JPS629423B2 - - Google Patents

Info

Publication number
JPS629423B2
JPS629423B2 JP14110676A JP14110676A JPS629423B2 JP S629423 B2 JPS629423 B2 JP S629423B2 JP 14110676 A JP14110676 A JP 14110676A JP 14110676 A JP14110676 A JP 14110676A JP S629423 B2 JPS629423 B2 JP S629423B2
Authority
JP
Japan
Prior art keywords
ethylene
polyethylene
vinyl alcohol
crystallinity
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14110676A
Other languages
Japanese (ja)
Other versions
JPS5366983A (en
Inventor
Koji Niimi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP14110676A priority Critical patent/JPS5366983A/en
Publication of JPS5366983A publication Critical patent/JPS5366983A/en
Publication of JPS629423B2 publication Critical patent/JPS629423B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリエチレン組成物層とエチレン−
ビニルアルコール共重合体層とからなる多層積層
構造物に関する。 エチレン含有率15ないし60%のエチレン−ビニ
ルアルコール共重合体は透明性、気体透過抵抗性
が優れており、剛性が高い、耐熱性が良い等、食
品、医薬品等の包装用フイルム、容器として好ま
しい性質を有している。しかし、エチレン−ビニ
ルアルコール共重合体には、水分の透過率が高
い、衝撃強度が低い、ヒートシール性に乏しいと
いう欠点があり、そのためポリオレフインとの積
層構造物として実用に供されることが多い。この
ような積層構造物においては、層間をいかに強固
に接着させるかが課題であり、このことはレトル
ト食品包装材のように煮沸して使用されるような
場合、特に重要視される。積層構造物を得る方法
の一つとして、共押出法があるが、ポリオレフイ
ンとエチレン−ビニルアルコール共重合物とは親
和性に乏しく通常の共押出成形方法では接着しな
い。ポリオレフインとエチレン−ビニルアルコー
ル共重合体とからなる積層構造物を共押出法で接
着させる方法としては、これまでにも例えばポリ
オレフインおよび/またはエチレン−ビニルアル
コール共重合体にアイオノマー樹脂、エチレン含
有率60モル%以上のエチレン−酢酸ビニル共重合
体もしくはそのケン化物、塩素化ポリエチレン、
クロルスルホン化ポリエチレン、エチレン−エチ
ルアクリレート共重合体等を混合せしめる方法が
知られている。(特開昭49−4772号、特開昭49−
35482号、特開昭49−37984号等)しかしながら本
発明者らが検討した結果、上記の方法による積層
構造物の層間接着力は良好なものでたかだか50
g/cm程度に過ぎず、長期貯蔵時や煮沸時に密着
性の低下による層間剥離を容易に生じるため、レ
トルト食品用包装材料としては、とうてい使用で
きるものではなかつた。 本出願人は一部もしくは全部が不飽和カルボン
酸もしくはその誘導体でグラフトされたポリエチ
レンがエチレン−ビニルアルコール共重合体と良
好な接着性を有することを見出し、先に提案した
(特開昭50−77485号)。この方法は前記のエチレ
ン系重合体を使用する方法に比して優れた方法で
あるが、やはり長期にわたる密着性、苛酷な条件
例えば沸水中で使用した際の密着性は今だ十分で
ない。 本発明の目的は層間接着性および沸水に浸漬し
た際の層間密着性が更に改善されたポリエチレン
層とエチレン−ビニルアルコール共重合体層とか
らなる多層積層構造物を提供することにある。 本発明の他の目的は、水蒸気透過抵抗性、ガス
透過抵抗性が優れ、機械的強度、剛性が高い多層
積層構造物を提供することにある。 すなわち、本発明は、一部または全部が不飽和
カルボン酸もしくはその誘導体から選ばれた少な
くとも一種のモノマーでグラフトされた結晶化度
65%以上のポリエチレン99ないし51重量部、結晶
化度5ないし30%、エチレン含有率85ないし95モ
ル%のエチレン−α−オレフインランダム共重合
体1ないし49重量部(計100重量部)、および必要
であれば更に20重量部までのエチレン−ビニルア
ルコール共重合体とからなるポリエチレン組成物
層と、エチレン含有率15ないし60モル%のエチレ
ン−ビニルアルコール共重合体層とからなる多層
積層構造物である。 本発明で使用されるエチレン−ビニルアルコー
ル共重合体層は、エチレン含有率15ないし60モル
%のエチレン−酢酸ビニル共重合体をケン化して
得られるケン化度90ないし100%の重合体であ
る。エチレン含有率15モル%未満のエチレン−ビ
ニルアルコール共重合体は成形可能温度が分解温
度に接近し成形が困難である。エチレン含有率が
60モル%を越えると、エチレン−ビニルアルコー
ル共重合体の優れた特性であるガス透過抵抗性、
機械的性質が劣り積層構造物とする効果がなくな
る。ケン化度が90%未満のエチレン−ビニルアル
コール共重合体は、機械的性質、耐油性、耐水性
が劣り実用上好ましくない。 本発明で使用するエチレン−ビニルアルコール
共重合体には、更に本発明の目的を損わない範囲
で他の重合体、例えばナイロン、ポリエステル、
ポリオレフイン、ポリカーボネート、アイオノマ
ー樹脂、ポリ酢酸ビニル、ポリスチレン、ABS
樹脂、アクリル樹脂、塩化ビニル樹脂等が混合さ
れているもの、あるいは、エポキシ化合物、イソ
シアネート化合物等で変性されているものであつ
てもよい。更にエチレン−ビニルアルコール共重
合体には、酸化防止剤、紫外線吸収剤、帯電防止
剤、顔料、染料、核剤、充填剤、スリツプ剤、滑
剤、難燃剤、可塑剤等の添加剤が本発明の目的を
損わない程度含まれていてよい。 本発明で用いられる変性ポリエチレンの原料と
なる結晶化度65%以上のポリエチレンとはエチレ
ンの単独重合体あるいはエチレンと他のα−オレ
フイン例えばプロピレン、1−ブテン、3−メチ
ル−1−ブテン、3−メチル−1−ブテン、1−
ヘキセン、4−メチル−1−ペンテン等との共重
合体で結晶化度65%以上、好ましくは70%以上の
ものをいう。なお、本発明における結晶化度は、
ASTM D−618の条件で調製した試料をX線回
折法により測定した値をいう。 本発明では、結晶化度65%以上のポリエチレン
は一部または全部がグラフト変性されるが、本発
明において、ポリエチレンにグラフトされるモノ
マー(以下、グラフトモノマーと呼ぶ)には不飽
和カルボン酸またはその誘導体が使用される。不
飽和カルボン酸としては、例えばアクリル酸、メ
タクリル酸、マレイン酸、フマル酸、イタコン酸
等を挙げることができる。また不飽和カルボン酸
の誘導体とは酸無水物、エステル、アミド、イミ
ド、金属塩等をいい、例えば無水マレイン酸、無
水シトラコン酸、無水イタコン酸、アクリル酸メ
チル、メタクリル酸メチル、アクリル酸エチル、
メタクリル酸エチル、アクリル酸ブチル、メタク
リル酸ブチル、アクリル酸グリシジル、メタクリ
ル酸グリシジル、マレイン酸モノエチルエステ
ル、マレイン酸ジエチルエステル、フマル酸モノ
メチルエステル、フマル酸ジメチルエステル、イ
タコン酸モノメチルエステル、イタコン酸ジエチ
ルエステル、アクリルアミド、メタクリルアミ
ド、マレイン酸モノアミド、マレイン酸ジアミ
ド、マレイン酸−N−モノエチルアミド、マレイ
ン酸−N・N−ジエチルアミド、マレイン酸−N
−モノブチルアミド、マレイン酸−N・N−ジブ
チルアミド、フマル酸モノアミド、フマル酸ジア
ミド、フマル酸−N−モノエチルアミド、フマル
酸−N・N−ジエチルアミド、フマル酸−N−モ
ノブチルアミド、フマル酸−N・N−ジブチルア
ミド、マレイミド、N−ブチルマレイミド、N−
フエニルマレイミド、アクリル酸ナトリウム、メ
タクリル酸ナトリウム、アクリル酸カリウム、メ
タクリル酸カリウム等をあげることができる。こ
れらのグラフトモノマーの中では無水マレイン酸
を使用するのが最も好ましい。グラフトモノマー
をポリエチレンにグラフトするには、公知の種々
の方法を採用することができる。例えばポリエチ
レン、グラフトモノマーを溶媒の存在下または不
存在下で、ラジカル開始剤を添加してまたは添加
せずに高温で加熱することによつて行われる。反
応に際し、スチレンのような他のビニルモノマー
を共存させてもよい。 ポリエチレンへのグラフトモノマーのグラフト
される量(以下グラフト率と呼ぶ)は組成物全体
のグラフト率が10-4ないし5重量%の範囲にある
よう調製するのが好ましい。工業的製造上からは
予めグラフト率10-2ないし10重量%の変性ポリエ
チレンを製造しておき、次に未変性ポリエチレン
にこの変性ポリエチレンを混合することが組成物
中のグラフトモノマーの濃度を適当に調整できる
ため好ましい方法であるが、最初からポリエチレ
ンに所定量のグラフトモノマーを配合してグラフ
トしてもさしつかえない。 本発明において結晶化度65%以上のポリエチレ
ンに配合されるエチレン−α−オレフインランダ
ム共重合体とは、結晶化度5ないし30%、エチレ
ン含有率85ないし95モル%の共重合体、例えばエ
チレンとプロピレン、1−ブテン、3−メチル−
1−ブテン、1−ヘキセン、3−メチル−1−ペ
ンテン、4−メチル−1−ペンテン等のα−オレ
フインの1種もしくは2種以上との共重合体をい
う。これらの重合体は、酸化、塩素化、クロルス
ルホン化あるいはエポキシ化合物やカルボキシル
基含有化合物がグラフトされている等種々の変性
が施されていてもよい。これらのうちでは更にエ
チレン含有率85ないし95モル%、結晶化度5ない
し30%のエチレン−1−ブテンランダム共重合体
を用いると、変性ポリエチレンの透明性、耐衝撃
性、接着性、耐沸水接着性のいずれの性能をも向
上させるため最も好ましい。 エチレン−α−オレフインランダム共重合体は
メルトインデツクス(ASTM−D−1238、190
℃)0.1ないし50の範囲のものが好ましい。 本発明は(a)一部もしくは全部が不飽和カルボン
酸もしくはその誘導体から選ばれた少なくとも一
種のモノマーでグラフトされた結晶化度65%以上
のポリエチレンに(b)エチレン−α−オレフインラ
ンダム共重合体を配合することにより結晶化度65
%以上の変性ポリエチレンのエチレン−ビニルア
ルコール共重合体への接着性が向上することを見
出したもので、かかる効果はこれまでに知られて
いなかつたことである。すなわち、第1に結晶化
度65%以上のポリエチレンは上記(a)の如き変性が
なされておらねばならず、変性されていない結晶
化度65%以上のポリエチレンに上記(b)の如き重合
体を混合しても全く接着しない。また上記(a)の如
き変性ポリエチレン単味でも後述の比較例4で示
すようにエチレン−ビニルアルコール共重合体に
対する接着性は十分でない。未変性の高圧法ポリ
エチレン、エチレン−酢酸ビニル共重合体等も比
較例14〜16に示したようにエチレン−ビニルアル
コール共重合体とほとんど接着しない。またこの
ような樹脂を変性したものも接着性は十分ではな
い。 結晶化度が64%未満のエチレン系重合体を上記
(a)の如き結晶化度が65%以上の変性ポリエチレン
に配合することにより、エチレン−ビニルアルコ
ール共重合体への初期接着性および耐沸水接着性
が比較例1〜3、実施例1〜3および比較例8〜
12に示すように著しく向上するが、本発明の結晶
化度が5〜30%の(b)のエチレン−α−オレフイン
ランダム共重合体とすることにより、結晶化度が
30%を越えるものに比べて、実施例1〜3と比較
例1〜3および比較例8〜12との対比から明らか
な如く、更に初期接着性および耐沸水接着性が向
上することが明らかである。 本発明で使用するポリエチレン組成物は、(a)一
部もしくは全部が不飽和カルボン酸もしくはその
誘導体でグラフトされた結晶化度65%以上のポリ
エチレン99ないし51重量部、好ましくは99ないし
70重量部、(b)エチレン−α−オレフインランダム
共重合体1ないし49重量部、好ましくは1ないし
30重量部からなる組成物(計100重量部)を主成
分とする。(b)エチレン−α−オレフインランダム
共重合体の量が1重量%未満では、配合による効
果が不十分であり、49重量%を越えると耐熱変形
性、剛性、機械的強度が損われ、レトルト用途等
へは、使用できない。また接着強度も低下してく
る。 本発明で使用するポリエチレン組成物は、必要
に応じて更にエチレン−ビニルアルコール共重合
体を20重量%まで含んでいてもよい。一部もしく
は全部が不飽和カルボン酸もしくはその誘導体が
グラフトされたポリエチレンは、変性されていな
いポリエチレンに比べエチレン−ビニルアルコー
ル共重合体との混和性が良好であるため、エチレ
ン−ビニルアルコール共重合体が混合されていて
も、例えば水蒸気透過抵抗性の低下、透明性の低
下、層状剥離等の混合による欠点をほとんど生じ
ない。 ポリエチレン組成物には更に酸化防止剤、紫外
線吸収剤、顔料、染料、充填剤、核剤、ブロツキ
ング防止剤が本発明の目的を損わない範囲で配合
されていてもよい。 本発明で使用するポリエチレン組成物を調製す
る方法としては、公知の種々の方法をとりうる。
例えば、各成分をリボンブレンダー、V型ブレン
ダー、タンブラー、ヘンシエルミキサー等で混合
後、押出機、バンバリーミキサー、二本ロール、
ニーダー等で溶融混練する方法、あるいは各成分
を溶媒に溶解させ、よく撹拌混合した後、貧溶媒
を添加して析出させる等の方法をとりうる。 本発明のポリエチレン組成物層とエチレン−ビ
ニルアルコール共重合体層とからなる積層構造物
を製造する方法としては、(1)予めそれぞれのフイ
ルム、シートを製造しておき、両者を熱圧着する
方法、(2)エチレン−ビニルアルコール共重合体層
に溶融したポリエチレン組成物を押出して積層す
る方法、(3)それぞれを別個の押出機で溶融し同一
のダイスより共押出する等の方法が採用できる。 上記(1)、(2)、(3)の方法において、成形時のポリ
エチレンの樹脂温度は140℃ないし300℃特に150
℃ないし250℃の範囲が好ましい。(1)、(3)の方法
におけるエチレン−ビニルアルコール共重合体の
樹脂温度は170℃ないし250℃特に180℃ないし230
℃の範囲が好ましい。 本発明のポリエチレン組成物層とエチレン−ビ
ニル共重合体からなる積層構造物としては、ポリ
エチレン組成物層およびエチレン−ビニルアルコ
ール共重合体層を内層または外層にした2層構造
のもの、いずれかの層を中間層とし、他の層をサ
ンドイツチした3層構造、あるいは上記構造物に
更にポリエチレン組成物もしくはエチレン−ビニ
ルアルコール共重合体のいずれかと接着性を有す
る重合体、例えばポリエチレン組成物の場合は、
ポリプロピレン、ポリエチレン、エチレン−α−
オレフイン共重合体等、エチレン−ビニルアルコ
ール共重合体の場合は、ナイロン、ポリエステル
樹脂等の層が積層された積層構造物、例えばポリ
エチレン/本発明で定義したポリエチレン組成
物/エチレン−ビニルアルコール共重合体、ポリ
エチレン組成物/エチレン−ビニルアルコール共
重合体/ナイロンの3層構造、ポリエチレン/ポ
リエチレン組成物/エチレン−ビニルアルコール
共重合体/ポリエチレン組成物、ポリエチレン/
ポリエチレン組成物/エチレン−ビニルアルコー
ル共重合体/ナイロンの4層構造、ポリエチレ
ン/ポリエチレン組成物/エチレン−ビニルアル
コール共重合体/ポリエチレン組成物/ポリエチ
レンの5層構造のもの等の他、ポリエチレン組成
物/エチレン−ビニルアルコール共重合体の構成
要素を含む積層構造の範囲内で、種々の組合せが
可能である。これらの積層構造物は、いずれかの
層が一軸もしくは二軸に配向してもよい。 本発明のポリエチレン組成物層とエチレン−ビ
ニルアルコール共重合体層とからなる積層構造物
はフイルム、シート、パイプ、中空瓶等として実
用に供される。 本発明のポリエチレン組成物とエチレン−ビニ
ルアルコール共重合体とからなる積層構造物は、
層間接着性および沸水処理後の層間接着性が更に
改善されており、従来生じていた使用時に積層物
が剥離する問題が解消された。従つて、ポリエチ
レン/エチレン−ビニルアルコール共重合体積層
物の高い剛性、機械的強度、耐沸水性、ガス透過
抵抗性、水蒸気透過抵抗性等を生かして、野菜、
肉類、乳製品等の包装材料、調味料、食用油、医
薬品等の包装容器あるいはカレー、シチユー等の
レトルト食品用包装材等の用途に好適に使用しう
る。 次に実施例を挙げて本発明をさらに具体的に説
明するが、本発明はその要旨を越えない限りこれ
ら実施例に何ら制約されるものではない。 比較例 1〜5 高密度ポリエチレン(メルトインデツクス12、
結晶化度78%)に無水マレイン酸2.5重量%グラ
フトした変性ポリエチレン(以後変性PEと略
す)と高密度ポリエチレン(メルトインデツクス
1、結晶化度76%、以後HDPEと略す)とからな
る変性ポリエチレン成分(以後変性HDPE成分と
略す)および高圧法低密度ポリエチレン(商品
名:ミラソンM−50、三井ポリケミカル製、メル
トインデツクス1.9、結晶化度59%、以後LDPE
と略す)を第1表に記載した重量部タンブラーブ
レンダーで混合後、押出機で210℃で造粒した。
この組成物のペレツトを一台の押出機で溶融し、
樹脂温210℃で複合インフレーシヨン成形用ダイ
に供給する。一方別の押出機でエチレン−ビニル
アルコール共重合体(エチレン含有率31モル%、
ケン化度99%)を溶融し、樹脂温210℃で前記ダ
イに供給し、内側がポリエチレン組成物層、外側
がエチレン−ビニルアルコール共重合体層からな
るインフレーシヨンフイルム(ポリエチレン組成
物層の厚さ70μ、エチレン−ビニルアルコール層
の厚さ30μ)を成形した。このフイルムから巾15
mmの試験片を切り取り、ポリエチレン組成物層と
エチレン−ビニルアルコール共重合体層の間を一
部剥離した後、インストロン測定機によりチヤツ
クスピード100mm/minで測定して両層の剥離強
度を求めた。また、フイルムを98℃沸水中に1時
間浸漬後取出したものについても同様に試験し
た。測定結果を第1表に示す。
The present invention provides a polyethylene composition layer and an ethylene composition layer.
The present invention relates to a multilayer laminate structure comprising a vinyl alcohol copolymer layer. Ethylene-vinyl alcohol copolymers with an ethylene content of 15 to 60% have excellent transparency and gas permeation resistance, high rigidity, and good heat resistance, making them suitable for packaging films and containers for foods, pharmaceuticals, etc. It has properties. However, ethylene-vinyl alcohol copolymers have the disadvantages of high moisture permeability, low impact strength, and poor heat-sealing properties, so they are often used in practical applications as laminated structures with polyolefins. . In such a laminated structure, the problem is how firmly the layers can be bonded together, and this is particularly important when the laminated structure is used after being boiled, such as in retort food packaging materials. One method for obtaining a laminated structure is coextrusion, but polyolefins and ethylene-vinyl alcohol copolymers have poor affinity and do not adhere to each other using normal coextrusion methods. As a method for adhering a laminated structure consisting of polyolefin and ethylene-vinyl alcohol copolymer by coextrusion method, for example, polyolefin and/or ethylene-vinyl alcohol copolymer are combined with an ionomer resin and an ethylene content of 60%. mol% or more of ethylene-vinyl acetate copolymer or its saponified product, chlorinated polyethylene,
A method of mixing chlorosulfonated polyethylene, ethylene-ethyl acrylate copolymer, etc. is known. (JP-A-49-4772, JP-A-49-
35482, Japanese Unexamined Patent Publication No. 49-37984, etc.) However, as a result of studies by the present inventors, the interlayer adhesion strength of the laminated structure obtained by the above method was found to be good at most.
g/cm, and delamination easily occurs due to decreased adhesion during long-term storage or boiling, so it could hardly be used as a packaging material for retort food. The present applicant discovered that polyethylene partially or wholly grafted with an unsaturated carboxylic acid or its derivative has good adhesion to ethylene-vinyl alcohol copolymer, and previously proposed (Japanese Unexamined Patent Publication No. 50-1999 No. 77485). Although this method is superior to the method using an ethylene polymer, the long-term adhesion and the adhesion when used under severe conditions, such as boiling water, are still insufficient. An object of the present invention is to provide a multilayer laminate structure comprising a polyethylene layer and an ethylene-vinyl alcohol copolymer layer, which has further improved interlayer adhesion and interlayer adhesion when immersed in boiling water. Another object of the present invention is to provide a multilayer laminated structure having excellent resistance to water vapor permeation and gas permeation, and high mechanical strength and rigidity. That is, the present invention provides crystallinity grafting which is partially or entirely grafted with at least one monomer selected from unsaturated carboxylic acids or derivatives thereof.
99 to 51 parts by weight of polyethylene of 65% or more, 1 to 49 parts by weight of an ethylene-α-olefin random copolymer having a crystallinity of 5 to 30% and an ethylene content of 85 to 95 mol% (100 parts by weight in total), and A multilayer laminate structure consisting of a polyethylene composition layer comprising up to 20 parts by weight of an ethylene-vinyl alcohol copolymer if necessary, and an ethylene-vinyl alcohol copolymer layer having an ethylene content of 15 to 60 mol%. It is. The ethylene-vinyl alcohol copolymer layer used in the present invention is a polymer with a degree of saponification of 90 to 100% obtained by saponifying an ethylene-vinyl acetate copolymer with an ethylene content of 15 to 60 mol%. . Ethylene-vinyl alcohol copolymers with an ethylene content of less than 15 mol % are difficult to mold because the moldable temperature approaches the decomposition temperature. Ethylene content
When it exceeds 60 mol%, gas permeation resistance, which is an excellent property of ethylene-vinyl alcohol copolymer,
The mechanical properties are poor and the effect of forming a laminated structure is lost. Ethylene-vinyl alcohol copolymers with a degree of saponification of less than 90% are unfavorable in practical terms because of their poor mechanical properties, oil resistance, and water resistance. The ethylene-vinyl alcohol copolymer used in the present invention may further include other polymers such as nylon, polyester,
Polyolefin, polycarbonate, ionomer resin, polyvinyl acetate, polystyrene, ABS
It may be a mixture of resins, acrylic resins, vinyl chloride resins, etc., or it may be modified with epoxy compounds, isocyanate compounds, etc. Furthermore, the ethylene-vinyl alcohol copolymer contains additives such as antioxidants, ultraviolet absorbers, antistatic agents, pigments, dyes, nucleating agents, fillers, slip agents, lubricants, flame retardants, plasticizers, etc. may be included to the extent that it does not defeat the purpose of the Polyethylene with a crystallinity of 65% or more, which is a raw material for the modified polyethylene used in the present invention, is a homopolymer of ethylene or ethylene and other α-olefins such as propylene, 1-butene, 3-methyl-1-butene, -methyl-1-butene, 1-
A copolymer with hexene, 4-methyl-1-pentene, etc. with a crystallinity of 65% or more, preferably 70% or more. In addition, the crystallinity degree in the present invention is
This refers to the value measured by X-ray diffraction on a sample prepared under ASTM D-618 conditions. In the present invention, polyethylene with a degree of crystallinity of 65% or more is partially or completely graft-modified. Derivatives are used. Examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid. Derivatives of unsaturated carboxylic acids include acid anhydrides, esters, amides, imides, metal salts, etc., such as maleic anhydride, citraconic anhydride, itaconic anhydride, methyl acrylate, methyl methacrylate, ethyl acrylate,
Ethyl methacrylate, butyl acrylate, butyl methacrylate, glycidyl acrylate, glycidyl methacrylate, monoethyl maleate, diethyl maleate, monomethyl fumarate, dimethyl fumarate, monomethyl itaconate, diethyl itaconate , acrylamide, methacrylamide, maleic acid monoamide, maleic acid diamide, maleic acid-N-monoethylamide, maleic acid-N・N-diethylamide, maleic acid-N
-monobutylamide, maleic acid-N/N-dibutylamide, fumaric acid monoamide, fumaric acid diamide, fumaric acid-N-monoethylamide, fumaric acid-N/N-diethylamide, fumaric acid-N-monobutylamide, Fumaric acid-N・N-dibutylamide, maleimide, N-butylmaleimide, N-
Examples include phenylmaleimide, sodium acrylate, sodium methacrylate, potassium acrylate, potassium methacrylate, and the like. Among these graft monomers, maleic anhydride is most preferably used. Various known methods can be used to graft the graft monomer onto polyethylene. This is carried out, for example, by heating polyethylene, a grafting monomer, at high temperatures in the presence or absence of a solvent, with or without the addition of a radical initiator. Other vinyl monomers such as styrene may be present during the reaction. The amount of graft monomer grafted onto polyethylene (hereinafter referred to as grafting ratio) is preferably adjusted so that the grafting ratio of the entire composition is in the range of 10 -4 to 5% by weight. From an industrial manufacturing point of view, modified polyethylene with a graft ratio of 10 -2 to 10% by weight is produced in advance, and then this modified polyethylene is mixed with unmodified polyethylene to appropriately adjust the concentration of the graft monomer in the composition. Although this is a preferred method because it can be adjusted, a predetermined amount of graft monomer may be added to polyethylene from the beginning for grafting. In the present invention, the ethylene-α-olefin random copolymer blended into polyethylene with a crystallinity of 65% or more refers to a copolymer with a crystallinity of 5 to 30% and an ethylene content of 85 to 95 mol%, such as ethylene. and propylene, 1-butene, 3-methyl-
It refers to a copolymer with one or more α-olefins such as 1-butene, 1-hexene, 3-methyl-1-pentene, and 4-methyl-1-pentene. These polymers may be subjected to various modifications such as oxidation, chlorination, chlorosulfonation, or grafting with an epoxy compound or a carboxyl group-containing compound. Among these, when an ethylene-1-butene random copolymer with an ethylene content of 85 to 95 mol% and a crystallinity of 5 to 30% is used, it is possible to improve the transparency, impact resistance, adhesion, and boiling water resistance of modified polyethylene. This is most preferred because it improves both adhesive properties. The ethylene-α-olefin random copolymer has a melt index (ASTM-D-1238, 190
°C) is preferably in the range of 0.1 to 50. The present invention is based on (a) a polyethylene with a crystallinity of 65% or more, which is partially or entirely grafted with at least one monomer selected from unsaturated carboxylic acids or derivatives thereof, and (b) an ethylene-α-olefin random copolymer. Crystallinity level is 65 by adding coalescence.
It has been found that the adhesion of modified polyethylene to ethylene-vinyl alcohol copolymer is improved by more than 10%, and such an effect has not been previously known. That is, first, polyethylene with a crystallinity of 65% or more must be modified as described in (a) above, and unmodified polyethylene with a crystallinity of 65% or more must be modified with a polymer as described in (b) above. Even when mixed, it does not adhere at all. Furthermore, even the modified polyethylene alone as in (a) above does not have sufficient adhesion to the ethylene-vinyl alcohol copolymer, as shown in Comparative Example 4 below. As shown in Comparative Examples 14 to 16, unmodified high-pressure polyethylene, ethylene-vinyl acetate copolymers, etc. hardly adhere to ethylene-vinyl alcohol copolymers. Also, modified resins do not have sufficient adhesion. Ethylene polymers with a crystallinity of less than 64% are listed above.
By blending with modified polyethylene having a crystallinity of 65% or more as shown in (a), initial adhesion to ethylene-vinyl alcohol copolymer and boiling water resistant adhesion are improved in Comparative Examples 1 to 3 and Examples 1 to 3. and Comparative Example 8~
However, by using the ethylene-α-olefin random copolymer (b) with a crystallinity of 5 to 30% of the present invention, the crystallinity is significantly improved as shown in Figure 12.
As is clear from the comparison between Examples 1 to 3 and Comparative Examples 1 to 3 and Comparative Examples 8 to 12, it is clear that the initial adhesion and boiling water resistant adhesion are further improved compared to those with a concentration of more than 30%. be. The polyethylene composition used in the present invention comprises (a) 99 to 51 parts by weight, preferably 99 to 51 parts by weight of polyethylene with a crystallinity of 65% or more, which is partially or wholly grafted with an unsaturated carboxylic acid or a derivative thereof;
70 parts by weight, (b) 1 to 49 parts by weight of ethylene-α-olefin random copolymer, preferably 1 to 49 parts by weight
The main component is a composition consisting of 30 parts by weight (100 parts by weight in total). (b) If the amount of the ethylene-α-olefin random copolymer is less than 1% by weight, the effect of the blending will be insufficient, and if it exceeds 49% by weight, heat deformation resistance, rigidity, and mechanical strength will be impaired, and the retort It cannot be used for any purpose. Furthermore, the adhesive strength also decreases. The polyethylene composition used in the present invention may further contain up to 20% by weight of an ethylene-vinyl alcohol copolymer, if necessary. Polyethylene to which a partially or completely unsaturated carboxylic acid or its derivative is grafted has better miscibility with ethylene-vinyl alcohol copolymer than unmodified polyethylene; Even if they are mixed, there are almost no drawbacks caused by the mixture, such as a decrease in water vapor permeation resistance, a decrease in transparency, and delamination. The polyethylene composition may further contain antioxidants, ultraviolet absorbers, pigments, dyes, fillers, nucleating agents, and antiblocking agents within the range that does not impair the object of the present invention. Various known methods can be used to prepare the polyethylene composition used in the present invention.
For example, after mixing each component with a ribbon blender, V-type blender, tumbler, Henschel mixer, etc.,
A method of melting and kneading with a kneader or the like, or a method of dissolving each component in a solvent, stirring and mixing well, and then adding a poor solvent to precipitate the components can be used. As a method for manufacturing a laminated structure consisting of a polyethylene composition layer and an ethylene-vinyl alcohol copolymer layer of the present invention, (1) a method of manufacturing each film and sheet in advance and bonding them together by thermocompression; , (2) a method of extruding and laminating a molten polyethylene composition onto an ethylene-vinyl alcohol copolymer layer, and (3) a method of melting each in separate extruders and coextruding from the same die. . In methods (1), (2), and (3) above, the polyethylene resin temperature during molding is 140℃ to 300℃, especially 150℃.
A range of 0.degree. C. to 250.degree. C. is preferred. The resin temperature of the ethylene-vinyl alcohol copolymer in methods (1) and (3) is 170°C to 250°C, especially 180°C to 230°C.
A range of 0.degree. C. is preferred. The laminated structure comprising a polyethylene composition layer and an ethylene-vinyl copolymer of the present invention may have a two-layer structure with a polyethylene composition layer and an ethylene-vinyl alcohol copolymer layer as an inner layer or an outer layer. In the case of a three-layer structure in which one layer is an intermediate layer and another layer is sandwiched, or a polymer having adhesive properties with either a polyethylene composition or an ethylene-vinyl alcohol copolymer, for example, a polyethylene composition, the above structure is used. ,
Polypropylene, polyethylene, ethylene-α-
In the case of an ethylene-vinyl alcohol copolymer such as an olefin copolymer, a laminated structure in which layers of nylon, polyester resin, etc. are laminated, such as polyethylene/polyethylene composition defined in the present invention/ethylene-vinyl alcohol copolymer Union, three-layer structure of polyethylene composition/ethylene-vinyl alcohol copolymer/nylon, polyethylene/polyethylene composition/ethylene-vinyl alcohol copolymer/polyethylene composition, polyethylene/
In addition to those with a four-layer structure of polyethylene composition/ethylene-vinyl alcohol copolymer/nylon, five-layer structure of polyethylene/polyethylene composition/ethylene-vinyl alcohol copolymer/polyethylene composition/polyethylene, etc. Various combinations are possible within the laminated structure comprising the constituent elements of /ethylene-vinyl alcohol copolymer. In these laminated structures, any of the layers may be uniaxially or biaxially oriented. A laminated structure comprising a polyethylene composition layer and an ethylene-vinyl alcohol copolymer layer of the present invention can be put to practical use as a film, sheet, pipe, hollow bottle, etc. A laminated structure consisting of the polyethylene composition and ethylene-vinyl alcohol copolymer of the present invention,
The interlayer adhesion and the interlayer adhesion after boiling water treatment have been further improved, and the conventional problem of peeling of the laminate during use has been resolved. Therefore, by taking advantage of the high rigidity, mechanical strength, boiling water resistance, gas permeation resistance, water vapor permeation resistance, etc. of polyethylene/ethylene-vinyl alcohol copolymer laminates, vegetables,
It can be suitably used as packaging materials for meat and dairy products, packaging containers for seasonings, edible oils, pharmaceuticals, etc., and packaging materials for retort foods such as curry and stew. Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples as long as the gist thereof is not exceeded. Comparative Examples 1 to 5 High density polyethylene (melt index 12,
A modified polyethylene consisting of modified polyethylene (hereinafter abbreviated as modified PE) with 2.5% by weight of maleic anhydride (crystallinity 78%) grafted with high density polyethylene (melt index 1, crystallinity 76%, hereinafter abbreviated as HDPE). Component (hereinafter abbreviated as modified HDPE component) and high-pressure low density polyethylene (product name: Mirason M-50, manufactured by Mitsui Polychemicals, melt index 1.9, crystallinity 59%, hereinafter LDPE)
) were mixed in a tumbler blender according to the weight parts listed in Table 1, and then granulated at 210°C in an extruder.
Pellets of this composition are melted in one extruder,
The resin is supplied to a composite inflation molding die at a temperature of 210°C. Meanwhile, in another extruder, ethylene-vinyl alcohol copolymer (ethylene content 31 mol%,
Saponification degree of 99%) is melted and supplied to the die at a resin temperature of 210°C to form an inflation film (with a polyethylene composition layer) consisting of a polyethylene composition layer on the inside and an ethylene-vinyl alcohol copolymer layer on the outside. The thickness of the ethylene-vinyl alcohol layer was 70μ and the thickness of the ethylene-vinyl alcohol layer was 30μ. Width 15 from this film
After cutting a test piece of mm in diameter and partially peeling off the polyethylene composition layer and ethylene-vinyl alcohol copolymer layer, the peel strength of both layers was measured using an Instron measuring machine at a chuck speed of 100 mm/min. I asked for it. Further, a film taken out after being immersed in boiling water at 98° C. for 1 hour was also tested in the same manner. The measurement results are shown in Table 1.

【表】 実施例 1〜3 低密度ポリエチレンをエチレン−1−ブテンラ
ンダム共重合体(エチレン含有率90モル%、メル
トインデツクス1.0、結晶化度15%、以下EBCと
略す)に代えかつ配合比を第2表に示した重量部
とした組成物を用いる以外は比較例1と同様に行
つた。結果を第2表に示す。
[Table] Examples 1 to 3 Low density polyethylene was replaced with ethylene-1-butene random copolymer (ethylene content 90 mol%, melt index 1.0, crystallinity 15%, hereinafter abbreviated as EBC) and blending ratio Comparative Example 1 was carried out in the same manner as in Comparative Example 1, except that the composition was used in the parts by weight shown in Table 2. The results are shown in Table 2.

【表】 第1表及び第2表から、結晶化度が65%以上の
変性HDPE成分に、結晶化度が64%以下(比較例
1〜3のLDPEは59%、実施例1のEBCは15%)
のオレフイン重合体を配合すると初期接着性(初
期剥離強度)及び耐沸水処理後の剥離強度)が比
較例4、5に比べて著しく向上することが明らか
であり、又実施例1の如く結晶化度が30%以下の
オレフイン重合体を配合することにより、初期接
着性及び耐沸水接着性が結晶化度が59%のオレフ
イン重合体に比べて、更に向上していることが分
かる。 比較例 6、7 変性HDPE成分の一つである高密度ポリエチレ
ンに代えて中密度ポリエチレン(メルトインデツ
クス2.0、結晶化度68%、以下MDPEと略す)を
用い、かつ配合比を第3表に示した重量部とする
以外は比較例1と同様に行つた。 比較例 8〜11 低密度ポリエチレンに代えてエチレン−酢酸ビ
ニル共重合体(酢酸ビニル含有率8重量%、メル
トインデツクス1.7、結晶化度43%、以下EVAと
略す)を用い、かつ配合比を第3表に示した重量
部とする以外は、比較例1と同様に行つた。結果
を第3表に示す。
[Table] From Tables 1 and 2, it can be seen that modified HDPE components with a crystallinity of 65% or more have a crystallinity of 64% or less (LDPE of Comparative Examples 1 to 3 is 59%, EBC of Example 1 is 15%)
It is clear that when the olefin polymer of It can be seen that by blending the olefin polymer with a crystallinity of 30% or less, the initial adhesion and boiling water resistance are further improved compared to the olefin polymer with a crystallinity of 59%. Comparative Examples 6 and 7 Medium-density polyethylene (melt index 2.0, crystallinity 68%, hereinafter abbreviated as MDPE) was used instead of high-density polyethylene, which is one of the modified HDPE components, and the compounding ratio was as shown in Table 3. The same procedure as in Comparative Example 1 was conducted except that the weight parts shown were used. Comparative Examples 8 to 11 Ethylene-vinyl acetate copolymer (vinyl acetate content 8% by weight, melt index 1.7, crystallinity 43%, hereinafter abbreviated as EVA) was used instead of low-density polyethylene, and the blending ratio was The same procedure as in Comparative Example 1 was conducted except that the weight parts shown in Table 3 were used. The results are shown in Table 3.

【表】 比較例 12〜14 比較例1、8で用いたHDPE、LDPE、EVAの
それぞれ単味を用いる以外は、比較例1と同様に
行つた。結果を第4表に示す。
[Table] Comparative Examples 12 to 14 The same procedure as Comparative Example 1 was conducted except that each of HDPE, LDPE, and EVA used in Comparative Examples 1 and 8 was used alone. The results are shown in Table 4.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 一部または全部が不飽和カルボン酸もしくは
その誘導体から選ばれた少なくとも一種のモノマ
ーでグラフトされた結晶化度65%以上のポリエチ
レン99ないし51重量部、結晶化度5ないし30%、
エチレン含有率85ないし95モル%のエチレン−α
−オレフインランダム共重合体1ないし49重量部
(計100重量部)、および必要であれば更に20重量
部までのエチレン−ビニルアルコール共重合体と
からなるポリエチレン組成物層と、エチレン含有
率15ないし60モル%のエチレン−ビニルアルコー
ル共重合体層とからなる多層積層構造物。
1 99 to 51 parts by weight of polyethylene with a crystallinity of 65% or more, partially or wholly grafted with at least one monomer selected from unsaturated carboxylic acids or derivatives thereof, crystallinity 5 to 30%;
Ethylene-α with an ethylene content of 85 to 95 mol%
- a polyethylene composition layer consisting of 1 to 49 parts by weight of an olefin random copolymer (100 parts by weight in total) and, if necessary, further up to 20 parts by weight of an ethylene-vinyl alcohol copolymer, with an ethylene content of 15 to 49 parts by weight; A multilayer laminated structure consisting of a 60 mol% ethylene-vinyl alcohol copolymer layer.
JP14110676A 1976-11-26 1976-11-26 Laminated structure Granted JPS5366983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14110676A JPS5366983A (en) 1976-11-26 1976-11-26 Laminated structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14110676A JPS5366983A (en) 1976-11-26 1976-11-26 Laminated structure

Publications (2)

Publication Number Publication Date
JPS5366983A JPS5366983A (en) 1978-06-14
JPS629423B2 true JPS629423B2 (en) 1987-02-28

Family

ID=15284307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14110676A Granted JPS5366983A (en) 1976-11-26 1976-11-26 Laminated structure

Country Status (1)

Country Link
JP (1) JPS5366983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440663Y2 (en) * 1988-08-25 1992-09-24
JPH04136214U (en) * 1991-06-07 1992-12-18 倉三郎 水野 Affected area cooling device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645469Y2 (en) * 1978-11-09 1981-10-23
JPS5898251A (en) * 1981-12-07 1983-06-11 住友ベークライト株式会社 High barrier composite film and package
JPS59215864A (en) * 1983-05-25 1984-12-05 株式会社ジェイエスピー Manufacture of multilayer structure material
DE4433664A1 (en) * 1994-09-21 1996-03-28 Buna Sow Leuna Olefinverb Gmbh Thermoplastic molding compounds with gas barrier properties

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440663Y2 (en) * 1988-08-25 1992-09-24
JPH04136214U (en) * 1991-06-07 1992-12-18 倉三郎 水野 Affected area cooling device

Also Published As

Publication number Publication date
JPS5366983A (en) 1978-06-14

Similar Documents

Publication Publication Date Title
US4198327A (en) Grafted polyolefin composition having improved adhesiveness
JPH0126870B2 (en)
JP2003526697A (en) Blend of grafted polyethylene and non-grafted polyethylene and adhesive composition based on styrene-containing rubber
JP2533173B2 (en) Laminate
JPS63230757A (en) Resin composition and multi-layer structure prepared by using the same
EP0459357B1 (en) An adhesive resin composition and the use thereof and laminate comprising this composition as adhesive layer
JPS5814742A (en) Laminate
JPS5936586B2 (en) Multilayer laminated structure
JPS629423B2 (en)
JPS5849573B2 (en) Multilayer laminated structure
JPS6031669B2 (en) Multilayer laminated structure
JPS6011056B2 (en) Modified ethylene polymer composition
JPS645614B2 (en)
JPS62119248A (en) Adhesive polyethylene composition
JPS6119647A (en) Modified polyethylene composition and multilayer laminate prepared by using it
JPS6036942B2 (en) Multilayer laminated structure
JPS6034463B2 (en) Multilayer laminated structure
JP2021070259A (en) Laminated film, method for producing the same and use of the same
JPS6112782B2 (en)
JP3345118B2 (en) Resin composition
JPH0157673B2 (en)
JPH0367111B2 (en)
JPH10100346A (en) Co-extrusion molded film and food packing bag
JPH07195637A (en) Resin laminate
JPH01282278A (en) Adhesive composition