and 11 is a branch pipe.
かかる構成に於いて、かご9を上昇させる場
合、タンク1内の油2を電動機3で駆動される油
圧ポンプ4により吐出し、更に、流量制御弁5に
より流量制御を行いジヤツキ6に送出する、圧油
を受けたジヤツキ6に於いては、シリンダー7内
からプランジヤー8が押し上げられ上昇する為、
これに連結されたかご9が上昇する事となる。 In this configuration, when the car 9 is raised, the oil 2 in the tank 1 is discharged by the hydraulic pump 4 driven by the electric motor 3, and the flow rate is controlled by the flow control valve 5 and sent to the jack 6. In the jack 6 that receives the pressure oil, the plunger 8 is pushed up from inside the cylinder 7 and rises.
The car 9 connected to this will rise.
一方、かご9を下降させる場合は、かご9の自
重によりシリンダ7内の油を主管10を通じて流
量制御弁5で流量制御しながら、分岐管11を通
じてタンク1へ還流させる。 On the other hand, when the car 9 is lowered, the weight of the car 9 causes the oil in the cylinder 7 to flow back through the main pipe 10 to the tank 1 through the branch pipe 11 while controlling the flow rate with the flow control valve 5 .
以上述べた如く、油圧エレベータの上昇又は下
降を行なうに当つては、かご9の速度を所定の速
度パターンに合わせるべく流量制御弁5により圧
油の流量を制御する必要がある。従つて、流量制
御弁5の働きは、油圧エレベータの制御上極めて
重要である。 As described above, when raising or lowering the hydraulic elevator, it is necessary to control the flow rate of pressure oil by the flow control valve 5 in order to match the speed of the car 9 to a predetermined speed pattern. Therefore, the function of the flow control valve 5 is extremely important in controlling the hydraulic elevator.
一方、流量制御弁5は油2の粘度にかなり敏感
な場合が多く、特に流量の制御に油自身の背圧を
利用する場合は、粘度の違いによる影響が非常に
大きい。 On the other hand, the flow rate control valve 5 is often quite sensitive to the viscosity of the oil 2, and especially when the back pressure of the oil itself is used to control the flow rate, the influence of the difference in viscosity is very large.
ちなみに、油の粘度は温度によつて大きく変化
することが知られている。油温と粘度の関係の一
例を第2図に示すが、これに依ると、80℃から40
℃位までは油の温度(油温)が下がるにつれて、
おおよそ比例的に粘度が高くなる傾向を持つ。し
かしながら、20℃附近から0℃に近づくにつれ粘
度は急激に上昇することが判る。 Incidentally, it is known that the viscosity of oil changes greatly depending on temperature. An example of the relationship between oil temperature and viscosity is shown in Figure 2. According to this, from 80℃ to 40℃
As the oil temperature (oil temperature) decreases to about ℃,
The viscosity tends to increase roughly proportionally. However, it can be seen that the viscosity increases rapidly from around 20°C to 0°C.
このような場合、40℃近辺の油温で最適に設計
された流量制御弁5は、油温が20℃以下になると
その性能が大きく変わり、エレベータを正常に運
転することが困難になる。 In such a case, the performance of the flow control valve 5, which is optimally designed when the oil temperature is around 40°C, changes significantly when the oil temperature falls below 20°C, making it difficult to operate the elevator normally.
一方、60℃位以上の油温になると、油にキヤビ
テーシヨンなどによる気泡や乱れが生じる為、同
様にエレベータの運転が困難になる。 On the other hand, when the oil temperature reaches 60°C or higher, air bubbles and turbulence occur in the oil due to cavitation, which similarly makes elevator operation difficult.
従つて、例えば第2図の如き特性を有する通常
の油を用いた油圧エレベータに於いては、20℃か
ら60℃までの油温範囲でパワーユニツト稼動する
ことが望ましい。 Therefore, in a hydraulic elevator using ordinary oil having the characteristics as shown in FIG. 2, for example, it is desirable that the power unit operate within the oil temperature range of 20°C to 60°C.
しかしながら、寒冷地などに設置されるエレベ
ータではパワーユニツトの設置される機械室の室
温も当然低くなる事があり、これが例えば10℃以
下になると、タンクの油温は20℃以下に下がる為
上述の如く流量制御弁の動きが変化し、エレベー
タの正常な運転が困難になるという問題がある。 However, in elevators installed in cold regions, the room temperature in the machine room where the power unit is installed can naturally become low, and if this drops below 10°C, the oil temperature in the tank will drop below 20°C, so the above-mentioned There is a problem in that the movement of the flow control valve changes, making normal operation of the elevator difficult.
従来、このような油温低下に対しては、室温が
上昇する日中だけエレベータを稼動する等の対処
しか行なわれておらず、この為、エレベータの稼
動率を著しく悪くしていた。 Conventionally, the only way to deal with such a drop in oil temperature was to operate the elevator only during the day when the room temperature rises, which significantly deteriorated the operating rate of the elevator.
従つて、本発明の目的は、上記従来技術の問題
点を無くし、油温が低下した場合には、かごのド
アを閉じたままエレベータを上昇、下降動作させ
ることにより、油温を最適温度に保持し、流量制
御弁に依る良好な制御を可能ならしめた新規の油
圧エレベータの制御装置を、提供するにある。 Therefore, an object of the present invention is to eliminate the above-mentioned problems of the prior art, and to bring the oil temperature to the optimum temperature by raising and lowering the elevator with the car door closed when the oil temperature drops. An object of the present invention is to provide a new hydraulic elevator control device that enables good control using a flow rate control valve.
第3図は本発明を適用される一般的な油圧エレ
ベータの油圧系統を示す系統図で、同図中、1
5,16は管路、17は上昇用弁、18,23は
電磁弁、19は逆止弁、20,21,24,25
は絞り弁、22は下降用弁をそれぞれ示すもので
ある。 Figure 3 is a system diagram showing the hydraulic system of a general hydraulic elevator to which the present invention is applied;
5 and 16 are pipes, 17 is a rising valve, 18 and 23 are solenoid valves, 19 is a check valve, 20, 21, 24, 25
2 represents a throttle valve, and 22 represents a lowering valve.
かかる構成に於いて、エレベータの上昇時に
は、先づ電動機3によりポンプ4を駆動し、圧油
を管路15,16、上昇用弁17および分岐管1
1を通じてタンク1に還流させる。次の瞬間、電
磁弁18を励磁して上昇用弁17を漸次閉じ、ポ
ンプ4からの圧油を、逆止弁19から主管10を
通じて次第にシリンダー7に送る経路に移す。こ
の結果、プランジヤー8が押し上げられ、これに
取付けられたかご9が上昇する。なお、上昇開始
時のエレベータの加速状態を絞り弁20で調整す
る。 In this configuration, when the elevator ascends, the pump 4 is first driven by the electric motor 3, and pressure oil is pumped through the pipes 15, 16, the ascending valve 17, and the branch pipe 1.
1 to tank 1. At the next moment, the solenoid valve 18 is energized to gradually close the rising valve 17, and the pressure oil from the pump 4 is transferred from the check valve 19 to the path where it is gradually sent to the cylinder 7 through the main pipe 10. As a result, the plunger 8 is pushed up, and the cage 9 attached to it is raised. Note that the acceleration state of the elevator at the start of the ascent is adjusted by the throttle valve 20.
エレベータの上昇停止時には、電磁弁18を消
磁する事に依り上昇用弁17を次第に開いて行
き、ポンプ4からの圧油をタンク1に還流させ、
かご9を停止させる。この場合の停止状態の調整
は絞り弁21で行う事となる。 When the elevator stops ascending, the ascending valve 17 is gradually opened by demagnetizing the solenoid valve 18, and the pressure oil from the pump 4 is returned to the tank 1.
Stop car 9. In this case, the stop state is adjusted using the throttle valve 21.
一方、エレベータの下降は、かご9の自重を利
用して行う。即ち、エレベータの停止時にはシリ
ンダ7内の圧油は逆止弁19と下降用弁22によ
りとどめられているが、エレベータの下降開始の
指令が生されると、電磁弁23が励磁される為、
下降用弁22が漸次開き、従つてシリンダー7内
の圧油は主管10、下降用弁22から分岐管11
を通りタンク1へ戻る。この為、かご9はその自
重に依り下降運転されるが、このときの下降加速
状態の調整は絞り弁24に依つて行われる。 On the other hand, the elevator is lowered by using the weight of the car 9. That is, when the elevator is stopped, the pressure oil in the cylinder 7 is stopped by the check valve 19 and the descending valve 22, but when a command to start descending the elevator is issued, the solenoid valve 23 is energized.
The descending valve 22 gradually opens, and the pressure oil in the cylinder 7 flows from the main pipe 10 to the descending valve 22 to the branch pipe 11.
Go through and return to tank 1. For this reason, the car 9 is driven downward by its own weight, but the downward acceleration state at this time is adjusted by the throttle valve 24.
一方、下降停止は電磁弁23を消磁し、これに
より下降用弁22を閉じることによりかご9を停
止させる事で行う。この時の停止状態の調整は絞
り弁25で行われる。 On the other hand, the descent is stopped by demagnetizing the electromagnetic valve 23 and thereby closing the descent valve 22, thereby stopping the car 9. Adjustment of the stopped state at this time is performed by the throttle valve 25.
第4図は、第3図示油圧系統の制御回路の一例
を示す結線図で、同図中、30,31は電源ライ
ン、41,42はブロツキングダイオード、38
は電動機3の入力を入切する上昇用コンダクタ
ー、32,33はそれぞれ上昇用電磁弁18、下
降用電磁弁23を入切する上昇、下降制御リレ
ー、39,40はかごが上昇時又は下降時に着床
位置に到ると開状態になる着床リミツトスイツ
チ、34,35は上昇側の方向補助リレー、34
−1は前記上昇側の方向補助リレー34の接点、
35−1〜35−4は前記上昇側の方向補助リレ
ー35の接点、36,37は下降側の方向補助リ
レー、36−1は前記下降側の方向補助リレー3
6の接点、37−3は前記下降側の方向補助リレ
ー37の接点、49−1,50−1は下降又は上
昇の方向性が選択された時に閉状態となる如く動
作する後述の方向選択リレー49,50の接点で
ある。 FIG. 4 is a wiring diagram showing an example of the control circuit of the hydraulic system shown in the third diagram, in which 30 and 31 are power lines, 41 and 42 are blocking diodes, and 38
is a rising conductor that turns on and off the input of the electric motor 3; 32 and 33 are rise and fall control relays that turn on and off the rise solenoid valve 18 and the fall solenoid valve 23, respectively; 39 and 40 are rise and fall control relays when the car is rising or falling; A landing limit switch that opens when the landing position is reached; 34 and 35 are upward direction auxiliary relays; 34
-1 is a contact point of the upward direction auxiliary relay 34;
35-1 to 35-4 are the contacts of the direction auxiliary relay 35 on the upward side, 36 and 37 are the direction auxiliary relays on the downward side, and 36-1 are the directional auxiliary relays 3 on the downward side.
6 contacts, 37-3 are contacts of the direction auxiliary relay 37 on the descending side, and 49-1 and 50-1 are direction selection relays to be described later that operate to close when the descending or ascending direction is selected. 49 and 50 contacts.
かかる構成に於いて、その動作を上昇時につい
て説明する。上昇方向性が選択されて接点50−
1が閉じると、上昇側の方向補助リレー34が釈
放されており、接点34−1が閉じている事から
上昇側の方向補助リレー35が加圧される。この
為、接点35−4,35−1が閉じるが、これに
依りコンタクター38、上昇制御リレー32が加
圧され、電動機3が回り、一方上昇用電磁弁18
が励磁される為、かご9は上昇を始める。かご9
が上昇すると着床リミツトスイツチ39が閉じ、
方向補助リレー34が加圧される為、接点34−
1が開くが、方向補助リレー35は前記着床リミ
ツトスイツチ39により保持される。そして、か
ご9が着床位置に到り着床リミツトスイツチ39
が再び開くと方向補助リレー35が釈放され、そ
の接点35−4が開く為、コンタクター38及び
接点35−1が開く。その結果、上昇制御リレー
32が釈放され、ポンプ駆動用の電動機3が停止
すると同時に、上昇用電磁弁18も閉じてかご9
は停止する。同時に接点35−2が開く為、方向
補助リレー34は釈放され、稼動前の状態に戻
る。 In this configuration, its operation will be explained when it is raised. The upward direction is selected and the contact point 50-
1 closes, the direction auxiliary relay 34 on the rising side is released, and since the contact 34-1 is closed, the direction auxiliary relay 35 on the rising side is pressurized. For this reason, the contacts 35-4 and 35-1 close, which pressurizes the contactor 38 and the lift control relay 32, causing the electric motor 3 to rotate, while the lift solenoid valve 18
is excited, so car 9 begins to rise. Basket 9
When rises, the implantation limit switch 39 closes,
Since the direction auxiliary relay 34 is pressurized, the contact 34-
1 is open, but the direction assist relay 35 is held by the landing limit switch 39. Then, when the car 9 reaches the landing position, the landing limit switch 39 is activated.
When is opened again, direction assist relay 35 is released and its contact 35-4 is opened, thereby opening contactor 38 and contact 35-1. As a result, the lift control relay 32 is released and the electric motor 3 for driving the pump is stopped, and at the same time, the lift solenoid valve 18 is also closed and the car 9 is closed.
stops. At the same time, the contact point 35-2 opens, so the direction assist relay 34 is released and returns to the state before operation.
一方、エレベータの下降動作についても、電動
機3用のコンタクター38に当るものがないだけ
で他は上昇時と同様に行なわれる。 On the other hand, the descending operation of the elevator is carried out in the same manner as the ascending operation, except that there is no contactor 38 for the electric motor 3.
第5図は第4図に示した回路に対して付加的に
適用される本発明の一実施例に係る油圧エレベー
タ制御装置の部分結線図で、特に第3図に示した
油圧系統の制御に適用する場合を例示するもので
ある。第5図中43は油温上昇運動用リレー、4
3−1,43−2は前記リレー43の接点、44
は不図示の油温検出器の検出接点、45は油温上
昇運転の条件を示す接点、46はドア開リレー、
47−1,48−1は不図示の階床位置リレーの
接点、49−2,49−3は方向選択リレー49
の接点、50−2は方向選択リレー50の接点、
51は方向選択回路、52−1は不図示の呼び登
録リレーの接点である。 FIG. 5 is a partial wiring diagram of a hydraulic elevator control device according to an embodiment of the present invention which is additionally applied to the circuit shown in FIG. 4, and is particularly applicable to the control of the hydraulic system shown in FIG. 3. This is an example of an application case. 43 in Fig. 5 is a relay for oil temperature increase movement, 4
3-1, 43-2 are contacts of the relay 43, 44
45 is a detection contact of an oil temperature detector (not shown), 45 is a contact that indicates the condition for oil temperature rising operation, 46 is a door opening relay,
47-1 and 48-1 are contacts of floor position relays (not shown), and 49-2 and 49-3 are direction selection relays 49.
50-2 is a contact of the direction selection relay 50,
51 is a direction selection circuit, and 52-1 is a contact point of a call registration relay (not shown).
かかる構成に於いて、油温検出器の接点44は
油温が設定値以下では閉、設定値を超えると開状
態になるもので、普通若干のヒステリシスを持つ
ており、動作温度に2℃から3℃程の開きを持つ
ものである。例えば、温度検出器を25℃に設定し
たとすると、接点44は油温が下がつて25℃以下
になると開状態から閉状態に変わり、逆に油温が
上昇すると27℃を超えたところで閉状態から開状
態に変わる。また、温度上昇運動用リレー43
は、油温が下がつた時エレベータをかご9のドア
を閉じたまま上昇及び下降させることにより油温
を上げる操作を行なわせる作用を有するものであ
る。また、接点45は油温も上昇させる為の運転
条件がそろつた時閉状態となるものであり、エレ
ベータが基準階ドアゾーン内に停止しており、全
てのドアが閉まつていて、更に、点検運転中でな
いという条件のもとに閉状態となるものである。
一方、接点52−1は呼びが登録されていると開
状態になる。 In such a configuration, the contact 44 of the oil temperature sensor is closed when the oil temperature is below the set value and opened when the oil temperature exceeds the set value. There is a difference of about 3°C. For example, if the temperature sensor is set at 25°C, the contact 44 will change from open to closed when the oil temperature drops below 25°C, and conversely will close when the oil temperature rises above 27°C. state to open state. In addition, the temperature increase movement relay 43
has the effect of increasing the oil temperature by raising and lowering the elevator with the door of the car 9 closed when the oil temperature drops. In addition, contact 45 is closed when the operating conditions for raising the oil temperature are met, and the elevator is stopped within the standard floor door zone, all doors are closed, and inspection is performed. It is closed under the condition that it is not in operation.
On the other hand, contact 52-1 becomes open when a call is registered.
ドア開リレー46はドア開指令を出す為のリレ
ーであり、油温上昇用運動が行なわれている時
は、接点43−2によつて電源から切り離されて
おり、従つて動作しない。 The door opening relay 46 is a relay for issuing a door opening command, and when the oil temperature raising movement is being performed, it is disconnected from the power supply by the contact 43-2 and therefore does not operate.
また、方向選択用リレー49,50は方向選択
回路51より呼びの情報を受けて加圧、釈放され
るもので、これによつて方向性を決定している。 Further, the direction selection relays 49 and 50 are pressurized and released upon receiving call information from the direction selection circuit 51, thereby determining the direction.
一方、着床位置リレーの接点47−1,48−
1は位置表示の為に用いられるものであり、接点
47−1はかごが基準階から一定範囲(通常200
〜300mm以内)にいる時に開状態になり、接点4
8−1はかごが油温上昇運動をする時折り返す階
の着床レベルの近傍200〜300mmに入ると開状態と
なるものである。 On the other hand, contacts 47-1, 48- of the landing position relay
1 is used to indicate the position, and contact 47-1 indicates that the car is within a certain range from the reference floor (usually 200
~300mm), it becomes open and contact 4
8-1 becomes open when the car enters 200 to 300 mm near the landing level of the floor that turns over as the car moves to increase the oil temperature.
以上述べた如き構成に於いて、以下その動作に
ついて説明する。 The operation of the configuration as described above will be explained below.
まず、油温が設定値より上にある場合には、図
示しない呼びおよびカゴ位置出力から、呼びがあ
つた階とカゴ位置をもとに方向選択回路51が上
昇方向か下降方向かを判断して方向選択リレー4
9または50を励磁して運転している。 First, when the oil temperature is above the set value, the direction selection circuit 51 determines whether the direction is upward or downward based on the floor and car position of the call from the call and car position outputs (not shown). direction selection relay 4
It is operated with 9 or 50 excited.
今、エレベータが基準階に着床している時、接
点45−1の閉条件のもとに油温が下がり、温度
検出器の接点44が閉じると、油温上昇運動用リ
レー43が加圧される。その結果、接点43−1
が閉じると接点47−1が開状態である事から、
方向選択リレー50が加圧されエレベータは上昇
方向性を持つて上昇を始める。かごが折り返し階
近くに達すると、接点48−1が開き上昇方向性
の方向選択リレー50は釈放され、さらに着床リ
ミツトスイツチ39が開くことによりエレベータ
は折り返し階に着床する。なお、以上の動作を通
じてエレベータが折り返し階に着床するより先の
上昇方向性の方向選択リレー50が釈放された時
点で、方向選択リレーの接点50−3が閉じるこ
とにより下降方向性の方向選択リレー49が加圧
され、エレベータは下降方向性を持たされる事と
なる。 Now, when the elevator has landed on the standard floor, the oil temperature decreases under the closing condition of the contact 45-1, and when the contact 44 of the temperature sensor closes, the relay 43 for the oil temperature increase movement is pressurized. be done. As a result, contact 43-1
Since contact 47-1 is open when is closed,
The direction selection relay 50 is pressurized and the elevator starts to ascend with upward direction. When the car reaches near the turning floor, the contact point 48-1 opens, the upward direction selection relay 50 is released, and the landing limit switch 39 opens, so that the elevator lands on the turning floor. Through the above operations, when the direction selection relay 50 for the ascending direction is released before the elevator turns around and lands on the floor, the contact point 50-3 of the direction selection relay closes to select the direction for the descending direction. The relay 49 is pressurized and the elevator is given a downward direction.
しかる後に、上昇側の方向補助リレー35が釈
放されてエレベータが停止すると、接点35−3
が閉じる為下降側の方向補助リレー37が加圧さ
れエレベータは直ちに下降を始める。なお、下降
時にも上昇時と同様にして折り返し階を検出し、
下降動作を停止し再び上昇動作に移る事は云うま
でもない。 After that, when the ascending direction auxiliary relay 35 is released and the elevator stops, the contact 35-3
is closed, the direction auxiliary relay 37 on the descending side is pressurized and the elevator immediately starts descending. In addition, when descending, the turnaround floor is detected in the same way as when ascending.
Needless to say, the descending motion is stopped and the ascending motion is started again.
以上述べた如き動作を繰り返しながら油温上昇
してゆくが、その結果、油温が規定値に達する
と、エレベータは上昇、下降の繰り返し動作を停
止する。なお、この間エレベータのドアはドア開
リレー46が油温上昇運転用リレーの接点43−
2により釈放されている為開くことはない。 The oil temperature increases while repeating the above-described operations, but when the oil temperature reaches a specified value, the elevator stops repeating the upward and downward operations. During this time, the door opening relay 46 of the elevator door is connected to the contact 43- of the oil temperature rising operation relay.
Since it has been released by 2, it will not be opened.
なお、上に述べた油温上昇動作中に呼びが登録
されると、接点52−1により油温上昇運転用リ
レー43が釈放される為、エレベータは直ちに平
常運転に戻る。 Note that if a call is registered during the oil temperature rising operation described above, the relay 43 for oil temperature rising operation is released by the contact 52-1, so that the elevator immediately returns to normal operation.
従つてエレベータの待期中には、常に油温上昇
用運転によりタンク内の油温は油温検出器接点4
4の動作範囲以上に保たれている為、これが正常
に行なわれている限り、ブリードオフ中に呼びに
応答してブリードオフを中止しても油温が低い状
態のままエレベータが動作することにはならず、
従つて、良好な安定した運転状態を保持する事が
出来るものである。 Therefore, while the elevator is on standby, the oil temperature in the tank is always maintained at contact 4 of the oil temperature detector due to the operation to raise the oil temperature.
Since the oil temperature is maintained above the operating range of 4, as long as this is done normally, even if you answer a call during bleed-off and cancel bleed-off, the elevator will continue to operate while the oil temperature is low. Not,
Therefore, it is possible to maintain a good and stable operating condition.
以上述べた如く、本発明に於いては、エレベー
タの昇降により油温の上昇を計る如き構成を採つ
ている事から、油圧系統に常に油の流れを生じて
おり、これによつてプランジヤー内の油温を確保
する事ができる為、ヒーター等により油温を保つ
他の方法に比べて下降時の運転特性の確保を行う
上で極めて有効である。即ち、エレベータの下降
時にはプランジヤー内の油が制御弁に流入する事
から、プランジヤー内の油温を確保する事に依
り、油圧エレベータの運転特性への影響の大きな
制御弁の流入油温を確保する事が出来る為、エレ
ベータの下降時の運転特性に対して効果的に作用
するものである。 As described above, the present invention is configured to measure the rise in oil temperature by raising and lowering the elevator, so that a constant flow of oil is generated in the hydraulic system, which causes the oil inside the plunger to flow. Since the oil temperature can be maintained, it is extremely effective in ensuring the operating characteristics when descending compared to other methods of maintaining oil temperature using a heater or the like. In other words, since the oil in the plunger flows into the control valve when the elevator descends, by ensuring the oil temperature in the plunger, the inflow oil temperature of the control valve, which has a large effect on the operating characteristics of the hydraulic elevator, can be ensured. Therefore, it has an effective effect on the operating characteristics of the elevator when descending.
なお、上記実施例に於いては、制御弁を上昇
用、下降用の各一組しか持たない単一速度形式の
油圧エレベータの場合を例示したが、高速用、低
速用の制御弁を持つ二段速度形式の油圧エレベー
タに本発明を適用する場合には、エレベータを低
速で昇降させる方が温度上昇の為には有効であ
る。 In the above embodiment, a single speed type hydraulic elevator having only one set of control valves for ascending and one set for descending was illustrated, but a hydraulic elevator having two sets of control valves for high speed and low speed is illustrated. When the present invention is applied to a stepped speed type hydraulic elevator, it is more effective to raise and lower the elevator at a low speed in order to raise the temperature.
以上述べた如く、本発明に依れば、極めて簡単
な構成に於いて、油圧エレベータの寒冷時の良好
な運転特性を確保し得る油圧エレベータ制御装置
を得る事が出来るもので、その有用性極めて大な
るものである。 As described above, according to the present invention, it is possible to obtain a hydraulic elevator control device that can ensure good operating characteristics of a hydraulic elevator in cold weather with an extremely simple configuration, and its usefulness is extremely high. It is a big thing.
第1図は一般的な油圧エレベータの概略構成
図、第2図は油温と粘度の関係の一例を示す特性
図、第3図は本発明を適用される一般的な油圧エ
レベータの油圧系統を示す系統図、第4図は第3
図に示す油圧系統の制御回路の一例を示す結線
図、第5図は第4図の回路に対して付加的に適用
される本発明の一実施例に係る油圧エレベータ制
御装置の部分結線図である。
1……タンク、2……油、3……電動機、4…
…ポンプ、7……シリンダー17……上昇用弁、
18,23……電磁弁、19……逆止弁、20,
21,24,25……絞り弁、22……下降用
弁、43……油温上昇運転用リレー、49,50
……方向選択リレー、44……温度検出器接点。
Fig. 1 is a schematic configuration diagram of a general hydraulic elevator, Fig. 2 is a characteristic diagram showing an example of the relationship between oil temperature and viscosity, and Fig. 3 is a hydraulic system of a general hydraulic elevator to which the present invention is applied. The system diagram shown in Figure 4 is the 3rd one.
FIG. 5 is a partial wiring diagram of a hydraulic elevator control device according to an embodiment of the present invention, which is additionally applied to the circuit shown in FIG. 4. be. 1...Tank, 2...Oil, 3...Electric motor, 4...
...Pump, 7...Cylinder 17...Rising valve,
18, 23...Solenoid valve, 19...Check valve, 20,
21, 24, 25... Throttle valve, 22... Lowering valve, 43... Oil temperature rising operation relay, 49, 50
... Direction selection relay, 44 ... Temperature detector contact.
Claims (1)
シリンダから油タンクに還流する油を制御してエ
レベータの上昇及び下降制御を行う弁制御系と、
前記油の温度を検出する温度検出器と、油温上昇
運転のための条件となるエレベータの状態を検出
する状態検出器と、前記温度検出器及び状態検出
器の出力に応じてエレベータを油温上昇運転にお
ける折返し階での着床停止の際にもかごのドアを
閉止したままの状態で上昇および下降させる制御
手段とを備え、圧油の温度を規定値以上に保持さ
せる事を特徴とする油圧エレベータ制御装置。1. A valve control system that controls the rise and fall of the elevator by controlling the pressure oil sent from the pump to the cylinder and the oil returned from the cylinder to the oil tank;
A temperature detector detects the temperature of the oil; a condition detector detects the condition of the elevator, which is a condition for oil temperature rising operation; It is characterized by having a control means for raising and lowering the car while keeping the car door closed even when the car stops landing on a turnaround floor during ascending operation, and is characterized by maintaining the temperature of the pressure oil above a specified value. Hydraulic elevator control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7961278A JPS557153A (en) | 1978-06-30 | 1978-06-30 | Oil pressure type elevator controlling apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7961278A JPS557153A (en) | 1978-06-30 | 1978-06-30 | Oil pressure type elevator controlling apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS557153A JPS557153A (en) | 1980-01-18 |
JPS629510B2 true JPS629510B2 (en) | 1987-02-28 |
Family
ID=13694855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7961278A Granted JPS557153A (en) | 1978-06-30 | 1978-06-30 | Oil pressure type elevator controlling apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS557153A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10717987B2 (en) | 2011-04-20 | 2020-07-21 | Syngenta Participations Ag | Cucurbita plant resistant to potyvirus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5373758A (en) * | 1976-12-10 | 1978-06-30 | Hitachi Ltd | Method of controlling oil temperature for hydraulic elevator |
-
1978
- 1978-06-30 JP JP7961278A patent/JPS557153A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5373758A (en) * | 1976-12-10 | 1978-06-30 | Hitachi Ltd | Method of controlling oil temperature for hydraulic elevator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10717987B2 (en) | 2011-04-20 | 2020-07-21 | Syngenta Participations Ag | Cucurbita plant resistant to potyvirus |
Also Published As
Publication number | Publication date |
---|---|
JPS557153A (en) | 1980-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4418794A (en) | Electromechanical control for hydraulic elevators | |
JPS629510B2 (en) | ||
JPS6242831B2 (en) | ||
JPH11322207A (en) | Hydraulic elevator device | |
JP3399251B2 (en) | Hydraulic elevator equipment | |
JP3175418B2 (en) | Hydraulic elevator controller | |
JPH03111385A (en) | Hydraulic elevator control method | |
JPH0742057B2 (en) | Hydraulic elevator controller | |
JPS6139739Y2 (en) | ||
JPS6154713B2 (en) | ||
JPH0336756B2 (en) | ||
JPH11343077A (en) | Control device for hydraulic elevator | |
JP2684821B2 (en) | Hydraulic elevator equipment | |
JPH0442295Y2 (en) | ||
JPH0218053Y2 (en) | ||
JPH01226673A (en) | Controller for hydraulic elevator | |
JPH0566311B2 (en) | ||
JPS60232380A (en) | Driving controller for hydraulic elevator | |
JPH05270752A (en) | Elevator operating device | |
JPH0323166A (en) | Control device for hydraulic elevator | |
JPS636470B2 (en) | ||
JPH0289785A (en) | Device for controlling fluid pressure elevator | |
JPS6169674A (en) | Controller for hydraulic elevator | |
JPS6320753B2 (en) | ||
JPS6141829B2 (en) |