JPS6293332A - Ni alloy - Google Patents

Ni alloy

Info

Publication number
JPS6293332A
JPS6293332A JP23095785A JP23095785A JPS6293332A JP S6293332 A JPS6293332 A JP S6293332A JP 23095785 A JP23095785 A JP 23095785A JP 23095785 A JP23095785 A JP 23095785A JP S6293332 A JPS6293332 A JP S6293332A
Authority
JP
Japan
Prior art keywords
alloy
strength
ductility
temperature
high temperatures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23095785A
Other languages
Japanese (ja)
Inventor
Akiji Fujita
明次 藤田
Akira Komoto
弘本 晃
Tatsuo Morimoto
森本 立男
Masakatsu Fukuda
福田 正勝
Tatsuyoshi Matsumoto
松本 辰喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23095785A priority Critical patent/JPS6293332A/en
Publication of JPS6293332A publication Critical patent/JPS6293332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To obtain a high strength and high ductility Ni alloy made chiefly of an L12 type intermetallic compound by specifying a composition consisting of Al, B, Fe, Hf, Zr, and Ni. CONSTITUTION:This Ni alloy has a composition consisting of, by weight, 4X13% Al, <=3% B, 0.005-12% Fe, 0.005-22% Hf and/or 0.005-4% Zr and the balance Ni with inevitable impurities. The alloy is made chiefly of an L12 type intermetallic compound. The alloy has high ductility at ordinary temp. and such a high temp. as >=about 600>=oC and sufficiently high strength, so it is suitable for use as a material for parts of a gas turbine or the like or as a structural material exposed to a high temp. for a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービンの主要部品であるディスク、ベー
ン、ノズル、ブレード等やジェットエンジン、高温パル
プ、高温ガス炉など高温に長時間さらされる構造材料に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention applies to structures that are exposed to high temperatures for long periods of time, such as disks, vanes, nozzles, blades, etc., which are the main parts of gas turbines, jet engines, high-temperature pulp, and high-temperature gas furnaces. Regarding materials.

〔従来の技術〕[Conventional technology]

ガスタービンやジェットエンジン、高温バルブ、高温ガ
ス炉など高温に長時間さらされる構造材としてはNi基
超合金が利用されている。このNi基超合金の場合、金
属間化合物のγ′相〔Ni゜(Al、Ti) ]などを
6 [1vQ1%以上析出させ高温強度の強化を図シ、
また、Niのマトリックス相であるγ相で延性、靭性を
生み出している。しかし、この種の材料の場合マトリッ
クス相がNi相であるため、高温において著しく強度が
低下してしまう根本的な欠点がある。
Ni-based superalloys are used as structural materials that are exposed to high temperatures for long periods of time, such as in gas turbines, jet engines, high-temperature valves, and high-temperature gas furnaces. In the case of this Ni-based superalloy, the high-temperature strength is strengthened by precipitating intermetallic compounds such as the γ' phase [Ni゜(Al, Ti)] by 1% or more.
In addition, the γ phase, which is the matrix phase of Ni, provides ductility and toughness. However, in the case of this type of material, since the matrix phase is a Ni phase, there is a fundamental drawback that the strength decreases significantly at high temperatures.

これに対し、Ni基超超合金主要強化相である金属間化
合物のNi3Alは温度が高くなるほど強さが増すとい
う特異な性質があるが、延性、靭性がなく、引張試験を
行っても伸びはほとんど零に等しく構造材としてはまっ
たく成り立たないものでありこの材料を高温用の構造材
料として利用することは長い間の大きな課題であった。
On the other hand, the intermetallic compound Ni3Al, which is the main reinforcing phase in Ni-based superalloys, has the unique property of increasing its strength as the temperature increases, but it has no ductility or toughness, and even when subjected to a tensile test, it does not elongate. It is almost zero and cannot be used as a structural material at all, and the use of this material as a structural material for high temperatures has been a major challenge for a long time.

最近になりとのNi5AlにBを3%以下添加すると常
温の延性が改善できるとの提案がなされている。(特開
昭55〜5834/、)l、かじ、とのBを添加したN
i、Alは常温および常温近傍では十分な延性は得られ
るが、高温とくに600℃以上ではほとんど延性は零に
等しく、また、高温での強度も十分ではない。
Recently, it has been proposed that ductility at room temperature can be improved by adding 3% or less of B to Ni5Al. (Unexamined Japanese Patent Publication No. 55-5834/) L, Kaji, and B-added N
i, Al has sufficient ductility at or near room temperature, but at high temperatures, especially above 600°C, the ductility is almost zero, and the strength at high temperatures is also insufficient.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

金属間化合物のNi5A lは単結晶体を除いて延性は
まったくない。また、前記提案のようにBを添加すると
常温の延性は改善できるが高温、特に600℃以上での
十分な延性は得られない。
The intermetallic compound Ni5Al has no ductility at all except in single crystal form. Furthermore, when B is added as proposed above, the ductility at room temperature can be improved, but sufficient ductility cannot be obtained at high temperatures, particularly at temperatures above 600°C.

また、温度が上昇すると強度が増すという強さの正の温
度依存性は有するが高温における絶対的な強度は必ずし
も十分ではない。
Further, although the strength has a positive temperature dependence in that the strength increases as the temperature rises, the absolute strength at high temperatures is not necessarily sufficient.

本発明は、高温における高い延性と十分に高い強度を有
するNi、Al系のほとんどがT−L型金属間化合物で
構成されるNi基合金を提供しようとするものである。
The present invention aims to provide a Ni-based alloy that has high ductility and sufficiently high strength at high temperatures and is composed mostly of T-L type intermetallic compounds of Ni and Al systems.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、Al4〜13wt%、 B 5 wt%以下
In the present invention, Al4 to 13 wt% and B5 wt% or less.

Fe 0.005〜12wt%を含み、かつHfα00
5〜22wt%またはZr  0.n n 5〜4 w
t%を複合または単独で含み、残部がNiおよび不可避
不純物の組成よシなり、該合金のほとんどがL工、型金
属間化合物により構成される高強度および高延性Ni基
合金である。
Contains Fe 0.005-12wt% and Hfα00
5-22 wt% or Zr 0. n n 5~4 w
The alloy is a high-strength and high-ductility Ni-based alloy containing t% in combination or alone, the balance depending on the composition of Ni and unavoidable impurities, and most of the alloy is composed of L-type intermetallic compounds.

本発明者らけNi3Al合金に添加元素を種々組合せる
ことにより、常温だけでなく高温でも延性に富み、しか
もNi3Alよりもけるかに高い高温強度をもつNi基
合金が得られることを見い出した。
The present inventors have discovered that by combining various additive elements to a Ni3Al alloy, a Ni-based alloy can be obtained that is highly ductile not only at room temperature but also at high temperatures, and has much higher high-temperature strength than Ni3Al.

以下に本発明合金における成分組成限定理由について述
べる。
The reasons for limiting the composition of the alloy of the present invention will be described below.

Al:  AlはL工、型金属間化合物を形成するのに
不可欠な元素であり、その必要な組成範囲は4〜13 
wt%である。4 wt%未満でばAlは母相に固溶し
L工、型金属間化合物を形成しない。甘た、13wt%
を超えてもL工、構造は形成するが、十分な延性は得ら
れない。この範囲中、好ましい範囲は6〜13wt%、
特に好ましい範囲は8〜15wt%である。
Al: Al is an essential element for forming L-type intermetallic compounds, and its necessary composition range is 4 to 13.
It is wt%. If the amount is less than 4 wt%, Al will form a solid solution in the matrix and will not form an L-type intermetallic compound. Sweet, 13wt%
Although an L-type structure can be formed even if it exceeds the above, sufficient ductility cannot be obtained. Within this range, the preferred range is 6 to 13 wt%,
A particularly preferred range is 8 to 15 wt%.

B: Bは常温および常温近傍の延性改善に効果がある
。しかし、3%を超えても十分な延性は得られず逆に脆
くなる。この範囲中、好ましい範囲は0.01〜0.3
 yt%、特に好ましい範囲は0.03〜0.1wt%
である。
B: B is effective in improving ductility at and near room temperature. However, even if it exceeds 3%, sufficient ductility cannot be obtained and on the contrary, it becomes brittle. Within this range, the preferred range is 0.01 to 0.3
yt%, particularly preferred range is 0.03 to 0.1wt%
It is.

F’e:  FeはNi3AlはNi、Alの延性を大
きく改善する。しかし、0.0115wt%未満ではそ
の効果は十分でない。また、12wt%を超えてもNi
、Alの強さの正の温度依存性を弱め高温における強度
が十分に得られない。この範囲中、好ましい範囲は1〜
12wt%、特に好ましい範囲は3〜12wt%である
F'e: Fe greatly improves the ductility of Ni3Al and Ni. However, if it is less than 0.0115 wt%, the effect is not sufficient. In addition, even if it exceeds 12 wt%, Ni
, the positive temperature dependence of the strength of Al is weakened and sufficient strength at high temperatures cannot be obtained. Within this range, the preferred range is 1 to
12 wt%, particularly preferred range is 3 to 12 wt%.

Hf:  Ni、Alの強度を大きく改善する。0.0
05wt%未満ではその効果は十分でなく、22wt%
を超えて添加してもNi、AI!に固溶されず、強度の
改善に効果がない。この範囲中、好ましい範囲は5〜2
2 vrt%、特に好ましい範囲は9〜18 vrt%
である。
Hf: Greatly improves the strength of Ni and Al. 0.0
The effect is not sufficient if it is less than 0.05 wt%, and 22 wt%
Even if added in excess of Ni, AI! It is not dissolved in solid solution and has no effect on improving strength. Within this range, the preferred range is 5 to 2
2 vrt%, particularly preferred range is 9 to 18 vrt%
It is.

Zr:  ZrもNi!Alの強度の改善に効果がある
Zr: Zr is also Ni! It is effective in improving the strength of Al.

0、 OO5wt%未満ではその効果が十分でな(4w
t%を超えて添加してもNi3Alに固溶されず、強度
の改善に効果がない。この範囲中、好ましい範囲は1〜
4 wt%、特に好ましい範囲は1.7〜l 5 wt
%である。
0, the effect is not sufficient when OO is less than 5wt% (4w
Even if it is added in excess of t%, it will not be dissolved in Ni3Al and will not be effective in improving the strength. Within this range, the preferred range is 1 to
4 wt%, particularly preferred range is 1.7 to l5 wt
%.

不可避的不純物: 不可避的に、S、coが混入するこ
とがあるが、前者は約0. U 3 wt%以下、後者
は約0.5 vrt%以下ならば問題がないようである
Unavoidable impurities: S and co may be unavoidably mixed, but the former is about 0. There seems to be no problem as long as U 3 wt% or less, and the latter is about 0.5 vrt% or less.

〔実施例〕〔Example〕

本発明を実施例により具体的に説明する。 The present invention will be specifically explained with reference to Examples.

第1表に試験に供した合金の成分を示す。試験材の溶製
は真空高周波溶解炉にて行った。試験材を溶製後105
0℃で50時間均一化処理を施し、引張試験に供した。
Table 1 shows the components of the alloys tested. The test materials were melted in a vacuum high-frequency melting furnace. After melting the test material 105
A homogenization treatment was performed at 0° C. for 50 hours, and a tensile test was performed.

第1表 第1図は室温から900℃の温度域で行った引張試験結
果を示す図である。本発明材のム1〜崖5は比較材A 
6 、 A 7に比べてはるかに高い高温強さを示して
いる。(第1図にはA4は省略されているが、これはグ
ラフが複雑になるからであって、41〜3及びム5と同
様な曲線を示す) 第2図は第1図で示した引張試験で測定した伸びを示す
図である。本発明材のf1〜45は600℃以上でも約
15%の伸びがある。これに対し比較材のjI66、ム
7は常温では高い延性があるが600℃以上では伸びは
零に等しい。
Table 1, Figure 1 shows the results of a tensile test conducted in the temperature range from room temperature to 900°C. Mu 1 to Cliff 5 of the present invention materials are comparative materials A
6, showing much higher high temperature strength than A7. (Although A4 is omitted in Figure 1, this is because the graph becomes complicated, and it shows the same curve as 41-3 and M5.) Figure 2 shows the tension shown in Figure 1. FIG. 3 is a diagram showing elongation measured in a test. The f1 to f45 materials of the present invention elongate by about 15% even at temperatures above 600°C. On the other hand, comparative materials jI66 and M7 have high ductility at room temperature, but their elongation is zero at temperatures above 600°C.

なお、第2図には/I63及びA5の伸びを示していな
いが1.ミれはグラフが複雑になるからであって、A3
及び扁5はAI 、A2及びA4と略々同様な曲線を示
す。又、A6(比較材)の伸びを示していないが、これ
は常温から高温までまったく伸びがなく、脆性的に破断
するからである。
Although Figure 2 does not show the growth of /I63 and A5, 1. This is because the graph becomes complicated, and A3
and Flat 5 show approximately the same curves as AI, A2, and A4. Also, the elongation of A6 (comparative material) is not shown, but this is because there is no elongation at all from room temperature to high temperature, and it breaks brittle.

〔発明の効果〕〔Effect of the invention〕

本発明材は高温における強度、延性が優れているため、
ガスタービン、ジェットエンジン、高温バルブ、高温ガ
ス炉等高温に長時間さらされる主要な構造材に適用でき
、このため従来よりも高い温度でのプラントの運転が可
能となシ、高効率化を図ることができる。
Since the material of the present invention has excellent strength and ductility at high temperatures,
It can be applied to major structural materials that are exposed to high temperatures for long periods of time, such as gas turbines, jet engines, high-temperature valves, and high-temperature gas furnaces, making it possible to operate plants at higher temperatures than before, thereby increasing efficiency. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、供試材で引張試験を行ったときの試験温度と
0.2%耐力の関係を示す図。第2図は、供試材で引張
試験を行ったときの試験温度と伸びの関係を示す図。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫 に「 試験温度(’C) 第2図 試験温度(°C)
FIG. 1 is a diagram showing the relationship between test temperature and 0.2% yield strength when a tensile test was conducted on a sample material. FIG. 2 is a diagram showing the relationship between test temperature and elongation when a tensile test is performed on a sample material. Sub-Agents 1) Meifuku Agent Ryo Hagiwara - Sub-Agent Atsuo Anzai ``Test Temperature ('C)'' Figure 2 Test Temperature (°C)

Claims (1)

【特許請求の範囲】[Claims] Al4〜13wt%、B3wt%以下、Fe0.005
〜12wt%を含み、かつHf0.005〜22wt%
またはZr0.005〜4wt%を複合または単独で含
み、残部がNiおよび不可避不純物の組成よりなり、該
合金のほとんどがLI_2型金属間化合物よりなること
を特徴とする高強度および高延性Ni基合金
Al4~13wt%, B3wt% or less, Fe0.005
~12wt%, and Hf0.005~22wt%
Or a high-strength and high-ductility Ni-based alloy containing 0.005 to 4 wt% of Zr in combination or alone, the remainder consisting of Ni and unavoidable impurities, and most of the alloy consisting of LI_2 type intermetallic compounds.
JP23095785A 1985-10-18 1985-10-18 Ni alloy Pending JPS6293332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23095785A JPS6293332A (en) 1985-10-18 1985-10-18 Ni alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23095785A JPS6293332A (en) 1985-10-18 1985-10-18 Ni alloy

Publications (1)

Publication Number Publication Date
JPS6293332A true JPS6293332A (en) 1987-04-28

Family

ID=16915969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23095785A Pending JPS6293332A (en) 1985-10-18 1985-10-18 Ni alloy

Country Status (1)

Country Link
JP (1) JPS6293332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586431A (en) * 1991-03-04 1993-04-06 General Electric Co <Ge> Ductility-improved nial intermetallic compound microalloyed with iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558346A (en) * 1978-10-24 1980-05-01 Osamu Izumi Super heat resistant alloy having high ductility at ordinary temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558346A (en) * 1978-10-24 1980-05-01 Osamu Izumi Super heat resistant alloy having high ductility at ordinary temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586431A (en) * 1991-03-04 1993-04-06 General Electric Co <Ge> Ductility-improved nial intermetallic compound microalloyed with iron

Similar Documents

Publication Publication Date Title
US5006163A (en) Turbine blade superalloy II
US4820353A (en) Method of forming fatigue crack resistant nickel base superalloys and product formed
US4867812A (en) Fatigue crack resistant IN-100 type nickel base superalloys
JPH0297634A (en) Ni base superalloy and its manufacture
EP1262569B1 (en) Ni-based single crystal super alloy
US5156808A (en) Fatigue crack-resistant nickel base superalloy composition
JP3233362B2 (en) Fatigue crack resistant nickel-base superalloys and products formed therefrom
US5167732A (en) Nickel aluminide base single crystal alloys
JPS61264145A (en) Turbine blade superalloy
US4597809A (en) High strength hot corrosion resistant single crystals containing tantalum carbide
JPH01255632A (en) Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
JPH04218642A (en) Low thermal expansion superalloy
EP0373298A1 (en) Fatigue crack resistant nickel base super alloys
JPS58120758A (en) High strength nickel base superalloy product
US5130088A (en) Fatigue crack resistant nickel base superalloys
US5130086A (en) Fatigue crack resistant nickel base superalloys
JPS6293332A (en) Ni alloy
US5037495A (en) Method of forming IN-100 type fatigue crack resistant nickel base superalloys and product formed
JPH0441641A (en) Nickel-base superalloy for die
US5129968A (en) Fatigue crack resistant nickel base superalloys and product formed
JPS6293333A (en) Ni alloy
JPH02225640A (en) Pene&#39; 95 type superalloy with fatigue and crack-resistant
JPS62116748A (en) Superheat resistant single crystalline ni alloy
JPH0310039A (en) Ni-base single crystal superalloy having excellent high temperature strength and high temperature corrosion resistance
JPH0222435A (en) Heat-resistant titanium alloy