JPS629372B2 - - Google Patents

Info

Publication number
JPS629372B2
JPS629372B2 JP7141880A JP7141880A JPS629372B2 JP S629372 B2 JPS629372 B2 JP S629372B2 JP 7141880 A JP7141880 A JP 7141880A JP 7141880 A JP7141880 A JP 7141880A JP S629372 B2 JPS629372 B2 JP S629372B2
Authority
JP
Japan
Prior art keywords
particle size
fluidized bed
coal
gas
bed section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7141880A
Other languages
Japanese (ja)
Other versions
JPS56168830A (en
Inventor
Fumiaki Sato
Kyomichi Taoda
Takeshi Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7141880A priority Critical patent/JPS56168830A/en
Publication of JPS56168830A publication Critical patent/JPS56168830A/en
Publication of JPS629372B2 publication Critical patent/JPS629372B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • B01J8/28Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations the one above the other

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、石炭、石灰石などのような粒径分布
のある材料の、乾燥、仮焼などのような熱処理方
法及びその装置に関するものである。 流動層式装置を用いて、石炭、石灰石などの天
然物を乾燥、仮焼のような熱処理を行う場合、一
般的には粒径分布の少ない粒子を対象として処理
していた。最近、粒径分布が大きい材料を流動層
式で連続的に熱処理する要望が大となり、特に石
炭については大きな粒径分布(0〜50mm)のもの
を連続的に均一に乾燥する要望が強くなつた。し
かしながら従来の流動層式装置では、粒子径に応
じて滞留時間やガス空塔速度を適正にすることが
できない欠点があつた。また従来のキルン式やグ
レード方式の熱処理装置も熱効率が悪く所要床面
積が大きいという欠点があるばかりでなく、粒径
分布の大きい石炭粒子などを均一に乾燥させるこ
とは困難であつた。 本発明者らは、上記要望にかなう技術の確立の
ため、鋭意研究の結果、粒径分布の大きい材料
を、その粒径に応じた滞留時間、ガス空塔速度に
なるように操業でき、したがつて連続的かつ均一
に流動層式に熱処理しうる方法及び装置を発明す
るに至つた。 すなわち本発明は、 (1) 粒径分布のある材料を高温ガス流動層式に熱
処理する方法において、多段階的に下段になる
ほど高温ガス空塔速度が大きい流動層を形成す
る塔内の最上部の流動層内に上記材料を供給
し、各段の流動層では流動しえない粒径の材料
部分を逐次下段の流動層に落下させて流動層を
形成させて高温ガスで熱処理することを特徴と
する粒径分布のある材料の熱処理方法及び (2) 粒径分布のある材料を高温ガスで流動層式に
熱処理する塔装置において、該塔の塔径を多段
階的に下段になるほど小さくし、段階的に塔径
の変る部位に傾斜した高温ガス分配板を、その
低位側が塔壁と一定間隔を保つように設けてな
ることを特徴とする粒径分布のある材料の熱処
理装置 を要旨とするものである。 以下、本発明を第1図を参照し、一例として石
炭の乾燥に適用した場合につき詳述する。 第1図は本発明装置の一実施態様を示すもの
で、1は石炭供給ライン、2は高温ガス供給ライ
ン、3は熱処理済みガス導出ライン、4はサイク
ロン、5はガス排出ライン、6は微粒石炭排出ラ
インであり、F1,F2及びF3はそれぞれ塔径D1
D2及びD3(D1>D2>D3)を有する流動層部であ
る。7,8及び9はそれぞれ流動層部F1〜F2
F2〜F3及びF3〜高温ガスライン2間に設けられ
たガス分配板で、ガス分配板7,8は図示するよ
うに傾斜し、かつ塔壁との間には一定の間隙α,
βを開けて設けられている。10,11は弁で粒
径の大きな石炭粒子を流動層部F1よりF2へ、F2
よりF3へ落下分級させるために、各ガス分配板
7,8と関連して設けられている。12,13及
び14は各流動層部F1,F2及びF3からの流動層
処理を終えた石炭粒子の排出ラインである。 粒径分布のある石炭は、石炭供給ライン1より
最上段の塔径D1の流動層部F1に供給され、こゝ
の高温ガスの空塔速度に応じた粒径の石炭のみが
流動化され、一定時間滞留した後、排出ライン1
2から排出されるが、それ以上の粒径の石炭は流
動化しないため、ガス分配板7上に落下する。こ
のガス分配板7は傾斜しているので、こゝに落下
した石炭はガス分配板7上を下方に移動し、弁1
0を経て、流動層部F2に落下する。流動層部F1
で石炭を乾燥した高温ガスは導出ライン3を経て
サイクロン4に至り、そこで排ガスと微粒石炭と
に分離し、それぞれガス排出ライン5、微粒石炭
排出ライン6より排出される。 流動層部F2は、塔径がD2でD2<D1であるの
で、そこを上昇する高温ガスの空塔速度はF1
それよりも大であるため、流動層F2においては
流動層部F1における粒径よりは大きな石炭が流
動化され、かつ高温ガス温度も高いので粒径の大
なる石炭も流動層中に滞留している間に十分乾燥
されて排出ライン13より排出される。 流動層部F2においても流動化しない大粒径石
炭は、これまた流動層部F2の下方のガス分配板
8上に落下し、前述と同じ作用でガス分配板8を
移動し、弁11を経て、下部の流動層部F3に落
下し、そこで大粒径の石炭が全て流動化され、一
定の時間滞留した後、排出ライン14より排出さ
れる。 このようにすることによつて、大粒径の石炭ほ
ど、全流動層中に通過・滞留する時間が長く、か
つより高温のガスと接触するため、大粒径であつ
ても十分乾燥することができる。 なお、流動層部F3のガス分配板9は傾斜して
いる必要はなく、また塔壁との間に一定間隔を開
ける必要もなく、更には流動層部は3段階に限ら
ず材料の粒度分布の広さによつて2段階以上の任
意の段階の流動層部を設けてもよいことは容易に
理解されよう。 また各流動層部のガス空塔速度は次の方法によ
つて決定される。 すなわち、石炭などは、第2図に示すRosin−
Rammler線図上でほぼ直線1となるような粒度
分布を持つ。今、仮りに流動層部の数を第1図に
示すようにF1,F2,F3の3段とすると、各流動
層部F1,F2,F3でそれぞれ積算重量で33.3%づ
つの粒子が流動化しているのが理想といえる。一
方、各流動層部F1,F2,F3でのガス空塔速度
は、その流動層部にある粒子の代表粒径(最大粒
径と最小粒径の中間で平均粒径が理想である)の
最小流動化速度Uに基づいて決められる(ここ
で、代表粒径をその流動層部における最大粒径と
してこの最小流動化速度Uによつてガス空塔速度
を定めると全ての粒子は流動化するが破砕や小粒
子の飛散量が多くなり、また反対に最小粒径を基
準とした最小流動化速度Uによると大粒子が流動
化せずに停滞する等の問題を生じるため、全ての
粒子を均一に、かつキヤリーオーバーすることな
しに流動化させるには平均粒径((最大粒径と最小
粒径との算術平均粒径))を代表粒径としてこの最
小流動化速度Uによるのが好ましい)。第2図に
おいて、流動層部F1の平均粒径は積算重量が83.3
%(=100+66.6/2)の位置にある粒径すなわ
ち1.9 mmであり、同じく流動層部F2の平均粒径は積算
重量50%(=66.6+33.3/2)の位置にある粒
径7.8 mm、流動層部F3の平均粒径は積算重量16.7%(=
33.3/2)の位置にある粒径19.9mmである。従つて
、 各流動層部F1,F2,F3におけるガス空塔速度
は、それぞれ粒径1.9mm、7.8mm、19.9mmの粒子を
流動化し得る最小の速度U1,U2,U3に基づいて
決められる。具体的には、流動層部F1において
は、粒径1.9mmの粒子の最小流動化速度が0.5m/
secであり、ガス空塔速度はこの1〜2倍すなわ
ち0.5〜1.0m/sec、同様に流動層部F2において
は7.5〜15m/sec、流動層部F3においては20〜
40m/secとするのが好ましい。 ところで、上記は流動層部をF1,F2,F3の3
段とした場合についてであるが、流動層部が
F1,F2,………Fm,………Fnのn段の場合は、
各流動層部におけるRosin−Rammler線上の積算
重量が1/2n(2n−2m+1)×100%の式から求めら れ、この積算重量からRosin−Rammler線上で平
均粒径を求めて、各流動層部のガス空塔速度が定
められる。なお、粒子の最小流動化速度は、次式
によつて算出される。 Unf=(Dφ/180 (ρ−ρ)/
gε nf/1−εnfnf:最小流動化速度(cm/sec) Dp:粒径(cm) φs:形状係数(−) ρs:固体密度(g/cm3) ρF:流体密度(g/cm3) MF:流体粘度(g/cm・sec) g:重力加速度=980cm/sec2 εnf:最粗空隙率(−) 更に、上記のように各流動層部のガス空塔速度
を変化させるためには、入口ガス量が一定である
から、各流動層部の断面積を変化させることが必
要である。この断面積は、断面積×ガス空塔速度
が各流動層部において一定になるようにして決め
られる。 以上説明した本発明の方法および装置によれ
ば、他の乾燥装置および通常の流動層式乾燥装置
に比し、次のような利点を有する。 (1) 一般的な乾燥装置であるキルンやグレード式
乾燥装置と比較して処理能力が大きく、効率が
良い。 (2) 通常の流動層式乾燥装置では粒径分布のある
固体の均一乾燥は困難であるが、本発明によれ
ば全ての粒径の固体がその粒径に応じたガス空
塔速度で流動化され、しかも大径粒子程滞留時
間が長く、かつより高温のガスと接触するた
め、均一な乾燥を行なうことができる。 (3) 上記(2)で述べたように粒子が大きい程滞留時
間が長く、かつ高温ガスと接触するため、粒子
の破砕が生じ、製品粒子の粒径分布が均一化さ
れる。 次に、実施例をあげて本発明の効果を具体的に
示す。 実施例 (i) 使用石炭の性状 水分 8.8% 灰分 11.8% 揮発分 35.6% 固定炭素 43.8% 発熱量 5700Kcal/Kg (ii) 実験装置 第3図のフローに示す本発明による装置と、
比較のために第4図のフローに示す通常の流動
乾燥装置を用いた。 第3図中、第1図と同一符号は第1図と同一
機能部を示し、31は空気導入ライン、32は
プロパン導入ライン、33は炉、34はスクラ
バーであり、第4図中、第1,3図と同一符号
は第1,3図と同一機能部を示し、41は流動
層、42,42は処理済炭排出ラインであ
る。 (iii) 実験条件
TECHNICAL FIELD The present invention relates to a heat treatment method such as drying, calcination, etc. of a material having a particle size distribution such as coal, limestone, etc., and an apparatus therefor. When a fluidized bed apparatus is used to perform heat treatments such as drying and calcining of natural products such as coal and limestone, the treatment is generally performed on particles with a narrow particle size distribution. Recently, there has been a growing demand for continuous heat treatment of materials with a large particle size distribution using a fluidized bed method, and especially for coal, there has been a strong demand for continuously and uniformly drying materials with a large particle size distribution (0 to 50 mm). Ta. However, conventional fluidized bed apparatuses have the disadvantage that the residence time and gas superficial velocity cannot be adjusted appropriately depending on the particle size. Furthermore, conventional kiln-type and grade-type heat treatment apparatuses not only have the disadvantage of poor thermal efficiency and require a large floor area, but also have difficulty uniformly drying coal particles with a large particle size distribution. In order to establish a technology that meets the above requirements, the present inventors have conducted intensive research and found that it is possible to operate materials with a large particle size distribution so that the residence time and gas superficial velocity are in accordance with the particle size. Eventually, they invented a method and apparatus that can perform heat treatment continuously and uniformly in a fluidized bed. That is, the present invention provides (1) a method of heat treating a material with a particle size distribution using a high temperature gas fluidized bed method, in which a fluidized bed is formed in which the superficial velocity of the high temperature gas increases in the lower stages in multiple stages; The above-mentioned material is supplied into a fluidized bed at each stage, and the part of the material with a particle size that cannot be fluidized in the fluidized bed at each stage is sequentially dropped into the fluidized bed at the lower stage to form a fluidized bed and then heat-treated with high-temperature gas. (2) A method for heat treating a material with a particle size distribution, and (2) a column apparatus for heat treating a material with a particle size distribution in a fluidized bed type with high-temperature gas, in which the diameter of the column is reduced in multiple stages toward the bottom. , the gist is a heat treatment apparatus for materials with a particle size distribution, which is characterized in that a high-temperature gas distribution plate inclined at a portion where the column diameter changes stepwise is provided such that the lower side thereof maintains a constant distance from the column wall. It is something to do. Hereinafter, the present invention will be described in detail with reference to FIG. 1, with reference to FIG. 1, in which it is applied to coal drying as an example. FIG. 1 shows an embodiment of the apparatus of the present invention, in which 1 is a coal supply line, 2 is a high-temperature gas supply line, 3 is a heat-treated gas discharge line, 4 is a cyclone, 5 is a gas discharge line, and 6 is a fine particle Coal discharge line, F 1 , F 2 and F 3 are column diameter D 1 ,
This is a fluidized bed section having D 2 and D 3 (D 1 >D 2 >D 3 ). 7, 8 and 9 are fluidized bed sections F 1 to F 2 , respectively.
A gas distribution plate installed between F 2 to F 3 and F 3 to the high temperature gas line 2. The gas distribution plates 7 and 8 are inclined as shown in the figure, and have a certain gap α,
It is provided with β open. 10 and 11 are valves that move large coal particles from the fluidized bed section F 1 to F 2 ;
In order to further classify the gas into F3 , it is provided in association with each gas distribution plate 7,8. Reference numerals 12, 13 and 14 are discharge lines for coal particles that have been subjected to fluidized bed treatment from each fluidized bed section F 1 , F 2 and F 3 . Coal with a particle size distribution is supplied from the coal supply line 1 to the fluidized bed section F 1 with a column diameter D 1 at the top stage, and only the coal with a particle size corresponding to the superficial velocity of the high-temperature gas is fluidized. After remaining for a certain period of time, discharge line 1
However, coal with a larger particle size is not fluidized and falls onto the gas distribution plate 7. Since this gas distribution plate 7 is inclined, the coal that falls there moves downward on the gas distribution plate 7, and the coal falls on the valve 1.
0 and falls into the fluidized bed section F2 . Fluidized bed section F 1
The high-temperature gas that dried the coal passes through a derivation line 3 and reaches a cyclone 4, where it is separated into exhaust gas and fine coal, which are discharged through a gas discharge line 5 and a fine coal discharge line 6, respectively. In the fluidized bed section F 2 , the column diameter is D 2 and D 2 <D 1 , so the superficial velocity of the high temperature gas rising there is higher than that of F 1 , so in the fluidized bed F 2 , Coal larger than the particle size in the fluidized bed section F1 is fluidized, and since the high temperature gas temperature is also high, coal with a large particle size is sufficiently dried while staying in the fluidized bed and is discharged from the discharge line 13. be done. The large particle size coal that is not fluidized in the fluidized bed section F2 also falls onto the gas distribution plate 8 below the fluidized bed section F2 , moves the gas distribution plate 8 by the same action as described above, and moves to the valve 11. The coal then falls into the lower fluidized bed section F3 , where all of the large particle size coal is fluidized and is discharged from the discharge line 14 after staying there for a certain period of time. By doing this, the larger the particle size of the coal, the longer it takes to pass through and stay in the entire fluidized bed, and the more it comes into contact with the higher temperature gas, so even the larger particle size can be sufficiently dried. I can do it. It should be noted that the gas distribution plate 9 of the fluidized bed section F3 does not need to be inclined, nor does it need to have a certain interval between it and the tower wall. It will be easily understood that the fluidized bed section may be provided in two or more arbitrary stages depending on the width of the distribution. Further, the gas superficial velocity of each fluidized bed section is determined by the following method. In other words, coal etc. are treated as Rosin-
It has a particle size distribution that is almost a straight line 1 on the Rammler diagram. Now, if we assume that the number of fluidized bed sections is three stages F 1 , F 2 , and F 3 as shown in Figure 1, each fluidized bed section F 1 , F 2 , and F 3 will each account for 33.3% of the cumulative weight. Ideally, each particle should be fluidized. On the other hand, the gas superficial velocity in each fluidized bed section F 1 , F 2 , F 3 is determined by the representative particle size of the particles in that fluidized bed section (the ideal average particle size is between the maximum particle size and the minimum particle size). is determined based on the minimum fluidization speed U of Fluidization occurs, but the amount of fragmentation and scattering of small particles increases, and conversely, if the minimum fluidization speed U is set based on the minimum particle size, large particles will not be fluidized and will stagnate. In order to fluidize the particles uniformly and without carrying over, the minimum fluidization speed U is determined by using the average particle size ((arithmetic mean particle size of maximum particle size and minimum particle size)) as the representative particle size. (preferably). In Figure 2, the average particle size of fluidized bed section F1 is 83.3
% (=100+66.6/2), that is, 1.9 mm, and similarly, the average particle size of the fluidized bed section F2 is at a position of 50% of the cumulative weight (=66.6+33.3/2). The particle size is 7.8 mm, and the average particle size in fluidized bed section F3 is 16.7% of the cumulative weight (=
The grain size is 19.9 mm at the position of 33.3/2). Therefore, the gas superficial velocity in each fluidized bed section F 1 , F 2 , F 3 is the minimum velocity U 1 , U 2 , U 3 that can fluidize particles with particle diameters of 1.9 mm, 7.8 mm, and 19.9 mm, respectively. determined based on. Specifically, in the fluidized bed section F1 , the minimum fluidization speed for particles with a particle size of 1.9 mm is 0.5 m/
sec, and the gas superficial velocity is 1 to 2 times this, that is, 0.5 to 1.0 m/sec, similarly, in the fluidized bed section F2 , it is 7.5 to 15 m/sec, and in the fluidized bed section F3 , it is 20 to 1.0 m/sec.
It is preferable to set it as 40m/sec. By the way, in the above example, the fluidized bed section is divided into three parts: F 1 , F 2 , and F 3 .
Regarding the case where the fluidized bed section is
In the case of n stages of F 1 , F 2 , ......Fm, ......Fn,
The cumulative weight on the Rosin-Rammler line in each fluidized bed section is determined from the formula 1/2n (2n-2m+1) x 100%, and the average particle diameter is determined on the Rosin-Rammler line from this cumulative weight. The gas superficial velocity of is determined. Note that the minimum fluidization speed of particles is calculated by the following formula. U nf = (D p φ s ) 2 /180 (ρ s − ρ F )/
M F3 nf /1−ε nf U nf : Minimum fluidization speed (cm/sec) D p : Particle diameter (cm) φ s : Shape factor (-) ρ s : Solid density (g/cm 3 ) ρ F : Fluid density (g/cm 3 ) M F : Fluid viscosity (g/cm・sec) g: Gravitational acceleration = 980 cm/sec 2 ε nf : Coarsest porosity (-) Furthermore, as described above, each fluidized bed In order to change the superficial gas velocity of each fluidized bed section, it is necessary to change the cross-sectional area of each fluidized bed section since the inlet gas amount is constant. This cross-sectional area is determined such that the cross-sectional area x gas superficial velocity is constant in each fluidized bed section. The method and apparatus of the present invention described above have the following advantages over other drying apparatuses and ordinary fluidized bed drying apparatuses. (1) Compared to common drying equipment such as kilns and grade drying equipment, it has a larger processing capacity and is more efficient. (2) It is difficult to uniformly dry solids with a particle size distribution using a normal fluidized bed dryer, but according to the present invention, solids of all particle sizes flow at a gas superficial velocity corresponding to the particle size. Furthermore, larger particles have a longer residence time and come into contact with a higher temperature gas, so uniform drying can be achieved. (3) As stated in (2) above, the larger the particles, the longer the residence time and the contact with the high temperature gas, which causes the particles to be crushed and the particle size distribution of the product particles to be uniform. Next, the effects of the present invention will be specifically illustrated by giving Examples. Example (i) Properties of coal used Moisture 8.8% Ash 11.8% Volatile content 35.6% Fixed carbon 43.8% Calorific value 5700 Kcal/Kg (ii) Experimental apparatus An apparatus according to the present invention shown in the flowchart of Fig. 3,
For comparison, a conventional fluidized drying apparatus shown in the flowchart of FIG. 4 was used. In FIG. 3, the same symbols as in FIG. 1 indicate the same functional parts as in FIG. 1, 31 is an air introduction line, 32 is a propane introduction line, 33 is a furnace, 34 is a scrubber, The same reference numerals as in FIGS. 1 and 3 indicate the same functional parts as in FIGS. 1 and 3, 41 is a fluidized bed, and 42 1 and 42 2 are treated coal discharge lines. (iii) Experimental conditions

【表】【table】

【表】 (iv) 実験結果 粒度別製品炭中の水分量は下表の通りであ
り、また製品炭の粒度分布は第2図に示す通り
であつた、なお第2図中、ライン2が本発明
例、ライン3が比較例による製品炭の粒度分布
である。
[Table] (iv) Experimental results The water content in the product charcoal by particle size is as shown in the table below, and the particle size distribution of the product charcoal is as shown in Figure 2. In Figure 2, line 2 is In the present invention example, line 3 is the particle size distribution of the product charcoal according to the comparative example.

【表】 上表から、本発明では全粒径を通してほぼ均
一の水分を有する製品が得られるが、通常の流
動層による処理では大粒径石炭はあまり脱水さ
れていないことが判る。また、第2図のデータ
から、本発明では製品炭の粒度分布2が原料炭
の粒度分布1よりラインの傾きがかなり大きく
なつており、処理中に大粒径石炭が破砕されて
粒度分布が狭くなつている(すなわち粒度が均
一化されている)ことが判る。
[Table] From the above table, it can be seen that in the present invention, a product having almost uniform moisture content throughout the grain size can be obtained, but in the ordinary fluidized bed treatment, large grain size coal is not dehydrated very much. In addition, from the data in Figure 2, in the present invention, the slope of the line for particle size distribution 2 of product coal is considerably larger than that of particle size distribution 1 for coking coal, indicating that large particle size coal is crushed during processing and the particle size distribution is changed. It can be seen that the particle size has become narrower (that is, the particle size has become more uniform).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法と装置の基本的なフロー
と構成を示す図、第2図はRosin−Rammler線図
上における原料石炭と実施例で得られた各製品炭
の粒度分布を示す図、第3,4図は実施例で使用
した装置のフローを示す図で、第3図が本発明に
よるもの、第4図が通常の流動層によるものであ
る。
Fig. 1 is a diagram showing the basic flow and configuration of the method and apparatus of the present invention, and Fig. 2 is a diagram showing the particle size distribution of coking coal and each product coal obtained in Examples on the Rosin-Rammler diagram. , 3 and 4 are diagrams showing the flow of the apparatus used in the examples, where FIG. 3 is the one according to the present invention and FIG. 4 is the one using a normal fluidized bed.

Claims (1)

【特許請求の範囲】[Claims] 1 粒径分布のある材料を高温ガスで流動層式に
熱処理する塔装置において、該塔の塔径を多段階
的に下段になるほど小さくし、段階的に塔径の変
る部位に傾斜した高温ガス分配板を、その低位側
が塔壁と一定間隔を保つように設けてなることを
特徴とする粒径分布のある材料の熱処理装置。
1. In a column device that heat-treats materials with a particle size distribution in a fluidized bed type with high-temperature gas, the column diameter of the column is made smaller in multiple stages toward the bottom, and the high-temperature gas is heated at the portion where the column diameter changes in stages. A heat treatment apparatus for materials having a particle size distribution, characterized in that a distribution plate is provided such that its lower side maintains a constant distance from the column wall.
JP7141880A 1980-05-30 1980-05-30 Method and apparatus of heat treatment for material having wide size distribution Granted JPS56168830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7141880A JPS56168830A (en) 1980-05-30 1980-05-30 Method and apparatus of heat treatment for material having wide size distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7141880A JPS56168830A (en) 1980-05-30 1980-05-30 Method and apparatus of heat treatment for material having wide size distribution

Publications (2)

Publication Number Publication Date
JPS56168830A JPS56168830A (en) 1981-12-25
JPS629372B2 true JPS629372B2 (en) 1987-02-27

Family

ID=13459937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7141880A Granted JPS56168830A (en) 1980-05-30 1980-05-30 Method and apparatus of heat treatment for material having wide size distribution

Country Status (1)

Country Link
JP (1) JPS56168830A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002887A1 (en) * 1995-07-10 1997-01-30 Rijksuniversiteit Te Groningen Separating solids from a mixture in a gas-solid fluidised bed

Also Published As

Publication number Publication date
JPS56168830A (en) 1981-12-25

Similar Documents

Publication Publication Date Title
EA010276B1 (en) Method and apparatus for heat treatment in a fluidized bed
US4324544A (en) Process and system for drying coal in a fluidized bed by partial combustion
US3336109A (en) Process for making an anhydrous alumina product consisting principally of alpha alumina from alumina hydrate
US2629938A (en) Method and apparatus for treating solids
KR101401341B1 (en) Counter flow multi baffle dryer for drying of high moisture coal and method thereof
US4617744A (en) Elongated slot dryer for wet particulate material
WO1992000252A1 (en) Fluidized calcining process
US2715282A (en) Method of and apparatus for drying particulate material
US2628077A (en) Method of effecting indirect heat transfer
US4445976A (en) Method of entrained flow drying
US4787152A (en) Fluid-beds
JPH0759709B2 (en) How to control the humidity of coal
US3052990A (en) Method and apparatus for solids contacting
US2235683A (en) Drying process
JPS629372B2 (en)
US3360866A (en) Method and apparatus for dehydrating, drying and heat-treating granular substances
US4320795A (en) Process for heat transfer with dilute phase fluidized bed
US4493157A (en) Method of autogenously drying coal
JP2004508930A5 (en)
CN216482133U (en) Low order fine coal drying device
JPS58115049A (en) Method and device for drying cold wet gypsum
US4727657A (en) Declined bed contactor
US3537188A (en) Dryer
RU2410615C2 (en) Method for drying low-free-flowing granular material
AU2014100445A4 (en) System for drying particulate materials