JPS629417B2 - - Google Patents

Info

Publication number
JPS629417B2
JPS629417B2 JP53147737A JP14773778A JPS629417B2 JP S629417 B2 JPS629417 B2 JP S629417B2 JP 53147737 A JP53147737 A JP 53147737A JP 14773778 A JP14773778 A JP 14773778A JP S629417 B2 JPS629417 B2 JP S629417B2
Authority
JP
Japan
Prior art keywords
thin film
layer
titanium oxide
film
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53147737A
Other languages
Japanese (ja)
Other versions
JPS5574863A (en
Inventor
Kaoru Iwata
Toshiaki Yatabe
Kazutomi Suzuki
Yoshinobu Aikawa
Masao Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP14773778A priority Critical patent/JPS5574863A/en
Publication of JPS5574863A publication Critical patent/JPS5574863A/en
Publication of JPS629417B2 publication Critical patent/JPS629417B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は金属薄膜層および酸化チタン薄膜層が
透明な成型物基板例えば透明有機高分子フイルム
上に積層されてなる選択光透過性積層体及びその
製造方法に関する。更に詳しくは有機チタン化合
物例えばアルキルチタネート等より化学的形成さ
れてなる酸化チタン薄膜層を有する改良された該
積層体及びその製造法に関する。 一般に金、銀、銅、パラジウム及びそれらの中
の或る種の合金等の導電性金属薄膜に透明高屈折
率誘電体層を積層した、又はそれで挾んだ積層体
において、各構成薄膜の膜厚をコントロールする
ことにより、特定波長域の光線を選択的に反射す
るものとなることが知られている。特に赤外波長
領域を選択的に反射する積層体は熱線反射フイル
ムとして住宅等の省エネルギー、太陽エネルギー
利用などの観点から重要である。かかる積層体と
しては、例えば金属薄膜を透明高屈折率誘電体層
で挾んだ構造としてBi2O3/Au/Bi2O3、ZnS/
Ag/ZnS及びTiO2/Ag/TiO2等の積層体が提案
されており、従来これらの膜の形成は、真空蒸着
法、反応性蒸着法、スパツタリング法によつてい
た。しかし、真空蒸着法、スパツタリング法等の
物理的方法は、金属薄膜の形成においては効果的
ではあるが、金属酸化物薄膜の形成においては、
工業生産性、有機物基板との接着性において問題
がある場合が多い。 この解決策として透明高屈折率誘電体層を、有
機金属化合物から化学的手段によつて形成せしめ
る方法を本発明者らは既に提案した。即ち、その
代表例で示せば、アルキルチタネートの有機溶剤
溶液を基体上に塗布し比較的低温で処理すること
により高屈折率の酸化チタン薄膜層を形成せしめ
得、これと蒸着金属薄膜層とを組合せることによ
り、赤外線反射率95%(10μ)以上、可視光
(500mμ)透過率75%以上のTiO2/Ag/TiO2
層積層体を経済的に製造することが可能となつ
た。しかも処理温度が低いことから基板としてポ
リエチレンテレフタレート等の有機高分子(例え
ばフイルム)基板を用いることも可能となり、し
かして該フイルム上に連続的に積層体を形成せし
めることにより極めて経済的に優れた性能を有す
る積層体を得ることが可能となつたのである。か
くの如く上記方法は極めて優れた方法ではある
が、かかる方法により形成された選択光透過性積
層体は未だ完全なものとはいいがたく使用条件に
よつては耐久性において不十分である場合があ
る。 かかる耐久性における欠点は、本発明者らの研
究によれば、酸化チタン薄膜層と金属薄膜層との
相互作用に起因するものであつた。即ち、前記の
如く、比較的低温でアルキルチタネートを加水分
解することによつて形成された酸化チタン薄膜層
で例えば銀薄膜層をサンドイツチして形成された
積層構造体は、使用しているうちにその選択光透
過性、即ち赤外反射能と可視透過能が低下してく
る。これは、銀原子とチタン原子が相互に拡散し
て明確な三層構造から、不明確な構造に変化する
ことによる。本発明者はかかる現象を抑制する為
に、金属層を銀単独から、銀銅合金又は銀金合金
の如き合金に変化せしめたり、銀薄膜層に活性硫
黄化合物を作用せしめて銀硫化物層を介在せしめ
たりして直接金属層を変化せしめる手段を種々試
みた。又同時に酸化チタン薄膜層の形成におい
て、アルキルチタネートにアルキルシリケート等
の有機ケイ素化合物を添加して特殊な酸化チタン
薄膜を形成せしめることをも試みた。かかる手段
はそれなりに効果的であつて該積層体の耐久性を
改善しうるものであつたが、工業的生産手段とし
ては、その操作の複雑性の故に今一歩の改善を必
要とし、耐久性においても更なる改善が望まれ
た。 本発明者はかかる目的を達成すべく鋭意研究し
た結果、驚くべきことに一度酸化チタンの三次元
被膜を形成せしめた後、限定された条件下で湿熱
処理を行なえば極めて優れた該積層体用酸化チタ
ン薄膜となりうることを見出し本発明に到達し
た。 即ち本発明は 透明な成型物基板(A)の少なくとも片面に酸化チ
タン薄膜層(B)、銀及び/又は金を主成分とする金
属薄膜層(C)及び酸化チタン薄膜層(D)を順次積層せ
しめて選択光透過性積層体を形成せしめる方法に
おいて、該酸化チタン薄膜層(B)及び/又は(D)を、
アルキルチタネートの溶液を塗工して加熱処理し
て形成せしめられた直後又は、全層が積層されて
後、又は更に保護層が積層された後に、高温水で
接触処理し、当該層が明細書規定の分析法Bで測
定して有機基を0.1重量%〜6.5重量%含有するも
のとすることを特徴とする選択光透過性積層体の
製造方法である。 かかる本発明によれば、驚くべきことに、極め
て簡単な手段によつて、金属薄膜層を酸化チタン
薄膜層との間の相互作用を防止することができ、
両層間の界面のクリテイカリテイーを長期間維持
することができて、目的とする選択光透過能を長
期間維持することが可能となるのである。 又、有機基の残存量も好ましい値にコントロー
ルされる為、接着性、光学的特性その他において
も優れた効果を発揮しうるのである。 以下本発明の構成要素(A)、(B)、(C)、(D)及び保護
層更に高温水での接触処理等につき、順次詳述す
る。 透明な成型物基板(A)とは、無機・有機及びそれ
らの混合物から成る透明基板であるが、就中有機
高分子を成分とする透明成型物基板、特に有機高
分子フイルムが好ましい。かかる有機高分子フイ
ルムとしては、本発明の処理条件に耐えうるもの
であれば何如なるものでもよいが、塗工性、寸法
安定性、耐久性等の実用性能を考慮すると、ポリ
エチレンテレフタレートフイルム等のポリエステ
ルフイルム、ナイロンフイルム、ポリカーボネー
トフイルム、ポリエチレンフイルム、ポリプロピ
レンフイルム等が好適に用いられる。 本発明方法における酸化チタン薄膜層(B)及び(D)
の少なくとも一方はアルキルチタネートを主成分
とする溶質の溶液、通常は有機溶剤溶液を用いる
ことにより設ける。 用いられるテトラアルキルチタネートのアルキ
ル基としては特に制限はなく、エチル、プロピ
ル、イソプロピル、ブチル、2−エチルヘキシ
ル、ステアリル等が挙げられ、就中プロピル、プ
チルが好ましく用いられる。これらは通常テトラ
アルキルチタネート又はその縮合体として用いら
れる。これらの縮合体とは、テトラアルキルチタ
ネートを2個以上縮合せしめることによつて得ら
れる。例えば式 〔但し、式中Rはアルキル基を表わし、mは正の
整数である。〕 で表わされる化合物又はその混合物であり、取り
扱い易さなどの面から、mは10以下のものが好ま
しい。 特にテトラ−n−ブチルチタネート、テトラプ
ロピルチタネートの2量体、4量体、10量体等が
塗工性の上から好適に用いられる。又、 これらの縮合体はいかなる方法によつて得られ
たものでもよい。本発明に言う酸化チタン薄膜の
形成は、該アルキルチタネートを所定量、溶剤に
溶解して得られる溶液を成形物基板上に塗布、乾
燥、熱処理をすればよい。 塗工溶液に使用する場合の溶剤としては溶質に
対する溶解度、蒸発性(好ましくは150℃以下の
沸点)及び不活性性、(溶質と反応して三次元網
状化反応を失活しないこと)等の条件が満たされ
ればよい。n−ヘプタン、シクロヘキサン、トル
エン、キシレン等の炭化水素、エチルアルコー
ル、イソプロピルアルコール、ブタノール等の汎
用性溶媒またはこれらの混合溶媒は特に好まし
い。 本発明においては、水が塗膜の三次元網状化促
進に効果的な役割をはたしていることは前記の通
りであるが、三次元網状化を可能なかぎり完全に
近ずけ、本発明の特徴とする温水又は熱水処理を
より効果的にするためにあらかじめ塗工液中に少
量の水を共存させてもよい。 また、塗工液の安定性を得るために、上記溶液
にアセチルアセトン、アセトン酢酸エステル、ジ
アセトンアルコールや乳酸、グリコール酸等のα
−オキシ酸などの公知のキレート剤を加えること
も有効である。特にアルコール系溶剤が少量の水
を含む場合には上記キレート剤の添加によつて塗
工液の加水分解を押さえ塗工性、保存安定性を高
めることができ特に効果がある。塗工法は特に限
定はなく一般の方法、即ち、溶剤で稀釈した溶液
を塗布するか又は浸漬法、噴霧法、スピナー法や
グラビヤコーテイングなどのマシンコーテイング
法などの一般的な塗工法をそのまま適用すること
が出来る。 又本発明に於ては酸化チタン薄膜層(B)或いは(D)
のいずれか一方は、アルキルチタネートを用いる
化学塗工法以外に例えば低温スパツタリング、電
子ビーム蒸着法により積層したものでもよい。 又本発明に於て選択光透過性被膜の耐熱性特の
実用性を向上せしめるためにアルキルチタネート
の塗工液にアルキルシリケート、アルコキシシラ
ン類、シランカツプリング剤等のケイ素化合物や
チオ尿素等を少量添加してもよい。 本発明においては、該酸化チタン薄膜層は適当
な段階で、他の層例えば保護層を介して、又は介
さずに、後述する高温水との接触処理に賦される
為、最終的に形成される酸化チタン層に含有され
る有機物の量が極めて少量の所にコントロールさ
れる。かかる有機物の含有量は抽出法即ち塩酸−
アルコール水系溶液で抽出し、抽出物をマス・フ
ラグメント法により定量する方法(後述参照)で
はほとんど検出されない量であるが、EMX法、
即ちアルミ箔上にモデル的に形成された酸化チタ
ン膜の炭素原子をX線マイクロアナライザーで定
量し、換算する方法(後述参照)によればわずか
に検出される程度の量である。 従つて本発明における酸化チタン薄膜層(B)及
び/又は(D)はEMX法で分析した場合の有機物含
量が、酸化チタン薄膜当り0.1重量%〜6.5重量
%、好ましくは0.5重量%〜3.5重量%、特に好ま
しくは1.0重量%〜3.0重量%であるものである。 ここで有機物とは、アルキルチタネートを前記
式で表わした場合の、基Rを意味する。 本発明の積層フイルムに用いられる金属薄膜層
(C)の材料は銀及び/又は金を主成分とする金属か
ら成る。即ち銀、金単独でもよく、銀と金の合
金、銀及び/又は金とそれら以外の金属との合金
でもよい。これらの金属は高い可視光透過率及び
赤外光反射能を示し、優れた選択光透過性を与え
るものである。銀・金以外の金属は上記の性質を
より高める為、又はその他耐光性、耐熱性、色調
等を改善する為に添加され、具体的には例えば
銅、アルミニウム、ニツケル、パラジウム、白
金、インジウム、スズ、カドミウム等が挙げられ
る。とりわけ、銀−銅、銀−白金、金−白金の組
合せが好適に用いられる。かかる第3成分の含有
率は、1〜20重量%、好ましくは1〜15重量%の
範囲が用いられる。 金属薄膜の膜厚は選択光透過膜としての要求特
性をもてば別に限定されるものではないが、赤外
光反射能をもつためには、少なくともある程度の
領域で連続性をもつことが必要である。島状構造
より連続構造にうつる膜厚として約40Å以上、又
太陽エネルギーに対する透明性の点より600Å以
下が好ましい。金属薄膜層の膜厚は、薄い程光透
過領域が広がるので、透明性を増すためには250
Å以下の膜厚がよく、充分な導電性又は赤外光反
射能をもたせるためには50Å以上の膜厚が好まし
い。 金属薄膜層(A)を形成する方法は、例えば真空蒸
着法、マグネトロンスパツタリング法、プラズマ
溶射法、気相メツキ法、化学メツキ法、それらの
組合せ方法のいずれでも可能であるが、形成薄膜
の均一性、製造の容易性及び膜形成速度の点か
ら、特に真空蒸着法が適している。金属の真空蒸
着は化合物の場合と異なり、何ら工業的に障害に
なるものではない。 本発明に於て、用いられる保護層(E)は表面の酸
化チタン薄膜層を外部の機械的刺激や紫外線等か
ら保護するためのものである。従つて特にコーテ
イングの種類は限定しないが、一般の保護コーテ
イング例えばポリアクリレート系塗料、飽和ポリ
エステル系塗料、エチレン−酢酸ビニル共重合体
塗料、ポリスチレン系塗料、ポリビニルホルマー
ル、ポリビニルブチラール系塗料、ポリ塩化ビニ
ル、ポリ(酢酸ビニル−塩化ビニル)系塗料、ポ
リ(塩化ビニル−塩化ビニリデン)系塗料、セル
ロース系塗料、エポキシ系塗料等の熱可塑型塗
料、多官能ポリアクリレート系塗料、メラミン系
塗料等が例示される。 保護層の膜厚は特に限定されないが一般には
0.05μ〜10μ好ましくは0.1μ〜5μの範囲が用
いられる。それ以上では保護層が赤外線を吸収す
る為、熱線反射能を低下させるし、それ以下では
耐摩耗性が発現せず保護層としての元来の役割を
はたさない為好ましくない。又、保護層の屈折率
にも依存するが0.5μ〜1.3μ程度の範囲はいわゆ
る干渉膜厚であり、可視光をあてた場合にじ色の
干渉稿が発生する為目的によつてはさけた方が良
い。 本発明に於て用いられる温水又は熱水処理とは
該選択光透過性積層フイルムを保護層を設ける前
あるいは後に温水又は熱水に浸漬することであ
る。温水又は熱水の温度は40℃〜100℃、好まし
くは50℃〜95℃、特に好ましくは70℃〜90℃であ
る。それ以下では温水処理効果が少ない。これは
アルキルチタネートの加水分解反応、網状化反応
を上まわり、バランスがくずれてしまうためと考
えられる。反応の進行の為からは高温の方がよ
い。しかし、沸水近くになると、条件が過酷なた
め酸化チタン薄膜層をはくりせしめたりするため
に処理時間等をコントロールしなければならな
い。その意味では50℃〜95℃が好ましく、70℃〜
90℃が特に好ましい。 処理時間は処理温度、保護層の有無及び膜厚に
依存する。勿論処理温度が高い程、処理時間は短
くてよい。保護層を設けた場合程又保護層の膜厚
を厚くすればする程処理時間は長くなる。 処理時間は1秒〜100時間、好ましくは2秒〜
70時間の範囲で行われる。処理温度、保護層の有
無を考慮した場合の好適な処理時間を示すと次の
通りである。保護層を介さずに処理する場合は40
〜70℃で30分〜1時間、70〜90℃で10分〜30分、
90〜100℃で1分〜10分が好ましい。保護層を介
した場合は、40〜70℃で30分〜2時間、70〜90℃
で10分〜1時間、90〜100℃で5分〜30分の範囲
で処理される。 本発明に於ては温水又は熱水処理後に加熱され
る場合があるが、この加熱処理は処理後のフイル
ムを乾燥すると共に網状化を促進完結する意味を
有する。処理温度は、取り扱うフイルムにもよる
が一般には50〜200℃、好ましくは60〜150℃の範
囲で行われる。 かくして得られた選択光透過性積層体は極めて
耐熱、耐光性に優れ、熱線反射用用途に有利に使
われる以外に、その導電性を利用した用途例えば
液晶デイスプレー用電極、電場発光体用電極、光
導電性感光体用電極、帯電防止層、面発熱体等の
エレクトロニツクス等の分野にも利用される。 本発明において、有機チタン化合物から形成さ
れた酸化チタン層に含まれる有機残量定量法につ
いて以下に簡単に説明する。分析法(A)は、化学抽
出法とガスクロマトグラフ質量分析器を用いた方
法であり、分析法(B)はX線マイクロアナライザー
と元素分析法を用いた方法である。 分析法A 本発明の積層体におけるTBT層をモデル的に
ポリエチレンテレフタレートフイルムの両面に形
成した成型物100cm2を約2〜3mm角の大きさの小
片状にし、これを水1000重量部、エチルアルコー
ル20重量部および塩酸1重量部を混合してなる溶
液の5mlに、室温で24時間浸漬して有機成分を充
分に抽出し、これをガスクロマトグラフ質量分析
器(島津製作所LKB−9000、Chromosorb W
(60〜80メツシユ)にPEG20を30重量部付着させ
たものを充填した直径3mm、長さ3mのガラスカ
ラムを使用)によりマスフラグメントグラフイ法
でイオンを定量し求めた。 分析法B X線マイクロアナライザー法(EMX法)によ
る有機残量定量法 純度99.9%、厚さ50μのアルミニウムホイル上
に本発明の各積層体を構成するTBT層(テトラ
ブチルチタネートからの酸化チタン層)を各実施
例と同様にして形成せしめた。 得られたTBT層に含有される炭素原子(C)とチ
タン原子(Ti)の量をEMX法によりそれぞれの
カウント数として求め、その強度比C/Tiを算
出した。 一方、下記式 〔但し、Rは
The present invention relates to a selective light-transmitting laminate in which a metal thin film layer and a titanium oxide thin film layer are laminated on a transparent molded substrate, such as a transparent organic polymer film, and a method for manufacturing the same. More particularly, the present invention relates to an improved laminate having a thin titanium oxide layer chemically formed from an organic titanium compound such as an alkyl titanate, and a method for manufacturing the same. In general, in a laminate in which a transparent high refractive index dielectric layer is laminated or sandwiched between a conductive metal thin film such as gold, silver, copper, palladium, or some alloy thereof, the film of each component thin film is It is known that by controlling the thickness, light in a specific wavelength range can be selectively reflected. In particular, a laminate that selectively reflects infrared wavelength regions is important as a heat ray reflective film from the viewpoint of energy saving in houses and the like and utilization of solar energy. Examples of such a laminate include Bi 2 O 3 /Au/Bi 2 O 3 , ZnS/
Laminated bodies such as Ag/ZnS and TiO 2 /Ag/TiO 2 have been proposed, and conventionally these films have been formed by vacuum evaporation, reactive evaporation, or sputtering. However, although physical methods such as vacuum evaporation and sputtering are effective in forming metal thin films, they are not effective in forming metal oxide thin films.
There are often problems with industrial productivity and adhesion with organic substrates. As a solution to this problem, the present inventors have already proposed a method in which a transparent high refractive index dielectric layer is formed from an organometallic compound by chemical means. That is, to give a typical example, a titanium oxide thin film layer with a high refractive index can be formed by applying an organic solvent solution of alkyl titanate onto a substrate and treating it at a relatively low temperature, and this can be combined with a vapor-deposited metal thin film layer. By combining them, it has become possible to economically produce a TiO 2 /Ag/TiO 2 three-layer laminate with an infrared reflectance of 95% or more (10μ) and a visible light (500mμ) transmittance of 75% or more. Moreover, since the processing temperature is low, it is also possible to use an organic polymer (for example, film) substrate such as polyethylene terephthalate as a substrate, and by forming a laminate continuously on the film, it is extremely economical. It became possible to obtain a laminate with good performance. Although the above method is an extremely excellent method, the selective light transmitting laminate formed by this method cannot be said to be perfect and may have insufficient durability depending on the usage conditions. There is. According to research conducted by the present inventors, this drawback in durability was caused by the interaction between the titanium oxide thin film layer and the metal thin film layer. That is, as mentioned above, a laminated structure formed by sandwiching, for example, a silver thin film layer with a titanium oxide thin film layer formed by hydrolyzing an alkyl titanate at a relatively low temperature, will deteriorate during use. Its selective light transmittance, ie, infrared reflectivity and visible transmittance, decrease. This is because silver atoms and titanium atoms diffuse into each other, changing from a clear three-layer structure to an indefinite structure. In order to suppress this phenomenon, the present inventor changed the metal layer from silver alone to an alloy such as a silver-copper alloy or a silver-gold alloy, or added a silver sulfide layer by applying an active sulfur compound to the silver thin film layer. Various methods have been tried to directly change the metal layer, such as by intervening the metal layer. At the same time, in forming a titanium oxide thin film layer, an attempt was made to form a special titanium oxide thin film by adding an organosilicon compound such as an alkyl silicate to alkyl titanate. Although such a method was effective to some extent and could improve the durability of the laminate, as an industrial production method, further improvement was required due to the complexity of the operation, and the durability could be improved. Further improvements were desired. As a result of intensive research to achieve the above object, the present inventor surprisingly found that once a three-dimensional film of titanium oxide is formed, if a moist heat treatment is performed under limited conditions, an extremely excellent laminate can be formed. The present invention was achieved by discovering that it can be made into a titanium oxide thin film. That is, the present invention includes sequentially forming a titanium oxide thin film layer (B), a metal thin film layer containing silver and/or gold as a main component (C), and a titanium oxide thin film layer (D) on at least one side of a transparent molded substrate (A). In the method of laminating to form a selective light transmitting laminate, the titanium oxide thin film layer (B) and/or (D) is
Immediately after the alkyl titanate solution is applied and heat treated to form the layer, or after all layers have been laminated, or after a further protective layer has been laminated, contact treatment with hot water is performed to ensure that the layer is This is a method for producing a selective light transmitting laminate, characterized in that it contains 0.1% to 6.5% by weight of organic groups as measured by specified analysis method B. According to the present invention, it is surprisingly possible to prevent the interaction between the metal thin film layer and the titanium oxide thin film layer by extremely simple means,
The criticality of the interface between both layers can be maintained for a long period of time, making it possible to maintain the desired selective light transmission ability for a long period of time. Furthermore, since the amount of residual organic groups is controlled to a preferable value, excellent effects can be exhibited in terms of adhesiveness, optical properties, and other properties. The components (A), (B), (C), and (D) of the present invention, the protective layer, and the contact treatment with high temperature water will be described in detail below. The transparent molded substrate (A) is a transparent substrate made of inorganic, organic, or a mixture thereof, and preferably a transparent molded substrate containing an organic polymer as a component, particularly an organic polymer film. Any organic polymer film may be used as long as it can withstand the processing conditions of the present invention, but in consideration of practical performance such as coatability, dimensional stability, and durability, polyethylene terephthalate film and the like are preferred. Polyester film, nylon film, polycarbonate film, polyethylene film, polypropylene film, etc. are preferably used. Titanium oxide thin film layers (B) and (D) in the method of the present invention
is provided by using a solution of a solute containing an alkyl titanate as a main component, usually an organic solvent solution. The alkyl group of the tetraalkyl titanate used is not particularly limited and includes ethyl, propyl, isopropyl, butyl, 2-ethylhexyl, stearyl, and the like, among which propyl and butyl are preferably used. These are usually used as tetraalkyl titanates or condensates thereof. These condensates are obtained by condensing two or more tetraalkyl titanates. For example, the expression [However, in the formula, R represents an alkyl group, and m is a positive integer. ] It is a compound represented by the following or a mixture thereof, and from the viewpoint of ease of handling, m is preferably 10 or less. In particular, dimers, tetramers, decamers, etc. of tetra-n-butyl titanate and tetrapropyl titanate are preferably used from the viewpoint of coatability. Moreover, these condensates may be obtained by any method. The titanium oxide thin film according to the present invention can be formed by dissolving a predetermined amount of the alkyl titanate in a solvent, applying a solution obtained on the molded substrate, drying it, and heat-treating the solution. When used in a coating solution, the solvent should have solubility with the solute, evaporability (preferably boiling point below 150°C), inertness (does not react with the solute and deactivate the three-dimensional reticulation reaction), etc. It is sufficient if the conditions are met. Particularly preferred are hydrocarbons such as n-heptane, cyclohexane, toluene, and xylene, general-purpose solvents such as ethyl alcohol, isopropyl alcohol, and butanol, and mixed solvents thereof. In the present invention, as described above, water plays an effective role in promoting three-dimensional reticulation of the coating film. In order to make the hot water or hot water treatment more effective, a small amount of water may be added to the coating solution in advance. In addition, in order to obtain stability of the coating solution, acetylacetone, acetone acetate, diacetone alcohol, lactic acid, glycolic acid, etc. should be added to the above solution.
-It is also effective to add a known chelating agent such as oxyacid. Particularly when the alcoholic solvent contains a small amount of water, the addition of the above-mentioned chelating agent is particularly effective in suppressing hydrolysis of the coating solution and improving coating properties and storage stability. The coating method is not particularly limited and may be a general method, that is, a solution diluted with a solvent may be applied, or a general coating method such as a dipping method, a spray method, a spinner method, or a machine coating method such as gravure coating may be applied as is. I can do it. In addition, in the present invention, titanium oxide thin film layer (B) or (D)
Either one of them may be laminated by, for example, low-temperature sputtering or electron beam evaporation, in addition to the chemical coating method using alkyl titanate. In addition, in the present invention, in order to improve the heat resistance and practicality of the selectively transparent coating, alkyl silicates, alkoxysilanes, silicon compounds such as silane coupling agents, thiourea, etc. are added to the alkyl titanate coating solution. A small amount may be added. In the present invention, the titanium oxide thin film layer is subjected to a contact treatment with high-temperature water, which will be described later, at an appropriate stage, with or without other layers such as a protective layer, so that the titanium oxide thin film layer is not finally formed. The amount of organic matter contained in the titanium oxide layer is controlled to an extremely small amount. The content of such organic matter can be determined by the extraction method, i.e., hydrochloric acid.
The amount is hardly detected by the method of extracting with an alcohol aqueous solution and quantifying the extract by the mass fragment method (see below), but the amount is hardly detected by the EMX method,
That is, according to a method in which carbon atoms in a titanium oxide film formed as a model on aluminum foil are quantified using an X-ray microanalyzer and converted (see below), the amount is only slightly detectable. Therefore, the titanium oxide thin film layer (B) and/or (D) in the present invention has an organic content of 0.1% to 6.5% by weight, preferably 0.5% to 3.5% by weight based on the titanium oxide thin film when analyzed by EMX method. %, particularly preferably from 1.0% to 3.0% by weight. Here, the organic substance means the group R when the alkyl titanate is represented by the above formula. Metal thin film layer used in the laminated film of the present invention
The material (C) consists of a metal whose main component is silver and/or gold. That is, silver or gold may be used alone, an alloy of silver and gold, or an alloy of silver and/or gold with other metals. These metals exhibit high visible light transmittance and infrared light reflectivity, and provide excellent selective light transmittance. Metals other than silver and gold are added to further enhance the above properties or to improve light resistance, heat resistance, color tone, etc. Specifically, for example, copper, aluminum, nickel, palladium, platinum, indium, Examples include tin and cadmium. In particular, combinations of silver-copper, silver-platinum, and gold-platinum are preferably used. The content of the third component is in the range of 1 to 20% by weight, preferably 1 to 15% by weight. The thickness of the metal thin film is not particularly limited as long as it has the required characteristics as a selective light transmission film, but in order to have infrared light reflecting ability, it is necessary to have continuity in at least a certain area. It is. The film thickness is preferably about 40 Å or more as it gives a continuous structure rather than an island structure, and it is preferably 600 Å or less in terms of transparency to solar energy. The thinner the metal thin film layer, the wider the light transmission area, so in order to increase transparency, it is necessary to
A film thickness of 50 Å or more is preferable in order to provide sufficient conductivity or infrared light reflecting ability. The metal thin film layer (A) can be formed by, for example, a vacuum evaporation method, a magnetron sputtering method, a plasma spraying method, a vapor phase plating method, a chemical plating method, or a combination thereof. The vacuum deposition method is particularly suitable from the viewpoints of uniformity, ease of production, and film formation speed. Unlike the case of compounds, vacuum evaporation of metals does not pose any industrial problems. In the present invention, the protective layer (E) used is for protecting the titanium oxide thin film layer on the surface from external mechanical stimulation, ultraviolet rays, etc. Therefore, the type of coating is not particularly limited, but general protective coatings such as polyacrylate paints, saturated polyester paints, ethylene-vinyl acetate copolymer paints, polystyrene paints, polyvinyl formals, polyvinyl butyral paints, polyvinyl chloride paints, etc. , poly(vinyl acetate-vinyl chloride)-based paints, poly(vinyl chloride-vinylidene chloride)-based paints, cellulose-based paints, thermoplastic paints such as epoxy-based paints, polyfunctional polyacrylate-based paints, melamine-based paints, etc. be done. The thickness of the protective layer is not particularly limited, but generally
A range of 0.05μ to 10μ, preferably 0.1μ to 5μ is used. If it is more than that, the protective layer will absorb infrared rays, reducing the heat ray reflection ability, and if it is less than that, it will not exhibit wear resistance and will not fulfill its original role as a protective layer, which is not preferable. Also, although it depends on the refractive index of the protective layer, the range of about 0.5μ to 1.3μ is the so-called interference film thickness, and it may be avoided depending on the purpose because a rainbow-colored interference pattern will occur when exposed to visible light. It's better to The hot water or hot water treatment used in the present invention refers to immersing the selectively transparent laminated film in hot water or hot water before or after providing the protective layer. The temperature of the hot or hot water is 40°C to 100°C, preferably 50°C to 95°C, particularly preferably 70°C to 90°C. If the temperature is lower than that, the hot water treatment effect will be small. This is thought to be because the hydrolysis reaction and reticulation reaction of the alkyl titanate are exceeded, resulting in an imbalance. A high temperature is better for the reaction to proceed. However, when the water is close to boiling, the conditions are severe and the treatment time must be controlled in order to peel off the titanium oxide thin film layer. In that sense, 50℃~95℃ is preferable, and 70℃~
90°C is particularly preferred. The processing time depends on the processing temperature, the presence or absence of a protective layer, and the film thickness. Of course, the higher the treatment temperature, the shorter the treatment time. The more a protective layer is provided and the thicker the protective layer is, the longer the processing time will be. Processing time is 1 second to 100 hours, preferably 2 seconds to
It will take place over a period of 70 hours. The following is a suitable processing time when considering the processing temperature and the presence or absence of a protective layer. 40 when processing without a protective layer
~70℃ for 30 minutes to 1 hour, 70 to 90℃ for 10 minutes to 30 minutes,
Preferably, the temperature is 90 to 100°C for 1 to 10 minutes. If using a protective layer, heat at 40-70℃ for 30 minutes to 2 hours, 70-90℃
The process is carried out for 10 minutes to 1 hour at 90 to 100°C for 5 minutes to 30 minutes. In the present invention, heating may be performed after hot water or hot water treatment, and this heat treatment has the meaning of drying the film after treatment and promoting and completing reticulation. The processing temperature is generally 50 to 200°C, preferably 60 to 150°C, although it depends on the film being handled. The selective light transmitting laminate thus obtained has excellent heat resistance and light resistance, and can be used advantageously for heat ray reflection applications, as well as applications utilizing its conductivity, such as electrodes for liquid crystal displays and electrodes for electroluminescent materials. It is also used in fields such as electronics, such as electrodes for photoconductive photoreceptors, antistatic layers, and surface heating elements. In the present invention, a method for quantifying the amount of organic residue contained in a titanium oxide layer formed from an organic titanium compound will be briefly described below. The analysis method (A) is a method using a chemical extraction method and a gas chromatograph mass spectrometer, and the analysis method (B) is a method using an X-ray microanalyzer and an elemental analysis method. Analysis method A A 100 cm 2 molded product in which the TBT layer in the laminate of the present invention is formed on both sides of a polyethylene terephthalate film is made into a small piece approximately 2 to 3 mm square, and this is mixed with 1000 parts by weight of water, ethyl The organic components were sufficiently extracted by immersion in 5 ml of a solution prepared by mixing 20 parts by weight of alcohol and 1 part by weight of hydrochloric acid at room temperature for 24 hours.
The ions were determined by mass fragment graphing using a glass column with a diameter of 3 mm and a length of 3 m filled with 30 parts by weight of PEG20 (60 to 80 mesh). Analysis method B Organic residual amount determination method using X-ray microanalyzer method (EMX method) A TBT layer (titanium oxide layer from tetrabutyl titanate) constituting each laminate of the present invention is placed on an aluminum foil with a purity of 99.9% and a thickness of 50μ. ) were formed in the same manner as in each example. The amounts of carbon atoms (C) and titanium atoms (Ti) contained in the obtained TBT layer were determined as respective counts by the EMX method, and the intensity ratio C/Ti was calculated. On the other hand, the following formula [However, R is

【式】を表 わす。〕 で表わされる化合物を標準物質(1)として用い、こ
のもののクロロホルム溶液をアルミホイル上に塗
布、乾燥して得られた薄膜のEMX法によるC/
Ti強度比と、元素分析によるC/Tiの重量%比
を求めた。又、スパツタリングによるTiO2薄膜
を基準物質(2)として用い、上と同様にEMX法に
よるC/Ti強度比と元素分析によるC/Tiの重
量%比を求めた。かくして、この2点により
EMX法によるC/Ti強度比と、元素分析による
C/Tiの重量%比との関係を求める検量線(直
線)を作成した。 本発明の積層体中の有機物残量はEMX法によ
るC/Ti強度比からこの検量線を用いて、元素
分析値によるC/Ti重量%比を求め、ブチル基
の残量として算出することができる。 以下本発明の具体的説明を実施例で示す。 実施例 1〜28 光透過率86%、膜厚50μmの二軸延伸ポリエチ
レンテレフタレートフイルムを透明な成型物基板
(A)とし、(B)層として厚さ280Åの酸化チタン薄膜
層、(C)層として厚さ170℃Åの銀と銅の合金から
なる薄膜層(銀92重量%、銅8重量%)及び(D)層
として厚さ280Åの酸化チタン薄膜層を順次積層
して、選択光透過性を有する積層体を得た。 酸化チタン薄膜層(B)及び(D)は、いずれもテトラ
ブチルチタネートの4量体3部、イソプロピルア
ルコール97部からなる溶液をバーコータで塗布
し、120℃、3分間加熱して設けた。この層を以
後TBT層と略す。 金属薄膜層は、銀銅合金(銀70%、銅30%)を
用い抵抗加熱法で真空蒸着して設けた。TBT層
に含まれるブチル基の含有量は、マスフラグメン
トグラフイー法(マスNo.56)で定量した結果4.5
%であつた。 得られたフイルムの可視光透過率(0.5μ)は
78%であり、4μ、6μ及び10μの赤外反射率は
夫々98%、97%、98%であつた。 かくして得られたフイルムを熱水処理した。熱
水処理は温度80℃に設定された熱水の中に10秒、
1分、10分、30分、60分の中から選ばれた時間だ
け入れておくことにより達成した。 またこの処理の前後どちらかに、以下にあげた
有機樹脂(a)アククリレート樹脂〔三菱レーヨン(株)
ダイヤナールLR574〕、(b)ヘキサキス〔2−アク
リロイルオキシ−2−メチルエチル〕メラミン
(以下NMAと略す)、(c)ペンタエリスリトールテ
トラアクリレート(テトラメチロール メタンテ
トラアクリレート)(以下A・TMMTと略す)を
スピナーあるいはバーコーターで0.2μあるいは
2μの厚さで設けて保護層とした。 これら有機樹脂膜は、膜厚0.2μの場合は
LR574 1重量%含有メチルイソブチルケトン溶
液、NMA2重量%含有メチルイソブチルケトン溶
液、又はA−TMMT2重量%含有メチルイソブチ
ルケトン溶液を用い、膜厚2μの場合はLR574
20重量%含有メチルイソブチルケトン溶液、A−
TMMT40重量%含有メチルイソブチルケトン溶
液、又はNMA40重量%含有メチルイソブチルケ
トン溶液を用い、塗工乾燥して処定の膜厚を得
た。 かくして得られた積層体を90℃に設定された熱
風乾燥器に入れ耐熱劣化促進試験を行い、10μの
赤外光反射率が初期値の85%になるまでの時間を
記録した。 これらの処理条件及び結果を表1にまとめた。
また実施例3、実施例5、の結果を図1に示した
が比較例1等に比較し湿熱処理による耐熱性向上
の効果が顕著である。
Represents [formula]. ] Using the compound represented by (1) as a standard substance, a chloroform solution of this compound was applied on aluminum foil and dried, and the resulting thin film was analyzed by EMX method.
The Ti intensity ratio and the C/Ti weight % ratio were determined by elemental analysis. Furthermore, using a sputtered TiO 2 thin film as the reference material (2), the C/Ti intensity ratio by EMX method and the C/Ti weight % ratio by elemental analysis were determined in the same manner as above. Thus, with these two points
A calibration curve (straight line) was created to determine the relationship between the C/Ti intensity ratio determined by the EMX method and the C/Ti weight % ratio determined by elemental analysis. The residual amount of organic matter in the laminate of the present invention can be calculated as the residual amount of butyl groups by determining the C/Ti weight % ratio by elemental analysis using this calibration curve from the C/Ti intensity ratio determined by the EMX method. can. The present invention will be specifically explained below with reference to Examples. Examples 1 to 28 A biaxially stretched polyethylene terephthalate film with a light transmittance of 86% and a film thickness of 50 μm was used as a transparent molded substrate.
(A), (B) a titanium oxide thin film layer with a thickness of 280 Å, and (C) a thin film layer of a silver and copper alloy with a thickness of 170°C (92% silver, 8% copper) Titanium oxide thin film layers with a thickness of 280 Å were sequentially laminated as the (D) layer to obtain a laminate having selective light transmittance. The titanium oxide thin film layers (B) and (D) were each formed by applying a solution consisting of 3 parts of tetrabutyl titanate and 97 parts of isopropyl alcohol using a bar coater and heating at 120°C for 3 minutes. This layer is hereinafter abbreviated as TBT layer. The metal thin film layer was formed by vacuum evaporation using a resistance heating method using a silver-copper alloy (70% silver, 30% copper). The content of butyl groups contained in the TBT layer was determined by the mass fragment graphics method (mass No. 56) to be 4.5.
It was %. The visible light transmittance (0.5μ) of the obtained film is
The infrared reflectance of 4μ, 6μ and 10μ was 98%, 97% and 98%, respectively. The film thus obtained was treated with hot water. Hydrothermal treatment involves placing the body in hot water set at a temperature of 80℃ for 10 seconds.
This was achieved by leaving it in for a selected time from 1 minute, 10 minutes, 30 minutes, or 60 minutes. In addition, either before or after this treatment, the following organic resins (a) acrylate resin [Mitsubishi Rayon Co., Ltd.]
DIANAL LR574], (b) Hexakis[2-acryloyloxy-2-methylethyl]melamine (hereinafter abbreviated as NMA), (c) Pentaerythritol tetraacrylate (tetramethylol methane tetraacrylate) (hereinafter abbreviated as A・TMMT) was applied with a spinner or bar coater to a thickness of 0.2μ or 2μ to form a protective layer. These organic resin films have a film thickness of 0.2μ.
LR574 When using a methyl isobutyl ketone solution containing 1% by weight, a methyl isobutyl ketone solution containing 2% by weight of NMA, or a methyl isobutyl ketone solution containing 2% by weight of A-TMMT, and the film thickness is 2μ, use LR574.
20% by weight methyl isobutyl ketone solution, A-
A methyl isobutyl ketone solution containing 40% by weight of TMMT or a methyl isobutylketone solution containing 40% by weight of NMA was applied and dried to obtain a desired film thickness. The thus obtained laminate was placed in a hot air dryer set at 90°C to perform a heat resistance deterioration acceleration test, and the time until the 10μ infrared light reflectance reached 85% of the initial value was recorded. These treatment conditions and results are summarized in Table 1.
Further, the results of Examples 3 and 5 are shown in FIG. 1, and compared to Comparative Example 1, etc., the effect of improving heat resistance by moist heat treatment is remarkable.

【表】 また実施例5で用いたサンプルと後述する、比
較例1で用いたサンプルを劣化後(実施例5は90
℃1500時間経過、比較例1は90℃500時間経過)
ESCA(Electron Spectroscopy for Chemical
Analysis)を使用して表示分析を行なつた結果を
表1−(2)に記す。
[Table] In addition, the sample used in Example 5 and the sample used in Comparative Example 1, which will be described later, were compared after deterioration (Example 5 was 90%
℃ 1500 hours elapsed, comparative example 1 90℃ 500 hours elapsed)
ESCA (Electron Spectroscopy for Chemical
Table 1-(2) shows the results of the display analysis using ``Analysis''.

【表】 実施例 29〜40 実施例1〜20で使用したポリエステルフイル
ム/TBT/Ag・Cu/TBT構造の選択光透過性の
積層体を実施例1〜20と全く同一の方法で作成し
た。得られたフイルムを各種条件で湿熱処理を行
つたが、その際、処理前又は後にLR574アクリレ
ート樹脂を所定の膜厚に設け保護層とした。特性
評価は実施例1と同一の方法で行つた。各種温水
処理条件と特性評価の結果を表2−(1)、表2−
(2)、に記した。
[Table] Examples 29 to 40 The selectively transparent laminates having the polyester film/TBT/Ag.Cu/TBT structure used in Examples 1 to 20 were prepared in exactly the same manner as in Examples 1 to 20. The obtained film was subjected to moist heat treatment under various conditions, and at that time, LR574 acrylate resin was applied to a predetermined thickness to form a protective layer before or after the treatment. Characteristic evaluation was performed in the same manner as in Example 1. The results of various hot water treatment conditions and characteristic evaluation are shown in Table 2-(1) and Table 2-
(2).

【表】【table】

【表】 実施例 41〜44 (C)層である金属層薄膜を銀だけで構成する以外
は実施例1と全く同一の方法で選択光透過性を有
する積層体を得た。金属層薄膜は、銀を蒸着源と
して用い抵抗加熱法で真空蒸着して膜厚180Åの
薄膜層として設けた。 得られた積層体の光学特性は可視光透過率
(0.5μ)80%赤外光反射率は4μ、6μ、10μで
それぞれ97%、96%、96%でああつた。この積層
体を温度95℃に設定した熱水に浸漬することによ
り熱水処理をほどこし、その熱水処理の前後どち
らかにLR574を0.2μの膜厚となる様に塗工し、
赤外光反射率が85%以下になるまでの耐熱劣化促
進試験を90℃で行い劣化時間を測定した。これら
の結果を表3に記した。
[Table] Examples 41 to 44 A laminate having selective light transmittance was obtained in exactly the same manner as in Example 1, except that the metal layer thin film (layer (C)) was composed only of silver. The metal layer thin film was vacuum-deposited using a resistance heating method using silver as a deposition source to form a thin film layer with a thickness of 180 Å. The optical properties of the obtained laminate were as follows: visible light transmittance (0.5μ): 80%; infrared light reflectance: 97%, 96%, and 96% at 4μ, 6μ, and 10μ, respectively. This laminate was subjected to hot water treatment by immersing it in hot water set at a temperature of 95℃, and LR574 was applied to a film thickness of 0.2μ either before or after the hot water treatment.
A heat resistance deterioration acceleration test was conducted at 90°C until the infrared light reflectance decreased to 85% or less, and the deterioration time was measured. These results are shown in Table 3.

【表】 実施例 45〜48 (C)層である金属薄膜層を金、銀の共存する金属
層で構成する以外は実施例1と全く同一の方法で
選択光透過性を有する積層体を得た。金、銀の共
存する金属薄膜層は金を8重量%含む金銀合金を
ターゲツトに用い、マグネトロンスパタリング法
で金を8重量%含む膜厚165Åの金属薄膜として
形成した。 得られた積層体の光学特性は可視光透過率
(0.5μ)79%、赤外光反射率は4μ、6μ、10μ
でそれぞれ98%、98%、98%であつた。これら得
られた積層体を実施例41〜44と同様の方法で熱水
処理し耐熱性を評価した結果を表4に記した。
[Table] Examples 45 to 48 A laminate having selective light transmittance was obtained in exactly the same manner as in Example 1, except that the metal thin film layer (C) was composed of a metal layer in which gold and silver coexisted. Ta. The metal thin film layer in which gold and silver coexist was formed as a 165 Å thick metal thin film containing 8% gold by magnetron sputtering using a gold-silver alloy containing 8% gold as a target. The optical properties of the obtained laminate are as follows: visible light transmittance (0.5μ) is 79%, and infrared light reflectance is 4μ, 6μ, and 10μ.
They were 98%, 98%, and 98%, respectively. The obtained laminates were treated with hot water in the same manner as in Examples 41 to 44, and the heat resistance was evaluated. Table 4 shows the results.

【表】 実施例 49〜52 (D)層である酸化チタン層に有機シリコン化合物
〔X12・917信越シリコーン(株)〕を含有させる以外
は実施例1と全く同様の方法で選択光透過性を有
する積層体を得た。 有機シリコン化合物を含有する酸化チタン層
は、テトラブチルチタネートの4量体3部、
X12・917 3部、アセチルアセトン2部、イソプ
ロパノール92部からなる溶液をバーコータで塗布
し120℃5分間加熱して設けた。 得られた積層体の光学特性は可視光透過率
(0.5μ)73%、赤外光反射率4μ、6μ、10μに
おいてそれぞれ93%、95%、95%であつた。かく
して得られた積層体を実施例41〜44と同様の方法
で熱水処理し耐熱性を評価した結果を表5に記し
た。
[Table] Examples 49 to 52 Selective light transmittance was obtained in exactly the same manner as in Example 1, except that an organic silicon compound [X12・917 Shin-Etsu Silicone Co., Ltd.] was added to the titanium oxide layer (D) layer. A laminate having the following properties was obtained. The titanium oxide layer containing an organic silicon compound contains 3 parts of a tetramer of tetrabutyl titanate,
A solution consisting of 3 parts of X12.917, 2 parts of acetylacetone, and 92 parts of isopropanol was coated with a bar coater and heated at 120°C for 5 minutes. The optical properties of the obtained laminate were 73% in visible light transmittance (0.5μ) and 93%, 95%, and 95% in infrared light reflectance at 4μ, 6μ, and 10μ, respectively. The thus obtained laminates were treated with hot water in the same manner as in Examples 41 to 44, and the heat resistance was evaluated. Table 5 shows the results.

【表】 比較例 1〜8 実施例1〜52までとりあげた選択光透過性を有
する積層体のうち実施例1、実施例41、実施例
45、実施例49で使用した下記に掲げた積層体 ポリエチレンテレフタレートフイルム/
TBT/Ag・Cu/TBT ポリエチレンテレフタレートフイルム/
TBT/Ag/TBT ポリエチレンテレフタレートフイルム/
TBT/Ag・Au/TBT ポリエチレンテレフタレートフイルム/
TBT/Ag・Cu/TBT+×12・917 にそれぞれLR574を膜厚0.2μあるいはA・
TMMTを膜厚0.2μに塗工し、90℃に設定した熱
風乾燥機に入れて、耐熱劣化促進試験を行い、赤
外光反射率(10μ)が85%以下になるまでの時間
を化時間として測定し、表6に特性を記した。ま
た、比較例1の結果を図1に示した。
[Table] Comparative Examples 1 to 8 Examples 1, 41, and 8 of the laminates with selective light transmittance listed in Examples 1 to 52
45. Laminated polyethylene terephthalate film listed below used in Example 49/
TBT/Ag・Cu/TBT Polyethylene terephthalate film/
TBT/Ag/TBT Polyethylene terephthalate film/
TBT/Ag・Au/TBT polyethylene terephthalate film/
Apply LR574 to TBT/Ag・Cu/TBT+×12・917 with a film thickness of 0.2 μ or A・
TMMT was coated to a film thickness of 0.2μ, placed in a hot air dryer set at 90℃, and a heat resistance deterioration acceleration test was performed. The properties are listed in Table 6. Further, the results of Comparative Example 1 are shown in FIG.

【表】 比較例 9〜12 比較例1〜4でとりあげた積層体 ポリエチレンテレフタレートフイルム/
TBT/Ag・Cu/TBT ポリエチレンテレフタレートフイルム/
TBT/Ag/TBT ポリエチレンテレフタレートフイルム/
TBT/Ag・Au/TBT ポリエチレンテレフタレートフイルム/
TBT/Ag・Cu/TBT+×12・917 にそれぞれLR574を膜厚0.2μに塗工した後、20
℃の水に60分浸漬し取りだして風乾後、90℃に設
定した熱風乾燥機に入れて、耐熱劣化促進試験を
行い、赤外光反射率(10μ)85%以下になるまで
の時間を劣化時間として測定し表7に特性を記し
た。
[Table] Comparative Examples 9 to 12 Laminated polyethylene terephthalate films taken up in Comparative Examples 1 to 4/
TBT/Ag・Cu/TBT Polyethylene terephthalate film/
TBT/Ag/TBT Polyethylene terephthalate film/
TBT/Ag・Au/TBT polyethylene terephthalate film/
After coating TBT/Ag・Cu/TBT+×12・917 with LR574 to a film thickness of 0.2μ, 20
After soaking in water at ℃ for 60 minutes, taking it out and air drying, put it in a hot air dryer set at 90℃ and perform a heat resistance deterioration acceleration test. The characteristics were measured as time and are listed in Table 7.

【表】 実施例 53〜56 実施例1の積層体を構成するに使用したテトラ
ブチルチタネート溶液を実施例1で使用したポリ
エチレンテレフタレートフイルム上に実施例1と
同様の方法で塗布し乾燥して膜厚50Åの酸化チタ
ン層を得た。かかるフイルムを表8に示す条件で
熱水処理し、分析法(A)、分析法(B)で酸化チタン層
に残存する有機残基を定量し重量%で表した。結
果を表8に記した。
[Table] Examples 53 to 56 The tetrabutyl titanate solution used to construct the laminate of Example 1 was applied onto the polyethylene terephthalate film used in Example 1 in the same manner as in Example 1, and dried to form a film. A titanium oxide layer with a thickness of 50 Å was obtained. This film was treated with hot water under the conditions shown in Table 8, and the organic residues remaining in the titanium oxide layer were quantified by analytical method (A) and analytical method (B) and expressed in weight %. The results are shown in Table 8.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図1は90℃における耐熱促進劣化試験の結果で
ある。縦軸は10μにおける赤外光反射率R(%)
であり、横軸は経過時間(時間)である。 図中記号Aは比較例1の結果を、記号Bは実施
例3の結果を、記号Cは実施例5の結果を表わす
ことを意味する。
Figure 1 shows the results of a heat resistance accelerated deterioration test at 90°C. The vertical axis is the infrared light reflectance R (%) at 10μ
, and the horizontal axis is the elapsed time (time). In the figure, symbol A means the result of Comparative Example 1, symbol B means the result of Example 3, and symbol C means the result of Example 5.

Claims (1)

【特許請求の範囲】[Claims] 1 透明な成型物基板(A)の少くとも片面に酸化チ
タン薄膜層(B)、銀及び/又は金を主成分とする金
属薄膜層(C)及び酸化チタン薄膜層(D)を順次積層せ
しめて選択光透過性積層体を形成せしめる方法に
おいて、該酸化チタン薄膜層(B)及び/又は(D)を、
アルキルチタネートの溶液を塗工して加熱処理し
て形成せしめられた直後、又は全層が積層されて
後、又は更に保護層が積層された後に、高温水で
接触処理し、当該層が明細書規定の分析法Bで測
定して有機基を0.1重量%〜6.5重量%含有するも
のとすることを特徴とする選択光透過性積層体の
製造法。
1 A titanium oxide thin film layer (B), a metal thin film layer containing silver and/or gold as a main component (C), and a titanium oxide thin film layer (D) are sequentially laminated on at least one side of a transparent molded substrate (A). In the method of forming a selectively transparent laminate, the titanium oxide thin film layer (B) and/or (D) is
Immediately after the alkyl titanate solution is applied and heat treated to form the layer, or after all layers have been deposited, or after a further protective layer has been deposited, contact treatment with hot water is performed to ensure that the layer is 1. A method for producing a selectively transparent laminate, characterized in that it contains 0.1% to 6.5% by weight of organic groups as measured by specified analytical method B.
JP14773778A 1978-12-01 1978-12-01 Selective light transmission laminated piece and making method thereof Granted JPS5574863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14773778A JPS5574863A (en) 1978-12-01 1978-12-01 Selective light transmission laminated piece and making method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14773778A JPS5574863A (en) 1978-12-01 1978-12-01 Selective light transmission laminated piece and making method thereof

Publications (2)

Publication Number Publication Date
JPS5574863A JPS5574863A (en) 1980-06-05
JPS629417B2 true JPS629417B2 (en) 1987-02-28

Family

ID=15436994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14773778A Granted JPS5574863A (en) 1978-12-01 1978-12-01 Selective light transmission laminated piece and making method thereof

Country Status (1)

Country Link
JP (1) JPS5574863A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3698946A (en) * 1969-11-21 1972-10-17 Hughes Aircraft Co Transparent conductive coating and process therefor
JPS53119987A (en) * 1977-03-28 1978-10-19 Teijin Ltd Laminate
JPS53128798A (en) * 1977-04-15 1978-11-10 Teijin Ltd Method of forming transparent electroconductive coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3698946A (en) * 1969-11-21 1972-10-17 Hughes Aircraft Co Transparent conductive coating and process therefor
JPS53119987A (en) * 1977-03-28 1978-10-19 Teijin Ltd Laminate
JPS53128798A (en) * 1977-04-15 1978-11-10 Teijin Ltd Method of forming transparent electroconductive coating

Also Published As

Publication number Publication date
JPS5574863A (en) 1980-06-05

Similar Documents

Publication Publication Date Title
DK169758B1 (en) Article with high transmission and low emissivity as well as process for its manufacture
US4166876A (en) Transparent, electrically conductive laminated structure and process for production thereof
CN106575005B (en) Infra Red reflective films
US4320169A (en) Heat wave-reflective or electrically conductive laminated structure
JPS5944993B2 (en) laminate
DK166536B1 (en) PRODUCT WITH HIGH TRANSMITTANCE AND LOW EMISSIVITY
KR930009764A (en) Products comprising glass substrates provided with low emissivity films
JPS6026021B2 (en) laminated sheet
KR950702179A (en) Glazing with functional conductive and / or low emissive layer
WO2014119683A1 (en) Method for producing infrared radiation reflecting film
EP0035906A2 (en) Selectively light-transmitting laminated structure
NL9101830A (en) REACTIVE ARTICLES AND METHODS FOR THE MANUFACTURE THEREOF.
JPH02194943A (en) Transparent conductive laminate
JPH0864034A (en) Transparent conductive layered product
US4048372A (en) Coating of cadmium stannate films onto plastic substrates
JPS6036940B2 (en) Film formation method
TW201040299A (en) Layer system having barrier properties and a structured conductive layer, method for producing the same, and use of such a layer system
JPH04504388A (en) Transparent conductive coating
JPS61167546A (en) Laminated film
JPS629417B2 (en)
JP2002129259A (en) Highly heat-resistant reflection film and laminated body, reflection plate for liquid crystal display element and glass as building material using the film
JPS6151762B2 (en)
JPS626494B2 (en)
JPS6144949B2 (en)
JPS6159903B2 (en)