JPS6294082A - Method and device for controlling electronic beam quantity of image pickup tube - Google Patents

Method and device for controlling electronic beam quantity of image pickup tube

Info

Publication number
JPS6294082A
JPS6294082A JP60233406A JP23340685A JPS6294082A JP S6294082 A JPS6294082 A JP S6294082A JP 60233406 A JP60233406 A JP 60233406A JP 23340685 A JP23340685 A JP 23340685A JP S6294082 A JPS6294082 A JP S6294082A
Authority
JP
Japan
Prior art keywords
grid electrode
voltage
image pickup
cathode
pickup tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60233406A
Other languages
Japanese (ja)
Other versions
JPH0822024B2 (en
Inventor
Kazuhiro Sato
和弘 佐藤
Koji Kudo
工藤 功二
Masanori Maruyama
丸山 優徳
Itaru Mimura
三村 到
Shusaku Nagahara
長原 脩策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60233406A priority Critical patent/JPH0822024B2/en
Priority to US06/893,827 priority patent/US4701679A/en
Priority to DE19863628321 priority patent/DE3628321A1/en
Publication of JPS6294082A publication Critical patent/JPS6294082A/en
Publication of JPH0822024B2 publication Critical patent/JPH0822024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To execute a stable ABO control by operating the 1st lattice electrode at a positive voltage with respect to a cathode and applying a voltage signal corresponding to a return beam from a photoconductive target to the 2nd lattice electrode of an image pickup tube. CONSTITUTION:A beam current out of the cathode 1 of the image pickup tube 10 is absorbed by the 1st and 2nd lattice electrodes 2 and 3, and some of said current turns out to be a scan beam current IB. Some part of the scan beam current becomes a return beam current IR on a photoelectric conversion surface 11, and is absorbed by the 2nd lattice electrode 3. A resistance 20 inserted between the cathode 1 and an earth detects the voltage signal corresponding to the scan beam current, and simultaneously a resistance 12 converts a signal current taken out of the photoelectric conversion surface 11 into a voltage so as to detect. The signals detected by the resistances 12 and 20 are added by an adder circuit 21 to obtain a signal voltage VR corresponding to the return beam current. After a signal showing the difference between the signal voltage and a reference voltage 22 is amplified by an amplifier 23, it is applied to the 2nd lattice electrode 3, thereby executing the stable ABO control.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、2極形電子銃を備えた低残像形撮像管の走査
電子ビーム量制御方法およびその装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a scanning electron beam amount control method and apparatus for a low-retention image pickup tube equipped with a dipole electron gun.

〔発明の背景〕[Background of the invention]

光導定形撮像管では、被写体照明に対応した電荷パタン
を光導電膜上に発生させ、電子銃によって発生させた電
子ビームで上記光導電膜上を走査することにより、電荷
パタンを順次放電し、該放電に対応した充電電流を信号
として外部に取出している。上記光導定形撮像管では、
従来から残像を低減させることと、光量範囲を拡大させ
ることが要求されてきた。
In a light guide fixed image pickup tube, a charge pattern corresponding to object illumination is generated on a photoconductive film, and an electron beam generated by an electron gun is scanned over the photoconductive film to sequentially discharge the charge pattern. The charging current corresponding to discharging is taken out as a signal. In the above-mentioned light guide fixed image pickup tube,
Conventionally, there has been a demand for reducing afterimages and expanding the light amount range.

残像は被写体により発生した電荷を1回のビーム走査で
完全に放電することができないためにおこる現象で、次
回以降の走査時に、前回の走査で読残した電荷が一緒に
読出されるためにおこる。
Afterimage is a phenomenon that occurs because the charge generated by the object cannot be completely discharged in one beam scan, and it occurs because the charges left unread from the previous scan are read out together with the next scan. .

特に阻止形光導電膜を使用した撮像管においては、光導
電膜が有する静電容量と走査電子ビームが有するビーム
抵抗との積で定まる時定数の容量性残像が主体である。
In particular, in an image pickup tube using a blocking photoconductive film, capacitive afterimages occur mainly with a time constant determined by the product of the capacitance of the photoconductive film and the beam resistance of the scanning electron beam.

ビーム抵抗は電子ビームを形成する電子群の速度分布が
狭いことが必要条件になる。陰極から放出される電子群
はマクスウェル分布をした速度分布をしているが、細い
ビームを形成する過程においてビームの電流密度が上昇
し、電子相互のクーロン力によるエネルギ緩和現象によ
り、速度分布が拡大されることが知られている。この現
象はベージュ効果と呼ばれ、速度分布の拡大率は、ビー
ムの軸上電流密度J(Z)に対しほぼ、1 (Z )”
’に比例することが知られている。したがって低雑像を
目的とする撮像管では、できる限りビームの電流密度上
昇を抑える必要がある。このため、陰極に対向する第1
格子電極を陰極に対し正電圧で動作させ、上記陰極から
管軸に平行に電子を放出させ、電流密度が高いクロスオ
ーバを形成しない層流ビームを発生する2極形電子銃が
提案されている(例えば特開昭50−39869号、特
開昭54−129871号〕。
A necessary condition for the beam resistance is that the velocity distribution of the electron group forming the electron beam is narrow. The electron group emitted from the cathode has a Maxwellian velocity distribution, but in the process of forming a narrow beam, the current density of the beam increases and the velocity distribution expands due to the energy relaxation phenomenon due to the Coulomb force between the electrons. It is known that This phenomenon is called the beige effect, and the expansion rate of the velocity distribution is approximately 1 (Z) for the axial current density J (Z) of the beam.
' is known to be proportional to '. Therefore, in an image pickup tube aiming at low image noise, it is necessary to suppress the increase in beam current density as much as possible. Therefore, the first
A bipolar electron gun has been proposed in which the grid electrode is operated at a positive voltage with respect to the cathode, and electrons are emitted from the cathode parallel to the tube axis to generate a laminar beam with high current density and no crossover. (For example, JP-A-50-39869, JP-A-54-129871).

第6図は上記の主旨を満足する2極形電子銃の一例を示
し、1は陰極、2は第1格子電極で陰極1に対し正の電
圧E、を印加する。3は第2格子電極を示し、微小開口
33を備えており、正の電圧E2が印加される。4は発
生する電子ビームを示すが、上記印加電圧E4を可変に
すると、電子ビーム4は破線で示す層流ビームから実線
で示す集中ビーム(クロスオーバを形成するビーム)へ
と変化する。第7図は第1格子電圧E、と光電変換面へ
の到達ビーム電流の関係を示した図である。
FIG. 6 shows an example of a two-pole electron gun that satisfies the above-mentioned principle, in which 1 is a cathode, 2 is a first grid electrode, and a positive voltage E is applied to the cathode 1. Reference numeral 3 indicates a second grid electrode, which is provided with a minute opening 33 and to which a positive voltage E2 is applied. 4 indicates a generated electron beam, and when the applied voltage E4 is made variable, the electron beam 4 changes from a laminar beam shown by a broken line to a concentrated beam (a beam forming a crossover) shown by a solid line. FIG. 7 is a diagram showing the relationship between the first lattice voltage E and the beam current reaching the photoelectric conversion surface.

A点が通常の動作点で残像低減が可能な層流ビーム状態
であり、B点がクロスオーバを形成した状態である。こ
のように第6図の電子銃を備えた撮像管は、第1格子電
圧E1を可変にすることによって大きなビーム電流を得
ることができるため。
Point A is a normal operating point, which is a laminar beam state in which afterimage reduction is possible, and point B is a state where a crossover is formed. This is because the image pickup tube equipped with the electron gun shown in FIG. 6 can obtain a large beam current by making the first grid voltage E1 variable.

被写体照度に対応させてビーム量をコントロールするA
BO動作(Automatic Beam Optim
izer)を行わせることができる。
A: Control the beam amount according to the subject illuminance
BO operation (Automatic Beam Optim
izer) can be performed.

従来から行われているABO回路を第8図に示す。図に
おいて10は第6図に示すような2極形電子銃を備えた
撮像管である。上記従来方法は、電子ビーム走査により
光電変換面11から取出した信号電流を抵抗12で電圧
に変換し、増幅器13で増幅したのち、加算回路14で
基準バイアス電圧15に重畳してビーム電流制御電極(
第1.格子電極)2に加えるものである。L記回路には
つぎに示す各式が成立する。
A conventional ABO circuit is shown in FIG. In the figure, 10 is an image pickup tube equipped with a dipole electron gun as shown in FIG. In the above conventional method, a signal current taken out from a photoelectric conversion surface 11 by electron beam scanning is converted into a voltage by a resistor 12, amplified by an amplifier 13, and then superimposed on a reference bias voltage 15 by an adder circuit 14 to be applied to a beam current control electrode. (
1st. (grid electrode) 2. The following equations hold true for the L circuit.

y5::−l5−R・・== (1−)v 、 = B
−v s      −−(2)Era1= v、 +
 V、、    −・・−(3)ただし、■s:増幅器
13の入力信号電圧、Is:信号電流、R:抵抗、vo
:増幅器13の出力信号電圧、B:増幅器の増幅率−E
GI:ビーム電流制御電極電圧、 Vl、l :基準バ
イアス電圧である。
y5::-l5-R...== (1-)v, = B
−v s −−(2) Era1= v, +
V,, -...-(3) However, ■s: input signal voltage of amplifier 13, Is: signal current, R: resistance, vo
: Output signal voltage of amplifier 13, B: Amplification factor -E of amplifier
GI: Beam current control electrode voltage, Vl, l: Reference bias voltage.

ここで、ビーム電流制御電極電圧とビー11電流の比を
g□1とすれば、つぎの各式が成立する。
Here, if the ratio between the beam current control electrode voltage and the beam 11 current is g□1, the following equations hold true.

■e =−g□1・EGI  ・・・・・(4)■。x
”  gmx・V O1・・・・・・(5)ただし、1
B:走査ビーム電流、■。1:走査ビーム電流のバイア
ス値である。
■e = -g□1・EGI...(4)■. x
” gmx・V O1・・・・・・(5) However, 1
B: Scanning beam current, ■. 1: Bias value of scanning beam current.

上記5つの式からInを求めると、つぎの〔6〕式が得
られる。
When In is determined from the above five equations, the following equation [6] is obtained.

より=A−Is+1o1   ・・・・・・(6)ただ
し、A=gffl工・R−Bである。上記(6)式は第
8図の回路の走査ビーム電流の制御特性を示しており、
A=1のとき、理想的なABO動作が可能になる。しか
し、上記回路には2つの問題がある。
From=A-Is+1o1 (6) However, A=gffl-R-B. The above equation (6) shows the control characteristics of the scanning beam current of the circuit shown in FIG.
When A=1, ideal ABO operation is possible. However, the above circuit has two problems.

第1の問題は撮像管lOの第1格子な極2と光電変換面
11との間に、17に示すような容量結合が存在すると
、第9図に示すような正帰還回路が構成され、発振する
ことである。上記は第1格子電極2に加える信号電圧の
極性(負極性)が光電変換面11で発生する信号電荷の
極性(負極性)と同じであるため、容量結合で混入する
信号が光電変換面11において同極性で加算されるため
である6また第2の問題は、第8図のビーム制御回路が
作動中にビーム不足状態に突入すると、回路条件によっ
ては発振を起すことである。ビーム不足状態になると、
信号電流は光の情報に関係なくなり、ビーム電流に比例
して増加し第8図の回路は市帰還回路になる。信号電流
とビーム電流の比例定数をFとすると、 l5=F・IQ       ・・・・−(7)となり
、(6)式および(7)式より(8)式が成立する。
The first problem is that if capacitive coupling as shown in 17 exists between the first lattice pole 2 of the image pickup tube IO and the photoelectric conversion surface 11, a positive feedback circuit as shown in FIG. 9 will be formed. It is to oscillate. In the above case, since the polarity (negative polarity) of the signal voltage applied to the first grid electrode 2 is the same as the polarity (negative polarity) of the signal charge generated on the photoelectric conversion surface 11, the signal mixed by capacitive coupling is transferred to the photoelectric conversion surface 11. The second problem is that if the beam control circuit shown in FIG. 8 enters a beam shortage state during operation, oscillation may occur depending on the circuit conditions. When the beam becomes insufficient,
The signal current becomes independent of optical information and increases in proportion to the beam current, making the circuit of FIG. 8 a city return circuit. When the proportionality constant between the signal current and the beam current is F, l5=F·IQ...-(7), and equation (8) is established from equations (6) and (7).

上記帰還回路の発振条件は(8)式の分母によって決定
され、AF<1なら発振しない。Fは光電変換膜11の
特徴や状態で変化するが、はとんど1に近い値であり、
発振を抑えるためには、A<1の条件を満足させるか、
ビーム不足状態に突入させない工夫が必要である。
The oscillation condition of the feedback circuit is determined by the denominator of equation (8), and if AF<1, no oscillation occurs. F changes depending on the characteristics and condition of the photoelectric conversion film 11, but is mostly a value close to 1,
In order to suppress oscillation, either satisfy the condition of A<1 or
It is necessary to devise measures to prevent the situation from entering into a beam shortage state.

A<1の条件は増幅器13の増幅率Bを下げれば実現で
きるが、一般にはglllの値が第1格子電極2の電圧
により変化するため、glllの最大値に対してBの値
を定めなくてはならなくなる。その結果、glllが最
小値となる動作点では増幅率が不足し、制御範囲が小さ
くなるという欠点を生じる。
The condition of A<1 can be achieved by lowering the amplification factor B of the amplifier 13, but since the value of gllll generally changes depending on the voltage of the first grid electrode 2, the value of B must not be determined with respect to the maximum value of gllll. It will no longer be possible. As a result, at the operating point where gllll is the minimum value, the amplification factor is insufficient and the control range becomes small.

〔発明の目的〕[Purpose of the invention]

本発明は、第1格子電極と光電変換面との間に容量結合
が存在し、かつABO動作時にビーム不足状態に突入し
た場合でも発振をおこさず、安定に動作する撮像管のビ
ーム量制御方法と制御装置とを得ることを目的とする。
The present invention provides a beam amount control method for an image pickup tube that does not cause oscillation and operates stably even when capacitive coupling exists between the first grid electrode and the photoelectric conversion surface and a beam shortage state occurs during ABO operation. and a control device.

〔発明の概要〕[Summary of the invention]

本発明による撮像管の電子ビーム量制御方法およびその
装置は、電子を放出する陰極と、該陰極の後段に配置し
た開口を有する第1格子電極と。
A method and device for controlling the electron beam amount of an image pickup tube according to the present invention includes: a cathode that emits electrons; and a first grid electrode having an aperture disposed downstream of the cathode.

該第1格子電極の後段に配置した微小開口を有する第2
格子電極と、光導電ターゲットとを有する撮像管の電子
ビーム量制御方法およびその装置において、上記第1格
子電極を陰極に対して正電圧で動作させ、上記光導電タ
ーゲットからの戻りビームに対応した電圧信号を撮像管
の第2格子電極に加えることによって、安定なABO動
作を行い、撮像管の走査電子ビーム量を制御するように
したものである。
A second grid electrode having a minute opening arranged after the first grid electrode.
In the electron beam amount control method and device for an image pickup tube having a grid electrode and a photoconductive target, the first grid electrode is operated at a positive voltage with respect to the cathode, and the first grid electrode is operated at a positive voltage with respect to the cathode to correspond to the return beam from the photoconductive target. By applying a voltage signal to the second grid electrode of the image pickup tube, stable ABO operation is performed and the amount of scanning electron beam of the image pickup tube is controlled.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による撮像管の電子ビーム量制御装置の
第1実施例を示す回路図、第2図は本発明の第2実施例
を示す回路図、第3図は第2格子電極電圧とビーム電流
との関係を示す図、第4図は本発明の第3実施例を示す
回路図、第5図は本発明の第4実施例を示す回路図であ
る。第1図において、撮像管10の陰極1から取出した
ビーム電流は大部分が第1格子電極2と第2格子電極3
に吸収されるが、その一部は走査ビーム電流IBになる
。光電変換面11で上記走査ビーム電流IQの一部は信
号電流になるが、残った電子は戻りビーム電流IRとな
って第2格子電極3に吸収される。
FIG. 1 is a circuit diagram showing a first embodiment of an electron beam amount control device for an image pickup tube according to the present invention, FIG. 2 is a circuit diagram showing a second embodiment of the present invention, and FIG. 3 is a second grid electrode voltage FIG. 4 is a circuit diagram showing a third embodiment of the present invention, and FIG. 5 is a circuit diagram showing a fourth embodiment of the present invention. In FIG. 1, most of the beam current extracted from the cathode 1 of the image pickup tube 10 is distributed between the first grid electrode 2 and the second grid electrode 3.
A part of it becomes the scanning beam current IB. A part of the scanning beam current IQ becomes a signal current on the photoelectric conversion surface 11, but the remaining electrons become a return beam current IR and are absorbed by the second grid electrode 3.

したがって戻りビーム電流IRは(9)式で示される。Therefore, the return beam current IR is expressed by equation (9).

IR= IB−Is      −・= (9)実際の
回路は電圧信号で処理するので、戻りビーム電流IQに
対応した電圧信号VQは(10)式に示すようになる。
IR=IB-Is-.= (9) Since the actual circuit processes voltage signals, the voltage signal VQ corresponding to the return beam current IQ is as shown in equation (10).

vR= VB−VS       ・−−(10)ただ
し、vBは走査ビーム電流に対応した電圧信号であり、
陰極1とアース間に挿入した抵抗20によって検出する
。抵抗20には陰極電流ICが流れ、ICとIBとの間
には(11)式が成立するので、vBは(12)式で表
わすことができる。
vR= VB-VS ・--(10) However, vB is a voltage signal corresponding to the scanning beam current,
Detection is performed by a resistor 20 inserted between the cathode 1 and ground. Since the cathode current IC flows through the resistor 20 and the equation (11) holds between IC and IB, vB can be expressed by the equation (12).

■。=cz、■e       ・・・・・・(11)
ve= Rc・a ・I s    ・= ・= (1
2)ただし、αは比例定数、RCは陰極1に挿入した抵
抗20の値である。
■. = cz, ■e ・・・・・・(11)
ve= Rc・a・Is ・= ・= (1
2) However, α is a proportionality constant, and RC is the value of the resistor 20 inserted into the cathode 1.

一方、信号電流Isは抵抗12に流れるので、前記(1
)式で示される信号電圧が発生する。したがって(1)
、(10)、(12)式よりVRを求めると。
On the other hand, since the signal current Is flows through the resistor 12, the above (1
) is generated. Therefore (1)
, (10), (12) to find VR.

つぎの(13)式に示す信号が与えられる。A signal expressed by the following equation (13) is given.

vR=α−RC・IB−R−Is  ・・・・・−(1
3)上記(13)式の信号は、抵抗12および20に発
生した電圧信号を加算回路21で加算することにより簡
単に求めることができる。
vR=α-RC・IB-R-Is・・・・・・-(1
3) The signal of the above equation (13) can be easily obtained by adding the voltage signals generated in the resistors 12 and 20 using the adding circuit 21.

第2格子電極3には(13)で示すvRと基準電圧22
との差の信号を差動増幅器23で増幅して加えるので、
つぎの(14)式が成立する。
The second grid electrode 3 has vR shown in (13) and a reference voltage 22.
Since the difference signal is amplified by the differential amplifier 23 and added,
The following equation (14) holds true.

EG2=B(V。Z  VR)   ・・・・・(14
)ここで、Bは差動増幅器の増幅率、V O2は基準電
圧22の値である。
EG2=B(V.Z VR) ・・・・・・(14
) Here, B is the amplification factor of the differential amplifier, and VO2 is the value of the reference voltage 22.

また、陰極電流ICと第2格子電極電圧の比をg、ll
cとすると(15)式が成立する。
Also, the ratio of the cathode current IC to the second grid electrode voltage is g, ll
If c, then equation (15) holds true.

C EG2=□     ・・・・・・(15)me ここで、基rt圧■。2を便宜、J:電流源として考え
C EG2=□...(15)me Here, the base rt pressure ■. 2 for convenience, J: Consider as a current source.

Vnz = I oz’ Raとおくと、(13)、(
14)、(15)式からつぎに示す(16)式が求まる
If we set Vnz = I oz' Ra, (13), (
Equation (16) shown below can be found from Equations 14) and (15).

g□。・B Ta =     (IoRo + Rs−b a・R
c・IB)−・・・(16)α そこで、R=RQ=Rs=a ・Reを満足するRを選
定すると、上記(16)式は(17)式に書直すことが
できる。
g□.・B Ta = (IoRo + Rs-b a・R
c・IB)−...(16)α Then, by selecting R that satisfies R=RQ=Rs=a ·Re, the above equation (16) can be rewritten as equation (17).

A′ Ie =     (I。+(s)   ・・・・−(
17)1+A′ ただし、A′=gfflc−B−R・α−1である。(
17)式が示すように本発明の第1図が示す第1実施例
では、上記A′を大きくすればするほど理想的なABO
動作を行わせることができる。
A′ Ie = (I.+(s)・・・・−(
17) 1+A' However, A'=gfflc-B-R·α-1. (
17) In the first embodiment shown in FIG. 1 of the present invention, the larger A' is, the more ideal ABO becomes.
can be made to perform an action.

また、ABO動作時にビーム不足状態が生じ。Also, a beam shortage condition occurs during ABO operation.

IsとIBの間に(7)式の関係が成立して、帰還回路
が構成されても、つぎの(18)式で示されるように発
振条件は成立しない。
Even if the relationship in equation (7) is established between Is and IB and a feedback circuit is configured, the oscillation condition is not established as shown in equation (18) below.

したがって、たとえビーム不足状態に突入しても。Therefore, even if you enter a beam starvation condition.

安定なビーム制御を行うことができる。Stable beam control can be performed.

また、第2格子電極3と光電変換面11との間に容量結
合が存在しても、第2格子電極3に印加する制御信号電
圧の極性が正極性となり、光電変換面11で発生する負
極性の信号電荷とは逆極性になるため、正帰還回路は構
成されず、発振を起すことがない。
Furthermore, even if capacitive coupling exists between the second grid electrode 3 and the photoelectric conversion surface 11, the polarity of the control signal voltage applied to the second grid electrode 3 becomes positive, and a negative polarity is generated on the photoelectric conversion surface 11. Since the polarity is opposite to that of the normal signal charge, a positive feedback circuit is not formed and oscillation does not occur.

第2図に示す第2実施例は、上記第1実施例と同様に、
戻りビーム電流に対応した電圧信号を第2格子電極3に
加えるとともに、第2格子電極3に加える制御信号のl
 / nの電圧信号を差動増幅器25で作り、第1格子
電極2に加えるところに特徴がある1、なお24は基準
電圧である。
The second embodiment shown in FIG. 2 has the same features as the first embodiment described above.
A voltage signal corresponding to the return beam current is applied to the second grid electrode 3, and a control signal is applied to the second grid electrode 3.
1 is characterized in that a voltage signal of /n is generated by a differential amplifier 25 and applied to the first grid electrode 2, and 24 is a reference voltage.

前記したように第1図のABO回路は、第6図に破線で
示す層流ビーム状態から実線で示す集中ビーム状態に変
化させることにより、ビーム電流を増大させている。こ
れに対し、第2図の第2実施例では、第2格子電極3に
正極性の制御電圧を加えるとともに、第1格子@極2に
も上記第2格子電極電圧の1/10前後の正極性電圧を
印加することにより、集中ビーム状態への変化を抑え、
常に層流ビームの状態でABO動作を行うものである。
As described above, the ABO circuit of FIG. 1 increases the beam current by changing the laminar beam state shown by the broken line in FIG. 6 to the concentrated beam state shown by the solid line. On the other hand, in the second embodiment shown in FIG. 2, a positive control voltage is applied to the second grid electrode 3, and a positive polarity of about 1/10 of the second grid electrode voltage is applied to the first grid @ pole 2. By applying a positive voltage, the change to a concentrated beam state is suppressed,
ABO operation is always performed in a laminar flow beam state.

この2電極制御力式は第1格子電極2の電圧を、第2格
子電極電圧に従属させて制御するので、第1格子電極2
と第2格子電極コ3とを1つの電極と考えることができ
、第2格子電極電圧とビーム電流の関係は第3図に示す
直線になる。その結果。
This two-electrode control force formula controls the voltage of the first grid electrode 2 by making it dependent on the voltage of the second grid electrode.
and the second grid electrode 3 can be considered as one electrode, and the relationship between the second grid electrode voltage and the beam current is a straight line shown in FIG. the result.

陰極電流と第2格子電極電圧との比gmcはほぼ完全な
定数として取扱うことができ、さらに安定なビーム動作
を行わせることができる。
The ratio gmc between the cathode current and the second grid electrode voltage can be treated as an almost perfect constant, and more stable beam operation can be achieved.

第4図に示す第3実施例は上記第1実施例゛の回路の変
形で、戻りビーム電流に対応した信号を増幅器26で増
幅したのち、直流クランプ回路z8を用いてバイアス電
源27の電圧に重畳し、第2格子電極3に加えるように
したもので、ABO動作は第1実施例と同じである。
The third embodiment shown in FIG. 4 is a modification of the circuit of the first embodiment, in which the signal corresponding to the return beam current is amplified by the amplifier 26, and then the voltage of the bias power supply 27 is adjusted using the DC clamp circuit z8. The ABO operation is the same as in the first embodiment.

第5図に示す第4実施例は上記第2実施例の変形であっ
て、第1格子電極2と第2格子電極3を同時に制御する
。第2格子電極3には戻りビーム電流に対応した信号を
増幅器26で増幅し、直流グランプ回路28でバイアス
電源27に重畳して加える。
The fourth embodiment shown in FIG. 5 is a modification of the second embodiment, in which the first grid electrode 2 and the second grid electrode 3 are controlled simultaneously. A signal corresponding to the return beam current is amplified by an amplifier 26 and applied to the second grid electrode 3 in a superimposed manner to a bias power supply 27 by a DC clamp circuit 28 .

また、第1格子電極2には第2格子電極3に加える制御
信号の1 / nの信号を増幅器29で作り、直流クラ
ンプ回路30で第1格子電極用のバイアス電源31に重
畳して加える。上記第4実施例の回路もABO動作は第
2図に示す第2実施例と同様である。
Furthermore, a signal of 1/n of the control signal to be applied to the second grid electrode 3 is generated to the first grid electrode 2 by an amplifier 29, and is applied to the bias power supply 31 for the first grid electrode in a DC clamp circuit 30 in a superimposed manner. The ABO operation of the circuit of the fourth embodiment is similar to that of the second embodiment shown in FIG.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による撮像管の電子ビーム量制御方
法およびその装置は、電子を放出する陰極と、該陰極の
後段に配置した開口を有する第1格子電極と、該第1格
子電極の後段に配置した微小開口をCiする第2格子′
市極と、光導電ターゲットとを有する撮像管の電子ビー
ム域制御方法およびその装置において、 −)−、記第
1格子電極伝陰極に対して正電圧で動作させ、上記光導
電ターゲ71”からの戻りビームにχ4応した信号によ
って走査電子ビーム量を制御することにより、第1格子
電極と光電変換面との間に容1を結合が存在し2、かつ
A B O動作時にビーム不足状態に突入し、へ場合で
も、発振をおこすことなく、安定な撮像管の’fa F
・ビーム量制御を行うことができる。
As described above, the method and device for controlling the electron beam amount of an image pickup tube according to the present invention includes a cathode that emits electrons, a first grid electrode having an opening disposed downstream of the cathode, and a stage subsequent to the first grid electrode. A second grating with micro apertures arranged in Ci'
In a method and apparatus for controlling an electron beam area of an image pickup tube having a city pole and a photoconductive target, -)-, the first grid electrode cathode is operated with a positive voltage, and the photoconductive target 71'' is By controlling the amount of the scanning electron beam using a signal corresponding to the return beam χ4, it is possible to ensure that there is a coupling between the first grating electrode and the photoelectric conversion surface, and that there is a beam shortage state during the ABO operation. The camera tube's faF remains stable without causing oscillation even when
・Beam amount control can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による撮像管の電子ビーム量制御装置の
第1実施例を示す回路図、第2図は本岱明の第2実施例
を示す回路図、第3図は第2格子@極電圧とビーム電流
との関係を示す図、第4図は本発明の第3実施例を示す
回路図、第5図は本発明の第4実施例を示す回路図、第
6図は2極電子銃の動作説明図、第7図は第1格子電極
電圧とビーム電流との関係を示す図、第8図は従来の電
子ビーム量制御回路図、第9図は静電容量結合が生じた
場合の等価回路図である。 1・・・陰極       2・・・第1格子電極3・
・・第2格子電極 11・・光導電ターゲット(光電変換面)21・・・加
算回路     23.25・・・差動増幅器26.2
9・・・増幅器 28.31・・直流クランプ回路 代理人弁理士  中 村 純之助 矛 1 図 第2じ1 C、・′/1 28.31・直流ウラ〉グ回絡 26  間 27図 オ8 栄
FIG. 1 is a circuit diagram showing a first embodiment of an electron beam amount control device for an image pickup tube according to the present invention, FIG. 2 is a circuit diagram showing a second embodiment of the present invention, and FIG. A diagram showing the relationship between voltage and beam current, FIG. 4 is a circuit diagram showing a third embodiment of the present invention, FIG. 5 is a circuit diagram showing a fourth embodiment of the present invention, and FIG. 6 is a two-pole electron A diagram explaining the operation of the gun, Figure 7 is a diagram showing the relationship between the first grid electrode voltage and beam current, Figure 8 is a conventional electron beam amount control circuit diagram, and Figure 9 is a diagram showing the case where capacitive coupling occurs. FIG. 1... Cathode 2... First grid electrode 3.
...Second grid electrode 11...Photoconductive target (photoelectric conversion surface) 21...Addition circuit 23.25...Differential amplifier 26.2
9... Amplifier 28.31... DC clamp circuit attorney Junnosuke Nakamura 1 Figure 2 1 C, ・'/1 28.31 DC back circuit 26 Between 27 Figure 8 Sakae

Claims (5)

【特許請求の範囲】[Claims] (1)電子を放出する陰極と、該陰極の後段に配置した
開口を有する第1格子電極と、該第1格子電極の後段に
配置した微小開口を有する第2格子電極と、光導電ター
ゲットとを有する撮像管の電子ビーム量制御方法におい
て、上記第1格子電極を陰極に対して正電圧で動作させ
、上記光導電ターゲットからの戻りビームに対応した信
号によって走査電子ビーム量を制御することを特徴とす
る撮像管の電子ビーム量制御方法。
(1) A cathode that emits electrons, a first grid electrode having an aperture arranged after the cathode, a second grid electrode having a minute opening arranged after the first grid electrode, and a photoconductive target. In the electron beam amount control method for an image pickup tube, the first grid electrode is operated at a positive voltage with respect to the cathode, and the scanning electron beam amount is controlled by a signal corresponding to the return beam from the photoconductive target. Characteristic method for controlling the amount of electron beam in an image pickup tube.
(2)上記戻りビームに対応した信号は、撮像管の第2
格子電極に加えられるものであることを特徴とする特許
請求の範囲第1項に記載した撮像管の電子ビーム量制御
方法。
(2) The signal corresponding to the return beam is transmitted to the second
2. A method for controlling an electron beam amount of an image pickup tube according to claim 1, wherein the method is applied to a grid electrode.
(3)上記戻りビームに対応した信号は、撮像管の第1
格子電極および第2格子電極に同時に加えられ、上記第
1格子電極に加える信号の振幅は、第2格子電極に加え
る信号の振幅よりも小さいことを特徴とする特許請求の
範囲第1項に記載した撮像管の電子ビーム量制御方法。
(3) The signal corresponding to the above return beam is transmitted to the first
Claim 1, characterized in that the signal applied to the grid electrode and the second grid electrode is applied simultaneously, and the amplitude of the signal applied to the first grid electrode is smaller than the amplitude of the signal applied to the second grid electrode. A method for controlling the electron beam amount of an image pickup tube.
(4)上記戻りビームに対応した信号は、上記撮像管の
陰極電流と、被写体光に対応した信号電流から得たもの
であることを特徴とする特許請求の範囲第1項ないし第
3項のいずれかに記載した撮像管の電子ビーム量制御方
法。
(4) The signal corresponding to the return beam is obtained from the cathode current of the image pickup tube and the signal current corresponding to the subject light. A method for controlling an electron beam amount of an image pickup tube according to any one of the above.
(5)電子を放出する陰極と、該陰極の後段に配置した
開口を有する第1格子電極と、該第1格子電極の後段に
配置した微小開口を有する第2格子電極と、光導電ター
ゲットとを有する撮像管の電子ビーム量制御装置におい
て、陰極に対して正電圧を印加した第1格子電極と、上
記光導電ターゲットからの戻りビームに対応した電圧信
号を得て走査電子ビーム量を制御する手段とを設けたこ
とを特徴とする撮像管の電子ビーム量制御装置。
(5) a cathode that emits electrons, a first grid electrode having an opening arranged after the cathode, a second grid electrode having a minute opening arranged after the first grid electrode, and a photoconductive target; In an electron beam amount control device for an image pickup tube, the scanning electron beam amount is controlled by obtaining a voltage signal corresponding to a first grid electrode to which a positive voltage is applied to the cathode and a return beam from the photoconductive target. What is claimed is: 1. An electron beam amount control device for an image pickup tube, comprising: means.
JP60233406A 1985-08-23 1985-10-21 Method and apparatus for controlling electron beam amount of image pickup tube Expired - Lifetime JPH0822024B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60233406A JPH0822024B2 (en) 1985-10-21 1985-10-21 Method and apparatus for controlling electron beam amount of image pickup tube
US06/893,827 US4701679A (en) 1985-08-23 1986-08-06 Method of and apparatus for controlling amount of electron beam in image pickup tube
DE19863628321 DE3628321A1 (en) 1985-08-23 1986-08-21 METHOD AND DEVICE FOR CONTROLLING THE STRENGTH OF THE ELECTRON BEAM OF AN IMAGE RECEIVER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60233406A JPH0822024B2 (en) 1985-10-21 1985-10-21 Method and apparatus for controlling electron beam amount of image pickup tube

Publications (2)

Publication Number Publication Date
JPS6294082A true JPS6294082A (en) 1987-04-30
JPH0822024B2 JPH0822024B2 (en) 1996-03-04

Family

ID=16954572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60233406A Expired - Lifetime JPH0822024B2 (en) 1985-08-23 1985-10-21 Method and apparatus for controlling electron beam amount of image pickup tube

Country Status (1)

Country Link
JP (1) JPH0822024B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236648A (en) * 1975-09-17 1977-03-22 Yoshio Kitahara Preparation of 2-isopropyl-5,9,13- trimethyl-cyclotetradecanone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236648A (en) * 1975-09-17 1977-03-22 Yoshio Kitahara Preparation of 2-isopropyl-5,9,13- trimethyl-cyclotetradecanone

Also Published As

Publication number Publication date
JPH0822024B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US6177665B1 (en) High-speed logarithmic photo-detector
JPH02257076A (en) System for controlling digital squid
JPS6294082A (en) Method and device for controlling electronic beam quantity of image pickup tube
JPH10276048A (en) Offset compensation circuit
US2358902A (en) Cathode-ray translating device
US4284960A (en) Photo-feedback preamplifier circuit
JPS6227591B2 (en)
JPS6245286A (en) Image pickup tube device and its driving method
GB2082428A (en) Apparatus for controlling the electron beams of image pick-up tubes
JPS59134539A (en) Device provided with field emission type electron gun
US4701679A (en) Method of and apparatus for controlling amount of electron beam in image pickup tube
JPS61245675A (en) Image pickup tube device
JP2839293B2 (en) Constant current detection voltage holding circuit
JPS6025181Y2 (en) Image tube beam current control circuit
JP3132510B2 (en) Optical sensor circuit
JPH02248167A (en) Signal generater
JPH043125B2 (en)
JP3390474B2 (en) Temperature control circuit of television camera
JPS603229A (en) Pulse signal processing circuit
JPH0623080Y2 (en) AGC circuit in optical receiver
JPS6367649B2 (en)
JPS5838527Y2 (en) Power supply device for photomultiplier tubes
JPH05183362A (en) Alc circuit
JPH0450508Y2 (en)
KR100283571B1 (en) Heater voltage generator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term