JPS6293823A - Insulated nozzle for gas circuit breaker - Google Patents

Insulated nozzle for gas circuit breaker

Info

Publication number
JPS6293823A
JPS6293823A JP60232603A JP23260385A JPS6293823A JP S6293823 A JPS6293823 A JP S6293823A JP 60232603 A JP60232603 A JP 60232603A JP 23260385 A JP23260385 A JP 23260385A JP S6293823 A JPS6293823 A JP S6293823A
Authority
JP
Japan
Prior art keywords
nozzle
circuit breaker
fluororesin
insulating
insulating nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60232603A
Other languages
Japanese (ja)
Inventor
清和 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60232603A priority Critical patent/JPS6293823A/en
Publication of JPS6293823A publication Critical patent/JPS6293823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Circuit Breakers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、遮断器の固定接触子と可動接触子との間に
形成された開離間隙に圧縮ガスを導くとともKこの圧縮
ガスを噴出する開口を備えて前記開離間隙に生じたアー
クの消弧に寄与する、絶縁材料からなる絶縁ノズルの耐
アーク性を材質の面から向上させる方法に関する。
Detailed Description of the Invention [Technical Field to which the Invention Pertains] This invention is directed to introducing compressed gas into a separation gap formed between a fixed contact and a movable contact of a circuit breaker. The present invention relates to a method of improving the arc resistance of an insulating nozzle made of an insulating material, which is provided with a spouting opening and contributes to extinguishing the arc generated in the separation gap, from the viewpoint of the material.

〔従来技術とその問題点〕[Prior art and its problems]

まず、この種絶縁ノズルを備えたガス遮断器として、消
弧性ガメF6ガズを用いたバッファ影身ス遮断器におけ
る絶縁ノズルの損傷につき説明する。
First, as a gas circuit breaker equipped with this type of insulating nozzle, damage to the insulating nozzle in a buffer shadow type circuit breaker using arc-extinguishing gas F6 gas will be explained.

第3図は、このような絶縁ノズルを倫えたバッファ形ガ
ス遮断器の構造例を示すものであって、遮断時に、図示
されない駆動装置により、絶縁棒16と通電筒14とを
介して矢印方向に駆動されるバッファシリンダ11に一
体的に取り付けられたチューリップ形可動接触子6を同
心に包囲するとともに、この可動接触子と同軸に配され
た棒状の固定接触子5が出入りする開ロアaを備えた絶
縁ノズル7は、押えリング8を用いてバッファシリンダ
11に取り付けられ、図は遮断器の閉路状態を示してい
るが、この状態において、密閉金属容器1に突設された
一方のブッシング2の端子2aから流入した電流は、ブ
ッシング導体2b、固定台座4.固定接触子5.可動接
触子61通電筒14、集電子15.ブッシング導体3b
を経て他方のブッシング3の端子3aから流出する。
FIG. 3 shows an example of the structure of a buffer type gas circuit breaker equipped with such an insulating nozzle, and when shutting off, a driving device (not shown) moves the insulating rod 16 and the current-carrying tube 14 in the direction of the arrow. It concentrically surrounds a tulip-shaped movable contact 6 which is integrally attached to a buffer cylinder 11 driven by the buffer cylinder 11, and an opening lower a is provided through which a rod-shaped fixed contact 5 disposed coaxially with the movable contact enters and exits. The provided insulating nozzle 7 is attached to the buffer cylinder 11 using a retaining ring 8, and the figure shows the circuit breaker in a closed state. The current flowing from the terminal 2a of the bushing conductor 2b, the fixed base 4. Fixed contact 5. Movable contactor 61 energizing cylinder 14, current collector 15. Bushing conductor 3b
It flows out from the terminal 3a of the other bushing 3 through.

バッファシリンダ11が図の右方へ駆動されると、バッ
ファ室13内で圧縮でれたガスが、可動接触子6と絶縁
ノズル7との間に形成されたリング状の間隙を軸方向に
通過し、固定接触子5と可動接触子6との間に形成され
た開離間隙に導かれる。開離行程がすすみ、第4図の下
半分に示すような位置に到達すると、圧縮ガスは開ロア
aを通過して矢印Pのように噴出し、このときの圧縮ガ
スの断熱膨張効果によりアークの外周側が強力に冷却さ
れはじめ、一方、アークはみずからを細くして冷却表面
積を小さくして熱を奪われまいとし、この結果アーク中
の電流密度が増して弧心の温度が著しく高くなる。この
ようにして弧心の温度が上昇したアークを取り囲む絶縁
ノズルの開口近傍は、弧心から強い輻射エネルギを受け
る。輻射エネルギを構成する放射線の波長は、赤外領域
の熱線から可視領域の光線を経て遠紫外領域まで広く分
布しているから、絶縁ノズルの材料がふっ素樹脂単体の
場合には、放射線の波長により、ノズル表面から内部へ
敷部ないし十数間の深さに侵入し、この深さにある樹脂
を熱分解し、あるいは炭化し、ちるいはガス化する。一
方、絶縁ノズルはふっ素樹脂粉末を圧縮、成形し、これ
を加熱、焼成して作られるため、絶縁ノズル中には空気
が含有されてお9、この空気が前記の熱分解、炭化ある
いはガス化につづいて膨張し、これによりノズル表面に
クラックが発生し、あるいはノズル表面の一部が剥離、
脱落するに至る。このように、内部が炭化したり、表面
の剥離がおこると、絶縁ノズルの絶縁耐力が低下し、あ
るいはノズル表面のガス流に乱れを生じ、遮断器の遮断
性能が低下する。
When the buffer cylinder 11 is driven to the right in the figure, the gas compressed in the buffer chamber 13 passes through the ring-shaped gap formed between the movable contact 6 and the insulating nozzle 7 in the axial direction. However, it is guided to the separation gap formed between the fixed contact 5 and the movable contact 6. As the opening stroke progresses and the position shown in the lower half of Figure 4 is reached, the compressed gas passes through the opening lower a and is ejected as shown by arrow P, causing an arc due to the adiabatic expansion effect of the compressed gas. The outer circumferential side of the arc begins to be strongly cooled, while the arc thins itself to reduce the cooling surface area and prevent heat from being taken away.As a result, the current density in the arc increases and the temperature of the arc core increases significantly. The vicinity of the opening of the insulating nozzle surrounding the arc whose temperature has increased in this manner receives strong radiant energy from the arc core. The wavelength of the radiation that makes up the radiant energy is widely distributed from heat rays in the infrared region to visible light rays to the far ultraviolet region. , penetrates into the interior from the nozzle surface to a depth of about 10 to 100 m, and thermally decomposes or carbonizes the resin at this depth, and turns it into dust or gas. On the other hand, insulating nozzles are made by compressing and molding fluororesin powder, heating and firing it, so air is contained in the insulating nozzle9, and this air is pyrolyzed, carbonized or gasified as described above. This causes cracks to appear on the nozzle surface, or part of the nozzle surface to peel off.
It ends up falling off. In this way, when the inside becomes carbonized or the surface peels off, the dielectric strength of the insulating nozzle decreases, or the gas flow on the nozzle surface becomes turbulent, resulting in a decrease in the breaking performance of the circuit breaker.

このような、ふっ素樹脂単体で構成された絶縁ノズルの
欠点を除去するため、たとえば、特公昭53−2863
9号に開示されているように、無機充填材たとえばブロ
ンズ、銅、鉄、鉛などの金属、酸化けい素、酸化チタン
、酸化アルミなどの金属酸化物、グラスファイバー、螢
石、クレー、タルクなど、それぞれの粒径が3〜20μ
mのものを、充填量が容積比で10〜80%と多量混入
されたふっ素樹脂で構成した絶縁ノズルが知られている
In order to eliminate such drawbacks of insulating nozzles made of a single fluororesin, for example, Japanese Patent Publication No. 53-2863
As disclosed in No. 9, inorganic fillers such as bronze, metals such as copper, iron, and lead, metal oxides such as silicon oxide, titanium oxide, and aluminum oxide, glass fiber, fluorite, clay, talc, etc. , each particle size is 3~20μ
An insulating nozzle is known in which the insulating nozzle is made of a fluororesin mixed with a large amount of filling amount of 10 to 80% by volume.

すなわち、輻射エネルギによって容易に熱分解や炭化、
ガス化などがおこらず、放射線が透過しにくい物質を多
カニに混入することにより、ノズル内部へ侵入しようと
する放射線を遮蔽し、ノズルの内部耐アーク性を向上さ
せようとするものである。
In other words, radiant energy easily causes thermal decomposition, carbonization,
By mixing in a large amount of material that does not undergo gasification and is difficult for radiation to pass through, it is possible to block radiation from entering the nozzle and improve the internal arc resistance of the nozzle.

しかし、本願発明の発明者らの実験によると、上記の金
属、または金属酸化物を多量混入してなるふっ素樹脂絶
縁物をノズル材として用いた場合は、耐電圧性能の低下
や機械的強度の低下がはげし2く、M ET 器に用い
られる絶縁ノズルの材料としては十分な性能金示さない
という結果が得られた。これは、金属や金属酸化物を多
量に混入しているため、混入された金属や金属酸化物と
ふっ素樹脂との密着性が悪く、機械的強度の低下や耐電
圧性能の低下を招くことによるものである。
However, according to experiments conducted by the inventors of the present invention, when a fluororesin insulator containing a large amount of the above-mentioned metals or metal oxides is used as a nozzle material, the withstand voltage performance decreases and the mechanical strength decreases. The result was that the deterioration was severe 2, and that the material did not exhibit sufficient performance as a material for an insulating nozzle used in a MET device. This is because a large amount of metals and metal oxides are mixed in, so the adhesion between the mixed metals and metal oxides and the fluororesin is poor, resulting in a decrease in mechanical strength and withstand voltage performance. It is something.

〔発明の目的〕[Purpose of the invention]

本発明は、前記金属や金属酸化物々どのように多量に混
入しなくても、タラツクや剥離による消耗が少なく、か
つ、機械的強度や耐電圧性能の低下も少ない充填物が混
入されたふっ素樹脂製の絶縁ノズルを提供することを目
的とする。
The present invention provides fluorine containing a filler that is less consumed by tartness and peeling, and has less deterioration in mechanical strength and withstand voltage performance, even if the metals and metal oxides are not mixed in large quantities. The purpose is to provide an insulating nozzle made of resin.

〔発明の要点〕[Key points of the invention]

この発明は、遮断器の固定接触子と可動接触子との間に
形成された開離間隙に圧縮ガス?導くとともにこの圧縮
ガスを噴出する開口を備えて前記開離間隙に生じたアー
クの消弧に寄与する、絶縁材料からなる絶縁ノズルにお
いて、該絶縁ノズルを窒化ほう素微粒子が混入されて耐
アーク性が増大せしめられたふっ素樹脂で構成すること
により、前記の目的を達成しようとするものである。
This invention uses compressed gas in the gap formed between the fixed contact and the movable contact of the circuit breaker. In an insulating nozzle made of an insulating material, the insulating nozzle is provided with an opening for guiding the compressed gas and ejecting the compressed gas, thereby contributing to extinguishing the arc generated in the separation gap. The above objective is achieved by constructing the fluororesin with increased fluororesin.

〔発明の実施例〕[Embodiments of the invention]

第1図および第2図に、窒化はう素の微粒子が混入され
たふっ素樹脂で構成された絶縁ノズルと、従来の、金属
酸化物その他の微粒子が混入されたふっ素樹脂で構成さ
れた絶縁ノズルと、充填材が混入されない、ふっ素樹脂
単体で構成された絶縁ノズルとに対する比較試験の結果
を示す。
Figures 1 and 2 show an insulated nozzle made of fluororesin mixed with fine particles of boron nitride, and a conventional insulated nozzle made of fluororesin mixed with fine particles of metal oxide and other substances. The results of a comparative test are shown for the insulating nozzle made of a single fluororesin and no filler mixed therein.

第1図に示されるように、窒化はう素像粒子が混入され
たふっ素樹脂における窒化はり素像粒子の混入割合の実
施例として、混入割合を重量比で5チの少tとし、これ
と比較される金属酸化物その他の微粒子が混入されたも
のでは、充填材の種類をそれぞれ酸化アルミならびに炭
酸カルシウムと炭酸マグネシウムとからなる複塩とする
とともに、混入割合をともに前記実施例の4倍と長短に
し、ふっ素樹脂の種類はすべて四ふつ化エチレン樹脂と
している。充填材が混入されないふっ素樹脂の場合もぶ
つ素樹脂の種類は四ふつ化エチレン樹脂として@3者に
合わせている。また、焼成条件も、実施例、比較例とも
すべて同一条件としている。
As shown in FIG. 1, as an example of the mixing ratio of phosphorus nitride image particles in a fluororesin into which borosilicate nitride image particles are mixed, the mixing ratio is set to a small weight ratio of 5 cm. In the comparative products mixed with metal oxides and other fine particles, the types of fillers were aluminum oxide and a double salt consisting of calcium carbonate and magnesium carbonate, and the mixing ratio was four times that of the above example. All types of fluororesin are tetrafluoroethylene resin. Even in the case of fluororesin that does not contain fillers, the type of fluororesin is ethylene tetrafluoride resin, which is in accordance with @3 parties. Furthermore, the firing conditions were the same for both the Examples and the Comparative Examples.

第2図は、前4者に対する比較試験の結果を示すもので
あり、内圧をうける絶縁ノズルにとって最も重要な機械
的強度すなわち引張り強さは、実施例のものは比較例1
,2の50チ増しの強さを示す。実施例における窒化は
う素の混入量はわずかに5%と少量のため、当然のこと
ながら、ふっ素樹脂単体(比較例3)とは同等の強さを
示す。
Figure 2 shows the results of a comparative test for the former four.The mechanical strength, that is, the tensile strength, which is the most important for an insulated nozzle that is subjected to internal pressure, is that of the example of Comparative Example 1.
,2 shows an increase in strength of 50 cm. Since the amount of boron nitrided in the examples was as small as only 5%, the strength was naturally comparable to that of the fluororesin alone (Comparative Example 3).

また、貫通破壊電圧については、実施例のものは比較例
1の3倍、比較例2の1,6倍の強さを示した。しかも
、短絡電流10kAをアーク時間10 msのもとに5
0回遮断したときのノズル開口内径の広が9を見せたの
に対し、実施例と比較例3とは広がシがみられず、比較
例1.2とは顕著な差異を示した。また、アーク熱を受
けたノズル表面を目視で観察した結果、実施例と比較例
1.2とは異常がみられず、充填材の効果が端的に現わ
れておシ、比較例3ではノズル開口近傍の表面および内
部に炭化された導電路やクランクや脱落直前の剥離など
がみられた。
Further, regarding the penetration breakdown voltage, the strength of the example was 3 times that of Comparative Example 1, and 1.6 times that of Comparative Example 2. Moreover, when the short circuit current is 10 kA and the arc time is 10 ms,
While the nozzle opening inner diameter widened by 9 when shut off 0 times, no widening was observed between the example and comparative example 3, which was a remarkable difference from comparative example 1.2. In addition, as a result of visual observation of the nozzle surface subjected to arc heat, no abnormality was observed in the example and comparative example 1.2, clearly demonstrating the effect of the filler. Carbonized conductive paths, cranks, and peeling just before falling off were observed on the nearby surface and inside.

本発明に用いられる窒化はう素像粒子の粒径は、試験の
結果によれば、混入率が同一でちれば、小さいほどふっ
素樹脂の熱分解、炭化あるいはガス化が少なくなり、粒
径が5μm以下でこの効果が顕著になる。また、機械的
強度と耐電圧特性とは、混入率が大きいほどふっ素樹脂
単体の値から低下して行くが、この値を実質的に維持す
ることのできる混入率の上限は重量比で約30%である
。また、第2図に示される遮断条件において、熱分解。
According to the test results, the particle size of the fluorine nitride image particles used in the present invention is such that, if the mixing ratio is the same, the smaller the particle size, the less thermal decomposition, carbonization, or gasification of the fluororesin. This effect becomes noticeable when the thickness is 5 μm or less. In addition, the mechanical strength and voltage resistance characteristics decrease from the values of the fluororesin alone as the mixing ratio increases, but the upper limit of the mixing ratio that can substantially maintain these values is approximately 30% by weight. %. In addition, thermal decomposition occurred under the cutoff conditions shown in FIG.

炭化あるいはガス化を有効に低減しうる混入率の下限は
平均粒径が5μmのとき約3係であることを確認した。
It was confirmed that the lower limit of the mixing rate that can effectively reduce carbonization or gasification is about 3 when the average particle size is 5 μm.

従って、遮断器の定格に基づいて遮断器が要求する熱的
2機械的、電気的特性に従って粒径と混入率とをそれぞ
れ独立に、あるいは関連させて変化させることにより、
遮断器の特性に応じた最適ノズルを得ることが可能に々
る。
Therefore, by varying the particle size and the mixing rate independently or in conjunction with each other according to the thermal, mechanical, and electrical properties required of the circuit breaker based on the circuit breaker rating,
It is possible to obtain the optimum nozzle according to the characteristics of the circuit breaker.

また、本発明に用いられるふっ素樹脂としては、四ふつ
化エチレン樹脂のほか、四ふっ化エチレン樹脂と六ふつ
化エチレン樹脂との共重合体やフルオロエチレンプロピ
レンなどのふっ素樹脂をあげることかできる。
Further, as the fluororesin used in the present invention, in addition to tetrafluoroethylene resin, fluororesins such as a copolymer of tetrafluoroethylene resin and hexafluoroethylene resin and fluoroethylene propylene can be mentioned.

〔発明の効果〕〔Effect of the invention〕

以上に述べたようにガス遮断器の絶縁ノズルを、窒化は
う素像粒子が混入されたふっ素樹脂で?= 5すれば、
窒化はう素像粒子の混入率が/」−さくても、ノズル内
部の熱分解や炭化やガス化を有効に低減させることがで
き、しかも、混入率が小脇くてすむことから、ふっ素樹
脂単体か有する高い絶縁特性と機械的強度とを実質的に
維持することかできるという効果が得られる。
As mentioned above, is the insulating nozzle of a gas circuit breaker made of fluororesin mixed with borosilicate nitride particles? = 5, then
Even if the mixing rate of boron nitride image particles is low, thermal decomposition, carbonization, and gasification inside the nozzle can be effectively reduced, and since the mixing rate is small, fluororesin The effect is that the high insulating properties and mechanical strength possessed by the single body can be substantially maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の効果をみるために供試された絶縁ノズ
ルを、充填材の種類、混入率とふっ素樹脂の種類とによ
って分類した、材質面からの比較表、第2図は供試され
たそれぞれの絶縁ノズルの機械的、電気的ならびに熱的
特性を示す性能比較表、第3図は本発明が適用される絶
縁ノズルを有するガス遮断器の構造レリを示す断面図、
第4恥はアークが絶縁ノズルに与える熱的影響を説明す
る絶縁ノズル開口近傍の拡大断面図でちる。 5・・・・・・固定接触子、6・・・・・・可動接触子
、7・・・・・・絶縁ノズル、7a・・・・・・開口。
Figure 1 is a comparison table from the material aspect of insulating nozzles tested to see the effects of the present invention, categorized by type of filler, mixing rate, and type of fluororesin. A performance comparison table showing the mechanical, electrical, and thermal characteristics of each insulating nozzle, and FIG. 3 is a sectional view showing the structure of a gas circuit breaker having an insulating nozzle to which the present invention is applied.
The fourth figure is an enlarged sectional view of the vicinity of the opening of the insulating nozzle to explain the thermal influence of the arc on the insulating nozzle. 5... Fixed contact, 6... Movable contact, 7... Insulated nozzle, 7a... Opening.

Claims (1)

【特許請求の範囲】 1)遮断器の固定接触子と可動接触子との間に形成され
た開離間隙に圧縮ガスを導くとともにこの圧縮ガスを噴
出する開口を備えて前記開離間隙に生じたアークの消弧
に寄与する、絶縁材料からなる絶縁ノズルにおいて、該
絶縁ノズルが窒化ほう素微粒子が混入されて耐アーク性
が増大せしめられたふつ素樹脂で構成されたことを特徴
とするガス遮断器の絶縁ノズル。 2)特許請求の範囲第1項記載の絶縁ノズルにおいてふ
つ素樹脂に混入される窒化ほう素微粒子の量がふつ素樹
脂を含む重量の3ないし30%であることを特徴とする
ガス遮断器の絶縁ノズル。 3)特許請求の範囲第1項記載の絶縁ノズルにおいて、
ふつ素樹脂に混入される窒化ほう素微粒子の粒径が5μ
m以下であることを特徴とするガス遮断器の絶縁ノズル
[Scope of Claims] 1) An opening is provided for introducing compressed gas into a gap formed between a fixed contact and a movable contact of a circuit breaker and for spouting out the compressed gas. An insulating nozzle made of an insulating material that contributes to extinguishing an arc caused by a gas, characterized in that the insulating nozzle is made of a fluorine resin mixed with boron nitride fine particles to increase arc resistance. Insulating nozzle of circuit breaker. 2) A gas circuit breaker characterized in that the amount of boron nitride fine particles mixed into the fluororesin in the insulating nozzle according to claim 1 is 3 to 30% of the weight including the fluororesin. Insulated nozzle. 3) In the insulating nozzle according to claim 1,
The particle size of the boron nitride fine particles mixed into the fluororesin is 5μ.
An insulating nozzle for a gas circuit breaker, characterized in that the nozzle is less than m.
JP60232603A 1985-10-18 1985-10-18 Insulated nozzle for gas circuit breaker Pending JPS6293823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60232603A JPS6293823A (en) 1985-10-18 1985-10-18 Insulated nozzle for gas circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60232603A JPS6293823A (en) 1985-10-18 1985-10-18 Insulated nozzle for gas circuit breaker

Publications (1)

Publication Number Publication Date
JPS6293823A true JPS6293823A (en) 1987-04-30

Family

ID=16941939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60232603A Pending JPS6293823A (en) 1985-10-18 1985-10-18 Insulated nozzle for gas circuit breaker

Country Status (1)

Country Link
JP (1) JPS6293823A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495322A (en) * 1990-08-03 1992-03-27 Hitachi Ltd Gas blast circuit breaker
JP2014203557A (en) * 2013-04-02 2014-10-27 株式会社東芝 Arc resistant insulator, method of producing arc resistant insulator, and gas blast circuit breaker
WO2020044552A1 (en) * 2018-08-31 2020-03-05 株式会社東芝 Arc resistant insulating molded body, nozzle for gas circuit breaker, and gas circuit breaker

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495322A (en) * 1990-08-03 1992-03-27 Hitachi Ltd Gas blast circuit breaker
JP2014203557A (en) * 2013-04-02 2014-10-27 株式会社東芝 Arc resistant insulator, method of producing arc resistant insulator, and gas blast circuit breaker
WO2020044552A1 (en) * 2018-08-31 2020-03-05 株式会社東芝 Arc resistant insulating molded body, nozzle for gas circuit breaker, and gas circuit breaker

Similar Documents

Publication Publication Date Title
CA2900227C (en) Arc-extinguishing insulation material molded product and gas circuit breaker including the same
US3586802A (en) Load break device with arc-extinguishing material
US2531007A (en) Circuit interrupter embodying polytetrafluoroethylene
JPS63119121A (en) Insulated nozzle for breaker
WO2015039918A1 (en) High-voltage circuit breaker with improved robustness
JPS6293823A (en) Insulated nozzle for gas circuit breaker
KR0182773B1 (en) Puffer type gas-insulated circuit breaker
US4328403A (en) Single barrel puffer circuit interrupter
US3835274A (en) Contact system for a high-voltage circuit breaker
EP3349234B1 (en) An electric arc-blast nozzle and a circuit breaker including such a nozzle
CN105001565A (en) Teflon composite material, arc extinguishing nozzle, preparation method of arc extinguishing nozzle and high-voltage circuit breaker
JP2006325314A (en) Electric apparatus
CN101989511A (en) Load switch
US4144426A (en) Single barrel puffer circuit interrupter with downstream gas coolers
CN206194637U (en) Solve vacuum circuit breaker spring and use connection structure
US11322322B2 (en) Insulating molded body and gas circuit breaker
CN205645670U (en) Outdoor vacuum interrupter for load switch
JPS5823130A (en) Breaker
US611719A (en) Electric-Circuit Controller
WO2020044552A1 (en) Arc resistant insulating molded body, nozzle for gas circuit breaker, and gas circuit breaker
JPS6257049B2 (en)
JPH0145690B2 (en)
WO2021166170A1 (en) Insulating nozzle and gas breaker using same
US4904977A (en) Supersonic expulsion fuse
JP7273700B2 (en) Arc-resistant resin molding, nozzle for gas circuit breaker, gas circuit breaker, and method for producing arc-resistant resin molding