JPS6293623A - Sensor - Google Patents

Sensor

Info

Publication number
JPS6293623A
JPS6293623A JP23388385A JP23388385A JPS6293623A JP S6293623 A JPS6293623 A JP S6293623A JP 23388385 A JP23388385 A JP 23388385A JP 23388385 A JP23388385 A JP 23388385A JP S6293623 A JPS6293623 A JP S6293623A
Authority
JP
Japan
Prior art keywords
piezoelectric element
force
side piezoelectric
elastic member
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23388385A
Other languages
Japanese (ja)
Inventor
Keiichi Miyamoto
宮本 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP23388385A priority Critical patent/JPS6293623A/en
Publication of JPS6293623A publication Critical patent/JPS6293623A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to detect the strength of the continuously variable force acting on an unfixed piezoelectric element, by stacking an exciting side piezoelectric element excited from the outside, an elastic member and an outlet side piezoelectric element and fixing one of both piezoelectric elements. CONSTITUTION:An exciting side piezoelectric element 1, an elastic member 6 and an outlet side piezoelectric element 7 are stacked between a changeable diaphragm 2 and a fixed rigid body 11 without forming a gap. The exciting side piezoelectric element 1 is excited at frequency f0 by an oscillator 5 and repeats minute extension and contraction in the up-and-down direction. This extension and contraction are propagated to the output side piezoelectric element 7 through the elastic member 6 to generate signal voltage V0 with the frequency f0. At this time, when force P acts on the diaphragm 2, voltage V0 becomes AC voltage corresponding to the force P and the signal corresponding to the force P is obtained from an output signal terminal 12. Therefore, even if the force P changes, the change of the force P can be continuously detected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は力の強さを検出するセンサに係り、特に可変づ
る力の強さまたは流体の圧力変fJ+の検出を行うのに
好適なセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a sensor for detecting force intensity, and particularly to a sensor suitable for detecting variable force intensity or fluid pressure change fJ+.

従来の技術 従来のセンナとしては、例えば拡散半導体歪ゲージを受
圧部材の表面に貼着し、受圧部材に力が作用すると受圧
部材と共に伸縮して作用した力の強さを検出するものが
ある。また、圧電素子を用いて圧電素子に作用した力の
強さを検出するセンサがあった。
2. Description of the Related Art A conventional sensor includes, for example, a diffused semiconductor strain gauge attached to the surface of a pressure-receiving member, and when a force is applied to the pressure-receiving member, the sensor expands and contracts together with the pressure-receiving member to detect the strength of the applied force. There has also been a sensor that uses a piezoelectric element to detect the strength of force acting on the piezoelectric element.

発明が解決しようとする問題点 上記従来のセンサでは、例えば拡散半導体正ゲージの場
合、温度ドリフトが大きく歪ゲージの出力を増幅する信
号増幅回路の構成が複雑であるという欠点があった。ま
た、圧電素子を用いた揚台、  。
Problems to be Solved by the Invention The conventional sensors described above, for example, in the case of a diffused semiconductor positive gauge, have the drawbacks that temperature drift is large and the configuration of the signal amplification circuit for amplifying the output of the strain gauge is complicated. Also, a lifting platform using a piezoelectric element.

圧電素子に力が作用すると瞬時的に電圧を出力するので
、連続的に可変した力の強さを検出するのに適しておら
ず、例えば流体の圧力変動を検出することが難しいとい
う欠点があった。
When a force acts on a piezoelectric element, it instantly outputs a voltage, so it is not suitable for detecting the strength of a continuously variable force, and has the disadvantage that it is difficult to detect, for example, pressure fluctuations in a fluid. Ta.

そこで、本発明は上記欠点を除去したセンサを提供する
ことを目的とする。
Therefore, an object of the present invention is to provide a sensor that eliminates the above-mentioned drawbacks.

問題点を解決するための手段及び作用 本発明は外部J−り励振され交番的に変形する励振側圧
電素子を弾性部材の一方の面に当接させ、弾性ij材の
他方の而に出力側圧電素子を当接させてなる。出力側圧
電素子は励振側圧電素子からの振動を弾性部材を介して
伝播され弾性部材の変形に伴う力の強さに応じた出力を
発生する。したがって、励振側圧電素子あるいは出力側
圧電素子の一方を固定して他方を非固定とし、非固定側
の圧電素子に作用した力の強さに応じた出力を固定側の
圧電素子より得ることにより、温度の影響を受けること
なく可変づる力の強ざを連続的に検出するようにしたも
のである。
Means and Function for Solving the Problems The present invention provides an excitation-side piezoelectric element that is externally excited and alternately deforms, and contacts one surface of an elastic member, and abuts the output-side piezoelectric element on the other side of the elastic member. It is made by contacting a piezoelectric element. The output side piezoelectric element propagates the vibration from the excitation side piezoelectric element via the elastic member, and generates an output according to the strength of the force accompanying the deformation of the elastic member. Therefore, by fixing one of the excitation-side piezoelectric element or the output-side piezoelectric element and leaving the other unfixed, an output corresponding to the strength of the force acting on the non-fixed side piezoelectric element can be obtained from the fixed side piezoelectric element. , which continuously detects the strength of the variable force without being affected by temperature.

実施例 第1図に本発明になるセンサの第1実施例を示す。第1
図中、1は円柱形状の励振側圧電素子で、ダイ17フラ
ム2上に載置されている。励振側圧電索子1の上、下面
には電極1a、Ibが設けてあり、電111a、1bは
夫々リード線3,4を介して発振2!i5に接続されて
いる。
Embodiment FIG. 1 shows a first embodiment of a sensor according to the present invention. 1st
In the figure, reference numeral 1 denotes a cylindrical excitation side piezoelectric element, which is placed on a die 17 and a flamm 2. Electrodes 1a and Ib are provided on the upper and lower surfaces of the excitation side piezoelectric cord 1, and the electric currents 111a and 1b are connected to oscillation 2! via lead wires 3 and 4, respectively. Connected to i5.

したがって、励振側圧電素子の電極1a、lbには発振
器5から一定の周波数1゛oの電[〔が印加されている
。このため、励振側圧電素子1は周波数f。で励振して
いる。
Therefore, an electric current of a constant frequency of 1'o is applied from the oscillator 5 to the electrodes 1a and lb of the excitation side piezoelectric element. Therefore, the excitation side piezoelectric element 1 has a frequency f. It is excited by

また、励振側圧電素子1の−hの゛上極1a上には弾性
部材6が載置されている。このため、一方の電極1aは
弾性部材6に当接し、他の電極1bはダイヤフラム2に
当接する。なお、弾性部材6は例えばゴム等の弾力性を
右する材質あるい番よりの強さに応じて伸縮するバネに
よって形成されている。
Further, an elastic member 6 is placed on the -h upper pole 1a of the excitation side piezoelectric element 1. Therefore, one electrode 1a comes into contact with the elastic member 6, and the other electrode 1b comes into contact with the diaphragm 2. The elastic member 6 is formed of a spring that expands and contracts depending on the strength of the material or number that determines elasticity, such as rubber.

7は出力側圧電素子で、弾性部材6の上面に載置されて
いる。また、出力側圧電素子の上、下面には電極7a、
7b71/1設けである。電極7a。
Reference numeral 7 denotes an output side piezoelectric element, which is placed on the upper surface of the elastic member 6. Further, electrodes 7a are provided on the upper and lower surfaces of the output side piezoelectric element.
7b71/1 installed. Electrode 7a.

7bは夫々リード線8.9を介して増幅器10に接続さ
れている。出力側圧電素子7の一方の電極7bは弾性部
材6の上面に当接し、他方の゛上極7aは固定された剛
体11に当接している。したがって、励振側圧電索子1
2弾性部材6.出力側圧電素子7は変位可能なダイヤフ
ラム2と固定された剛体11との間にずぎ間なく積重さ
れている。
7b are each connected to an amplifier 10 via a lead wire 8.9. One electrode 7b of the output side piezoelectric element 7 is in contact with the upper surface of the elastic member 6, and the other upper electrode 7a is in contact with the fixed rigid body 11. Therefore, the excitation side piezoelectric cord 1
2 elastic member 6. The output piezoelectric element 7 is stacked seamlessly between the displaceable diaphragm 2 and the fixed rigid body 11.

このため、励振側圧Xtffi子1の発振器5による振
動は弾性部材6に弾性的に吸収される。ところが、ダイ
ヤフラム2に力Pが作用すると、ダイヤフラム2を介し
て励振側圧電索子1は加圧される。
Therefore, the vibration of the excitation side pressure Xtffi element 1 caused by the oscillator 5 is elastically absorbed by the elastic member 6. However, when the force P acts on the diaphragm 2, the excitation side piezoelectric cord 1 is pressurized via the diaphragm 2.

このため、励振側圧電索子1が弾性部材6を圧縮し、さ
らに出力側圧電素子7が剛体11に押圧される。
Therefore, the excitation side piezoelectric cord 1 compresses the elastic member 6, and the output side piezoelectric element 7 is further pressed against the rigid body 11.

この状態で励振側圧電素子1は発S器5によって励振さ
れていると、上下方向に微小な伸縮を繰り返り。即ち、
励振側圧電素子1が伸びたときΔFだ【)弾性部材6を
押圧する力Pが増加し、また励振側圧′ifX素子1が
縮むと−ΔFだけ力Pが減少したのと等価である。した
がって、ダイヤフラム2に力Pが作用すると、±ΔFの
力が周波数f。
In this state, when the excitation side piezoelectric element 1 is excited by the oscillator 5, it repeatedly expands and contracts minutely in the vertical direction. That is,
When the excitation side piezoelectric element 1 expands, the force P pressing the elastic member 6 increases, and when the excitation side pressure 'ifX element 1 contracts, it is equivalent to a decrease in the force P by -ΔF. Therefore, when a force P acts on the diaphragm 2, a force of ±ΔF has a frequency f.

で弾性部材6の下面に交番的に作用する。このP±ΔF
の力はその一部が弾性部材6により吸収されるが、残り
の力P′±ΔF′は出力側圧電素子7に伝[づる。さら
に出)j側圧型素子7では±ΔF′の力が周波数foで
変化しているため、周波数foの信号電圧Voを発生す
る。この信号電圧Voは増幅器10で増幅され出力信号
端子12に出力される。また、力Pの強さに応じて弾性
部材6が圧縮されており、弾性部材6の圧縮の面金によ
って励振側圧電素子1からの力ΔFは弾性部材6に吸収
される割合が変化する。即ち、弾性部材6が圧縮される
とその分力ΔFの一部が吸収されずに出力側圧電素子1
に伝播される。
act alternately on the lower surface of the elastic member 6. This P±ΔF
A portion of the force is absorbed by the elastic member 6, but the remaining force P'±ΔF' is transmitted to the output side piezoelectric element 7. Furthermore, since the force of ±ΔF' changes at the frequency fo in the j side pressure type element 7, a signal voltage Vo at the frequency fo is generated. This signal voltage Vo is amplified by an amplifier 10 and output to an output signal terminal 12. Further, the elastic member 6 is compressed according to the strength of the force P, and the rate at which the force ΔF from the excitation side piezoelectric element 1 is absorbed by the elastic member 6 changes depending on the compression surface of the elastic member 6. That is, when the elastic member 6 is compressed, a part of the component force ΔF is not absorbed and the output side piezoelectric element 1
is propagated to.

したがって、出力側圧電素子7の発生電圧V。Therefore, the voltage V generated by the output side piezoelectric element 7.

は力ΔF′に比例しており、弾性部材6による力伝達効
率が力Pの?aざに応じて変化するため、電圧Voは力
Pに応じた交流電圧である。叩ら、力Pがダイヤフラム
2に作用すると出カイ3号端子12より力Pに応じた信
号が得られる。このため、力Pが変動しても、力Pの変
化を連続的に検出することができる。また、圧電素子1
,7はキューリ温度が高いため、温度上ytによって検
出特性が変化せず高温下でも力Pを検出できる。出力側
圧電素子7より周波数foの電圧が17られるため、増
幅器10は交流増幅器が使用できる。また、周波数ro
を選ぶことにより選択増幅器が使用でき、出力信号端子
12の出力電圧vOが小さいとぎもVoを十分な大きさ
に増幅できる。
is proportional to the force ΔF', and the force transmission efficiency by the elastic member 6 is ? of the force P? The voltage Vo is an alternating voltage that depends on the force P since it changes depending on the force P. When a force P is applied to the diaphragm 2, a signal corresponding to the force P is obtained from the output No. 3 terminal 12. Therefore, even if the force P fluctuates, changes in the force P can be continuously detected. In addition, piezoelectric element 1
, 7 have a high Curie temperature, so the detection characteristics do not change due to temperature increase yt, and the force P can be detected even at high temperatures. Since a voltage of frequency fo is applied from the output side piezoelectric element 7, an AC amplifier can be used as the amplifier 10. Also, the frequency ro
By selecting , a selective amplifier can be used, and even when the output voltage vO of the output signal terminal 12 is small, Vo can be amplified to a sufficient level.

次に、上記構成になるセンサ13を圧ノコセンサとして
使用した場合につき説明する。第2図中、流体を給送す
る配管15の流路15aはその途中にオリフィス16を
有する。オリフィス16の上流側と下流側の配管15に
は第1図に示すセン1ノ13を収納する四部15b、1
5Gが設けである。
Next, a case will be described in which the sensor 13 having the above configuration is used as a pressure saw sensor. In FIG. 2, a flow path 15a of a pipe 15 for feeding fluid has an orifice 16 in the middle thereof. The piping 15 on the upstream and downstream sides of the orifice 16 has four parts 15b and 1 for housing the sensor 13 shown in FIG.
5G is installed.

一対のセンサ13.13は夫々出力側圧電素子7のNF
i 7 aを凹部15b、15cの上面に当接さUた状
態で出力側圧電素子7を配管15に固定されている。励
振側圧電素子1は流路15aに開口する開口部15d、
15eを塞ぐように設けられたダイヤフラム2に当接し
ている。
A pair of sensors 13 and 13 are respectively connected to the NF of the output side piezoelectric element 7.
The output side piezoelectric element 7 is fixed to the pipe 15 with the i 7 a in contact with the upper surfaces of the recesses 15b and 15c. The excitation side piezoelectric element 1 has an opening 15d that opens into the flow path 15a,
It is in contact with a diaphragm 2 provided so as to close 15e.

したがって、ダイヤフラム2,2には流路15a内を流
れる流体の圧力P+ 、P2が作用する。そして、圧力
P+ 、P2はダイヤフラム2,2を介して励振側圧電
素子1.1を押圧することによって出力側圧電素子7,
7の出力として検出される。
Therefore, the pressures P+ and P2 of the fluid flowing in the flow path 15a act on the diaphragms 2, 2. The pressures P+ and P2 are applied to the output side piezoelectric elements 7 and 1 by pressing the excitation side piezoelectric element 1.1 via the diaphragms 2, 2.
It is detected as the output of 7.

このため、配管15内を流れる流体の圧力変動をセンF
j13.13を使用して連続的に検出できる。
Therefore, the pressure fluctuation of the fluid flowing inside the pipe 15 is detected by the sensor
j13.13 can be used for continuous detection.

また、センサ13,13はオリフィス16の上。Moreover, the sensors 13 and 13 are located above the orifice 16.

下流側の圧力P+ 、P2の差圧を容易に検出すること
もでき、ガス漏れ検知装置等に適用することもできる。
It is also possible to easily detect the differential pressure between the pressures P+ and P2 on the downstream side, and it can also be applied to a gas leak detection device, etc.

次に上記センサ13をロードセルに適用した場合につき
説明°する。第3図中、センサ13はロードセル本体1
7内に収納されている−0.この場合励振側圧電素子1
がロードセル本体17に固定されている。またロードセ
ル本体17の上部間口17aには荷重受は部材18が」
−1下移動自在に設りられている。荷重受は部材18と
出力側圧電素子7との間には圧力伝達体1つが介在覆る
。したがって、荷重受は部材18に物体が載置され荷重
Wが下方に作用すると、その荷重Wの大きさに応じて弾
性部材6が圧縮される。さらに、その力はセンサ13の
出力側圧電素子7に作用する。
Next, a case where the sensor 13 is applied to a load cell will be explained. In Fig. 3, the sensor 13 is the load cell body 1
-0. In this case, the excitation side piezoelectric element 1
is fixed to the load cell body 17. In addition, a load receiving member 18 is provided in the upper opening 17a of the load cell body 17.
-1 It is installed so that it can be moved freely. The load receiver is covered with one pressure transmitting body interposed between the member 18 and the output side piezoelectric element 7. Therefore, in the load receiver, when an object is placed on the member 18 and a load W acts downwardly, the elastic member 6 is compressed according to the magnitude of the load W. Furthermore, the force acts on the output side piezoelectric element 7 of the sensor 13.

このため、弾性部材6が出力側圧電素子7による押圧力
で圧縮される。しかるに、ロードセル本体17に固定さ
れた励振側圧電素子1が発振器5により周波数foで励
振している ため、出力側圧電素子7は上方向より荷重Wで押圧され
、下方向よりΔFの力で交播的に押圧されている。した
がって、出力側圧電素子7は荷ff1Wの大きさに応じ
て周波数f。の電圧Voを出力する。
Therefore, the elastic member 6 is compressed by the pressing force of the output side piezoelectric element 7. However, since the excitation side piezoelectric element 1 fixed to the load cell body 17 is excited by the oscillator 5 at the frequency fo, the output side piezoelectric element 7 is pressed from above by the load W and is crossed by the force ΔF from below. There is widespread pressure. Therefore, the output side piezoelectric element 7 has a frequency f depending on the magnitude of the load ff1W. outputs the voltage Vo.

発明の効果 上述の如く、本発明になるセンサは、非固定側の圧電素
子に作用する力の強さに応じた出力を出力側圧電素子よ
り得ることができ、しかも励振された励振側圧電素子の
伸縮の周波数の出力により力の変動を連続してアナログ
的に検出でき、このため、出力側圧電素子からの出力を
交流的に増幅でき、しかもS/N比も良い。また、圧電
素子のキューリf!度が比較的高いので例えば拡散半導
体歪ゲージに比べて高温下においても安定した圧力検出
を行うことができ、特に配管流路内を流れる流体の圧力
変動も検出でき、例えば配管内の差圧を連続的に計測し
え、また物体のΦGを目測するロードセルに適用するこ
とができ、圧電素子を使用してあらゆる種類の力を検出
することができる等の特長を有する。
Effects of the Invention As described above, the sensor according to the present invention can obtain an output from the output side piezoelectric element according to the strength of the force acting on the non-fixed side piezoelectric element, and furthermore, the The force fluctuations can be continuously detected in an analog manner by the output of the expansion/contraction frequency, and therefore the output from the output side piezoelectric element can be amplified in an alternating current manner, and the S/N ratio is also good. In addition, the piezoelectric element Curi f! Because the temperature is relatively high, it is possible to perform stable pressure detection even at high temperatures compared to, for example, diffusion semiconductor strain gauges.In particular, it is also possible to detect pressure fluctuations in fluid flowing in piping channels, for example, to detect differential pressure in piping. It has features such as being able to measure continuously, being able to be applied to a load cell that visually measures the ΦG of an object, and being able to detect all kinds of forces using piezoelectric elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になるセンサの一実施例の概略構成図、
第2図は第1図に示すセンサを圧カセンサとして使用し
た場合の概略構成図、第3図は第1図のセンサをロード
セルに適用した場合の概略構成図である。 1・・・励振側圧電素子、2・・・ダイヤフラム、5・
・・発振器、6・・・骨性部材、7・・・出力側圧電素
子、10・・・増幅器、11・・・剛体、13・・・セ
ンサ。
FIG. 1 is a schematic configuration diagram of an embodiment of the sensor according to the present invention;
FIG. 2 is a schematic configuration diagram when the sensor shown in FIG. 1 is used as a pressure sensor, and FIG. 3 is a schematic configuration diagram when the sensor shown in FIG. 1 is applied to a load cell. 1... Excitation side piezoelectric element, 2... Diaphragm, 5...
... Oscillator, 6... Bone member, 7... Output side piezoelectric element, 10... Amplifier, 11... Rigid body, 13... Sensor.

Claims (1)

【特許請求の範囲】[Claims] 外部より励振され交番的に変形する励振側圧電素子と、
一方の面を該励振側圧電素子の一方の面に当接させた弾
性部材と、一方の面を該弾性部材の他方の面に当接し前
記励振側圧電素子からの振動を該弾性部材を介して伝播
され該弾性部材の変形に伴う力の強さに応じた出力を生
ずる出力側圧電素子とよりなり、前記励振側圧電素子あ
るいは前記出力側圧電素子の他方の面を固定し該出力側
圧電素子より非固定側の前記出力側圧電素子あるいは前
記励振側圧電素子の他方の面に作用する力の強さに応じ
た出力を得る構成としたことを特徴とするセンサ。
an excitation-side piezoelectric element that is excited from the outside and deforms alternately;
an elastic member having one surface in contact with one surface of the excitation-side piezoelectric element; and one surface in contact with the other surface of the elastic member to transmit vibrations from the excitation-side piezoelectric element through the elastic member. and an output-side piezoelectric element that generates an output according to the strength of the force that is propagated by the elastic member, and the other surface of the excitation-side piezoelectric element or the output-side piezoelectric element is fixed and the output-side piezoelectric element is A sensor characterized in that the sensor is configured to obtain an output corresponding to the strength of a force acting on the other surface of the output-side piezoelectric element or the excitation-side piezoelectric element on the non-fixed side of the element.
JP23388385A 1985-10-18 1985-10-18 Sensor Pending JPS6293623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23388385A JPS6293623A (en) 1985-10-18 1985-10-18 Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23388385A JPS6293623A (en) 1985-10-18 1985-10-18 Sensor

Publications (1)

Publication Number Publication Date
JPS6293623A true JPS6293623A (en) 1987-04-30

Family

ID=16962052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23388385A Pending JPS6293623A (en) 1985-10-18 1985-10-18 Sensor

Country Status (1)

Country Link
JP (1) JPS6293623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575634U (en) * 1992-03-13 1993-10-15 エヌオーケー株式会社 Load sensor and load sensor structure using the same
JP2006243876A (en) * 2005-03-01 2006-09-14 Toko Electric Corp Intrusion alert system
JP2007285824A (en) * 2006-04-14 2007-11-01 Aisin Seiki Co Ltd Piezoelectric sensor system and pinch detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55159129A (en) * 1979-05-30 1980-12-11 Takazawa Seisakusho:Kk Pressure detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55159129A (en) * 1979-05-30 1980-12-11 Takazawa Seisakusho:Kk Pressure detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575634U (en) * 1992-03-13 1993-10-15 エヌオーケー株式会社 Load sensor and load sensor structure using the same
JP2006243876A (en) * 2005-03-01 2006-09-14 Toko Electric Corp Intrusion alert system
JP2007285824A (en) * 2006-04-14 2007-11-01 Aisin Seiki Co Ltd Piezoelectric sensor system and pinch detector

Similar Documents

Publication Publication Date Title
US4546658A (en) Piezoelectric force/pressure sensor
US4258565A (en) Force detector
GB2108268A (en) Vortex flow metering apparatus
KR970007320A (en) Semiconductor differential pressure measuring device
JP4864438B2 (en) System and method for sensing pressure
JPS6293623A (en) Sensor
US4991153A (en) Vibration type transducer
US7081745B2 (en) Paramagnetic oxygen sensing apparatus and method
EP0560970A1 (en) Noise rejecting vortex flowmeter
JP2006029984A (en) Oscillating type pressure sensor
JPS58160813A (en) Vortex flow meter
JPS60186725A (en) Pressure sensor
JPS5828634A (en) Pressure sensor
JPH11258016A (en) Vortex flow meter
JP2007240449A (en) Pressure sensor, pressure detector, and pressure detection method
JP3184126B2 (en) Flow sensor
JPH03183923A (en) Pressure sensor using piezoelectric element
CN217687662U (en) Sealing structure suitable for semiconductor pressure sensor
JP3599082B2 (en) Vortex flow meter
JPH068497Y2 (en) Vortex flowmeter
JPS5828635A (en) Pressure sensor
JPS6057231A (en) Gas pressure gauge
SU627360A1 (en) Pressure transducer with frequency output
JP3211916B2 (en) Karman vortex flowmeter
JPS6339847B2 (en)