JPS6293302A - Production of metal by way of ultrafine particle - Google Patents
Production of metal by way of ultrafine particleInfo
- Publication number
- JPS6293302A JPS6293302A JP23319285A JP23319285A JPS6293302A JP S6293302 A JPS6293302 A JP S6293302A JP 23319285 A JP23319285 A JP 23319285A JP 23319285 A JP23319285 A JP 23319285A JP S6293302 A JPS6293302 A JP S6293302A
- Authority
- JP
- Japan
- Prior art keywords
- ultrafine
- particles
- silicon
- gas phase
- reduced pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Silicon Compounds (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は低沸点金属化合物から金属超微粒子を析出ざ1
!、これを効率的に捕捉する超微粒子を経由する金属の
製造方法に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention is a method for precipitating ultrafine metal particles from a low-boiling metal compound.
! , relates to a method for producing metal using ultrafine particles that efficiently captures this.
〈従来の技術〉
半導体技術等の分野で半導体素子として用いる高純度シ
リコンの利用価値か高まっている。<Prior Art> The utility value of high-purity silicon used as semiconductor elements in fields such as semiconductor technology is increasing.
従来、高純度シリ]ンを工業的に製造する方法としては
シーメンス法か知られている。この製造方法は、ペルジ
ャー内に設けられたシリコン芯を通電加熱すると共に該
ペルジャー内にトリクロルシラン(SzHCla)と水
系(+−12)とを送り込み、水系還元又は熱分解によ
りシリコン芯−にに高純度なシリコンを析出させるもの
である。Conventionally, the Siemens method has been known as a method for industrially producing high-purity silicon. In this manufacturing method, a silicon core provided in a Pel Jar is heated with electricity, and trichlorosilane (SzHCla) and a water system (+-12) are fed into the Pel Jar, and the silicon core is highly heated by aqueous reduction or thermal decomposition. This method deposits pure silicon.
〈発明か解決しようとする問題点〉
現在量も有利な方法とされているシーメンス法にあって
も次のよう27問題点かあった。<Problems to be solved by the invention> Even with the Siemens method, which is considered to be an advantageous method using current quantities, there were 27 problems as listed below.
■原料となる高f+Iiな1〜リク「1ルシラン(S
+ HCJ!3)→寸↑→が容易1こ四塩化ケイ素<5
IC1a )に転化してしまうため、工程管理が非常に
厳しかった。この四塩化ケイ素は水素還元しようとして
も1800’C以十の非常に高)品な条件を必要とする
ため、工業的利用価値が低いものである。■High f+Ii 1~Riku ``1 Lucilan (S
+HCJ! 3) → Dimension ↑ → is easy 1 piece silicon tetrachloride <5
Because it converted to IC1a), process control was extremely strict. This silicon tetrachloride has low industrial utility value because it requires very high quality conditions of 1800'C or higher even if hydrogen reduction is attempted.
■シリコン芯を通電加熱しているが、シリコンtま温度
上昇に従って電気抵抗が低下する性質を有しているため
、加熱に大電流を要し電力消費がかさんでしまう。この
製造方法の最適操業温度111気圧では1600℃前後
であるが、この高度を実現することは困難であり、また
、1600’Cまでの高調を達成したとしてもシリコン
芯からペルジャーへの輻射熱損失が非常に大きくなって
電力原単位が非常に高くなってしまう。このため、厳し
い管理下において高価なトリクロルシランを用い、収率
の悪いのを覚悟して1100℃程度の温度条件と低圧で
操業ぜざるを得なかった。■The silicon core is heated with electricity, but since the silicon core has a property that its electrical resistance decreases as the temperature rises, a large current is required for heating, increasing power consumption. The optimum operating temperature for this manufacturing method is 111 atm, which is around 1600°C, but it is difficult to achieve this altitude, and even if temperatures up to 1600'C are achieved, radiant heat loss from the silicon core to the Pelger is high. It becomes very large and the power consumption becomes very high. For this reason, it was necessary to operate under strict control, using expensive trichlorosilane, and operating at a temperature of about 1100° C. and low pressure at the risk of poor yield.
本発明は上記従来の事情に鑑みなされたもので、高価な
1〜リクロルシラン及び大電力を要することのない高純
度シリコンの製造をも達成することができる超微粒子を
経由する金属の製造方法を提供することを目的とする。The present invention has been made in view of the above-mentioned conventional circumstances, and provides a method for producing metal using ultrafine particles, which can also produce high-purity silicon without requiring expensive 1-lychlorosilane or large amounts of electric power. The purpose is to
く問題点を解決するための手段〉
本発明に係る超微粒子を経由する金属の製造方法は、低
沸点金属化合物を水素と混合させた状態で加熱して部分
的に水素還元された低沸点金属化合物から成る高温で安
定な蒸気種を作る工程と、前記蒸気種を減圧域に超音速
で噴出させて不均化反応及び内部急冷によV)前記似?
Jli点化合物中の金属を超微粒子として析出さ!!る
工程と、前記減11域に設けられた仙11百4(、胃I
t 144りる前記Iti′1微*\’/−fり取込む
工程とを1;1^λたことを特徴と11−る。Means for Solving the Problems〉 The method for producing metal via ultrafine particles according to the present invention involves heating a low-boiling metal compound in a state mixed with hydrogen to partially hydrogen-reduce the low-boiling metal. A step of creating a vapor species that is stable at high temperatures consisting of a compound, and injecting the vapor species into a reduced pressure area at supersonic speed to cause a disproportionation reaction and internal quenching.V) Similar to the above?
Metals in Jli point compounds are precipitated as ultrafine particles! ! 1104 (, gastrointestinal
It is characterized in that the step of taking in the Iti'1 minute*\'/-f is 1;1^λ.
く作用〉
四塩化ケイ素雪の低沸点金属化合物から蒸気種を作る工
程は該金属化合物を水素還元により低級化する程mであ
るので、比較的低い温麻条イ′1で実施できると共にぞ
の7111熱手段も電力による6の以外に直火等種々の
ものを用いることかできる。ぞして、蒸気種から金属超
微粒子を析出させる工程は該蒸気種を減H]域(、二超
音速で噴出さけることにより実施されるので、減LL
l!!1を達成づ−る真空ポンプの動力程度しか要しな
い。更に、析出された金属超微粒子は超音速噴出時に6
1与された人きイ↑運a皐をもって捕捉材に低斤下で衝
突することと<iす、この捕捉材に効率的に捕取される
。The process of producing vapor species from the low-boiling point metal compound of silicon tetrachloride snow involves lowering the metal compound by hydrogen reduction, so it can be carried out with a relatively low amount of heat. 7111 The heating means can also be of various types, such as an open flame, in addition to the one using electric power. Therefore, the step of precipitating ultrafine metal particles from the vapor species is carried out by ejecting the vapor species at a supersonic velocity in the reduced H range.
l! ! Only the power of a vacuum pump is required to achieve 1. Furthermore, the precipitated ultrafine metal particles emit 6 at supersonic speed.
If a given human body collides with the trapping material with a low force, it will be efficiently captured by the trapping material.
〈実施例〉 本発明の実施例を以下に示す。<Example> Examples of the present invention are shown below.
(ト−1−S + −CI2 系)本実施例は沸
点が30’C程度の低沸点金属化合物であるSt C1
aからシリコン超微粒子を経由1ノで金属シリコンを製
造するものである。(To-1-S + -CI2 system) This example uses St C1, which is a low boiling point metal compound with a boiling point of about 30'C.
In this method, metallic silicon is produced in one step from a to ultrafine silicon particles.
まず、S + 014とI2とを混合させて1300℃
以十に加熱すると、第2図に示す化学ポテンシャル図か
ら判るように、S + C14が5ICllsに水素j
!元された蒸気種が1憚られる。First, S + 014 and I2 were mixed and heated to 1300°C.
When heated further, as seen from the chemical potential diagram shown in Figure 2, S + C14 transforms into 5ICls and hydrogen j
! The type of steam that was generated is a matter of concern.
Sacρ4 く気相)−1−1/2H2(気相)→S+
+l!s (気相)+HC1(気相)次いで、この
高温の蒸気種を1200’C以下に急冷させると共に塩
素分圧(PCI22)を下げると、第2図から判るよう
に、不均化反応(D r 5proport+onat
ton React+on)によりシリコンが超微粒
子として析出される。Sacρ4 gas phase) -1-1/2H2 (gas phase) → S+
+l! s (gas phase) + HC1 (gas phase) Next, when this high-temperature vapor species is rapidly cooled to below 1200'C and the chlorine partial pressure (PCI22) is lowered, a disproportionation reaction (D r 5proport+onat
ton React+on), silicon is precipitated as ultrafine particles.
Sr CJ23 (気相)→1/4S+(同相)+3
/4S+ (,24(気相)
ここで、Sr Ce4を直接SIにまで水素還元しよう
どする場合には、第2図(図中点線はこの水= 5−
素還元可能域の境界を示り→から1800℃以1−の極
めて高い温度条件か必要と推測されるが、本実施例では
1300℃という比較的低い湛度条fFで良いため、実
用上(へめで有用である。Sr CJ23 (gas phase) → 1/4S+ (same phase) +3
/4S+ (,24 (gas phase) Here, when attempting to directly reduce Sr Ce4 with hydrogen to SI, the dotted line in the figure indicates the boundary of the range where this water = 5- elemental reduction is possible. →, it is presumed that an extremely high temperature condition of 1800° C. or higher is required, but in this example, a relatively low waterlogging condition fF of 1300° C. is sufficient, which is useful in practice.
上記した一連の工程は第1図に示すような装置により実
施することができる。ずなわら、この装置は耐熱容器1
と真空ポンプ等により内部が減圧される減圧容器2とを
ノズル3で連結し、減圧容器2内に析出される金属超微
粒子と同種の材質(この場合はシリコン)から成る捕促
棒4を囮動自在且つ回転自在に設けたものである。The series of steps described above can be carried out using an apparatus as shown in FIG. Of course, this device is a heat-resistant container 1.
A depressurized container 2 whose inside is depressurized by a vacuum pump or the like is connected by a nozzle 3, and a trap rod 4 made of the same material (silicon in this case) as the ultrafine metal particles deposited in the depressurized container 2 is used as a decoy. It is provided to be movable and rotatable.
従って、上記した蒸気種を作る工程1.L、耐熱容器1
内にSiCβ4と1−12とを入れて電熱ヒータや直火
等で加熱り−ることにより容易に実施できる。Therefore, step 1 of creating the vapor species described above. L, heat-resistant container 1
This can be easily carried out by placing SiCβ4 and 1-12 inside and heating it with an electric heater or an open flame.
また、蒸気種を急冷する工程は、耐熱容器1から蒸気種
をノズル3を通して減圧容器2内の減圧域に超音速で噴
出さ1!、膨張さ口ることにより容易に実施できる。す
なわら、uI合速膨張の場合に成立つ関係式
を代入すると、圧力と温1良との関係式r−1
では、r−1/r〜1/4であることから、1/100
の減圧で1/3の内部急冷が得られる。In addition, in the step of rapidly cooling the vapor species, the vapor species is ejected from the heat-resistant container 1 through the nozzle 3 into the reduced pressure area in the reduced pressure container 2 at supersonic speed 1! This can be easily carried out by inflating and opening. In other words, by substituting the relational expression that holds true in the case of uI combined rate expansion, the relational expression between pressure and temperature 1 is r-1.Since r-1/r~1/4, 1/100
1/3 internal quenching can be obtained with a reduced pressure of .
尚、噴出時の圧力損失を防ぐ観点からは流通抵抗の小さ
いノズル3を採用するのか好ましいか、本工程の実施は
蒸気種を怠速に断熱j膨張さ1!れば良いので、ノズル
3の代りに甲イiる通管であっても良い。In addition, from the viewpoint of preventing pressure loss during ejection, it is preferable to use a nozzle 3 with small flow resistance.In carrying out this step, the steam species is insulated and expanded slowly. Therefore, a passage pipe may be used instead of the nozzle 3.
また、析出された超微粒子の捕取は、超高]*噴出で付
与された人さくffi運動吊をもって超微Net子か捕
促棒4に叩き込まれることど4【るため、減■]室2内
が低圧であることと相俟って気流等に影響されることな
く極めて高い収率で達成される。そして、この捕促棒4
をN転さUつつその軸方向へ1習動させることにより高
純度金属シリコン材を得ることができる。尚、耐熱容器
1及びノズル3から成るユニットを複数個放射状に配設
して、各ユニットから複数条の超微粒子を捕促棒に叩き
込むようにすれば、より効率向上を図ることかできる。In addition, the capture of the precipitated ultrafine particles is extremely high [4], since they may be knocked into the ultrafine net element or the trapping rod 4 by the human suspension given by the ejection, and the chamber is reduced. Coupled with the low pressure inside No. 2, extremely high yields can be achieved without being affected by air currents, etc. And this catching stick 4
A high-purity metal silicon material can be obtained by rotating the material N and moving it once in the axial direction. It should be noted that efficiency can be further improved by radially arranging a plurality of units consisting of the heat-resistant container 1 and the nozzle 3 so that a plurality of strips of ultrafine particles are driven from each unit into the trap rod.
上記した実施例と同様な装置を用いて同様な工程を施行
することにより、同様な効宋をもって他の低沸点金属化
合物から金属超微粒子を経由して金属を製造することも
できる。By carrying out the same steps using the same apparatus as in the above embodiment, metals can also be produced from other low-boiling point metal compounds via metal ultrafine particles with similar efficiency.
(+−1−1!−Cρ系〉
本実施例1よ沸点か190’C程度の低沸点金属化合物
であるAn C1aから超微粒子経由で金属アルミニ「
クムを製造するものでおる。(+-1-1!-Cρ system) According to this Example 1, metal aluminum "
It is a manufacturer of kumu.
まず、AlG23を1−12と)捏合させて1800°
C以上に加熱すると、第3図に示す化学ポテンシャル図
からiりるように、AlCl3がAlCl2に水素還元
された蒸気種が得られる。First, AlG23 (1-12) was kneaded at 1800°.
When heated above C, a vapor species in which AlCl3 is hydrogen-reduced to AlCl2 is obtained as shown in the chemical potential diagram shown in FIG.
AIC;fls (気相)+1/2H2(気相)→A
lG12 (気相) 十HCβ(気相)次いで、この高
温の蒸気種を900’C以下に急冷させると共に塩素分
圧(PCI22)を下げると、第3図から判るように、
不均化反応によりアルミニウムが超微粒子液滴として析
出される。AIC; fls (gas phase) + 1/2H2 (gas phase) → A
lG12 (gas phase) 10HCβ (gas phase) Next, when this high-temperature vapor species is rapidly cooled to below 900'C and the chlorine partial pressure (PCI22) is lowered, as shown in Figure 3,
Due to the disproportionation reaction, aluminum is precipitated as ultrafine droplets.
AlCl2 (気相)→1/3i (液相)+2/3A
、eCfs (気相)
(HGa C1系)
本実施例は低沸点金属化合物であるGaC15から超r
l1粒子経山で金属ガリウムを製造するものである。AlCl2 (gas phase) → 1/3i (liquid phase) + 2/3A
, eCfs (gas phase) (HGa C1 system) In this example, ultra-r
Metallic gallium is produced using l1 particle Keishan.
まず、GaCl3を1−12と!■合ざ一1!て580
’C以上に加熱し、ダ14図に示されるJ、うに、G
aCl30→吟をGaC1に水素)ψ元した蒸気種を得
る。First, GaCl3 is 1-12! ■Gozaichi 1! Te 580
'J, sea urchin, and G shown in Figure 14.
A vapor species is obtained by converting aCl30→Gin into GaCl1 (hydrogen) ψ.
GaC1a(気相)+1−h(気相)
→GaC,I2(気相)+2l−1(d!(気相)次い
で、この蒸気種を330°C以下に急冷すると共に塩素
分圧を下げて、第4図に示されるように、不均化反応に
よりガリウムを超微粒子液滴として析出する。GaC1a (gas phase) + 1-h (gas phase) → GaC, I2 (gas phase) + 2l-1 (d! (gas phase)) Next, this vapor species is rapidly cooled to below 330°C and the chlorine partial pressure is lowered. As shown in FIG. 4, gallium is precipitated as ultrafine droplets by a disproportionation reaction.
GaCl2(気相) →2 / 3 G a (液相)
+1/3Ga C13(AN相)
尚、本実施例では生成物が両省ともに液相であるので、
力゛リウムの岸屯度を−11けるため;こは(市1反後
に相分離を施す必要がある。GaCl2 (gas phase) →2/3 Ga (liquid phase)
+1/3Ga C13 (AN phase) In this example, both products are in liquid phase, so
In order to reduce the hardness of the force by -11, it is necessary to perform phase separation after one turn.
(HTa−Cl系)
本実施例は低沸点金属化合物であるTaCρ5からタン
タルの超微粒子を′#A漬するものである。(HTa-Cl system) In this example, ultrafine particles of tantalum are soaked in '#A from TaCρ5, which is a low boiling point metal compound.
まず、丁acI5を1−12と)捏合させて1040°
C以上に加熱し、第5図に示されるように、丁ac15
をT a C14に水素還元した蒸気種をjqる。First, knead acI5 with 1-12) to 1040°
Heat to above C and heat to ac15 as shown in Figure 5.
The vapor species obtained by hydrogen reduction of T a to C14 are expressed as follows.
1−acI2h(気相)+1/2t−12(気相)−T
aC4!4(気相)+1−ICI(気相)次いで、この
蒸気種を870’C〜800℃に急冷すると共に塩素分
圧を下げて、第5図に示されるように、不均化反応によ
りタンタルを超微粒子として析出する。1-acI2h (gas phase) + 1/2t-12 (gas phase) -T
aC4!4 (gas phase) + 1-ICI (gas phase) Next, this vapor species is rapidly cooled to 870'C to 800°C and the chlorine partial pressure is lowered to initiate a disproportionation reaction as shown in Figure 5. tantalum is precipitated as ultrafine particles.
TaCj4(気相)→115Ta(固相)+415Ta
Cj5 (気相)
尚、本実施例の11記不均化反応において、第5図から
はTaC4!4.5が生成されてしまう可能性が強いよ
うに見えるが、TaC12,5は800℃以上でTa
(同相)とTa C15(気相)に熱分解するため、上
記不均化反応が達成される。TaCj4 (gas phase) → 115Ta (solid phase) + 415Ta
Cj5 (gas phase) In addition, in the 11th disproportionation reaction of this example, from FIG. Ta
(in the same phase) and Ta C15 (in the gas phase), thus achieving the above disproportionation reaction.
(1」−T+−CI2系)
本実施例は低沸点金属化合物であるT+ C,+24か
らチタニウムの超微粒子を製造するものである。(1''-T+-CI2 system) In this example, ultrafine titanium particles are produced from T+ C, +24, which is a low boiling point metal compound.
まず、T1Cf14を1−12と混合させて1420°
C以上にhn熱し、第6図に示されるように、T+ C
14をT+ Cp3に水系還元した蒸気種を得る。First, mix T1Cf14 with 1-12 and
T+C as shown in Figure 6.
A vapor species is obtained by aqueous reduction of 14 to T+ Cp3.
T+ C14(気相) −+−1/2L12(気相)→
T + 013(気相) −+−LI C(1(気相)
次いで、この蒸気種を820°Clス下に急冷りると共
に塩素分圧を下げて、第6図に承さ−れるJ、・)に、
不均化反応にJ、リ−1−ICり2の超微粒子を11す
る。T+ C14 (gas phase) -+-1/2L12 (gas phase) →
T + 013 (gas phase) -+-LI C (1 (gas phase)
Next, this vapor type was rapidly cooled to 820° Cl gas and the partial pressure of chlorine was lowered to obtain the temperature shown in Figure 6.
For the disproportionation reaction, ultrafine particles of J, Lee-1-IC, and 2 were added.
T+ C1s (気相) →1/2−1−+ C,&
、z (気相)−+−1/2−I + C,C2(固
相)尚、これと同(1,1に1−+Cf5(気相)が凝
縮しTT+ Cf12ど−1−+ CQ s (7’)
?!を合しノIt超微IRt了が得られるが、この1
17合物中のT+C,C3(同相)は温度800〜90
0℃、塩素分FF−10at、rn以下の条イ1で不均
化反応さく!ることによりT+ C12とすることがで
きる。T+ C1s (gas phase) →1/2-1-+ C, &
, z (gas phase) -+-1/2-I + C, C2 (solid phase) In addition, the same as this (1-+Cf5 (gas phase) condenses on 1,1, TT+ Cf12-1-+ CQ s (7')
? ! By combining these, we can obtain an ultra-fine IRt, but this 1
T+C, C3 (in phase) in compound 17 has a temperature of 800 to 90
Disproportionation reaction is carried out at 0℃, chlorine content FF-10at, rn or less! By doing so, T+C12 can be obtained.
T+ Cl23 (固相)→丁+Cβ2 (同相)+
1/2T+ C,+24 (気相)
次いで、T+(12を温度970°C以」−で不拘化反
応させることによりチタニウムの超微粒子の焼結体を得
る。T+ Cl23 (solid phase) → Ding + Cβ2 (in phase) +
1/2T+ C, +24 (gas phase) Next, a sintered body of ultrafine titanium particles is obtained by subjecting T+ (12 to a non-restriction reaction at a temperature of 970° C. or higher).
−r+(12(同相)→1/3T+ (固相)+2/
3Ti Cρ3 (気相)
尚、本実施例はタングステン塩化物に対しても同様に適
用することかでき、タングステン塩化物からタングステ
ンの超微粒子焼結体を得ることもできる。-r+(12 (in-phase) → 1/3T+ (solid phase) +2/
3Ti Cρ3 (vapor phase) Note that this example can be similarly applied to tungsten chloride, and ultrafine sintered tungsten particles can also be obtained from tungsten chloride.
〈参考例〉
(+−1−C−0系)
本参考例は本発明を更に発展させる際の参考に資するた
めに、不均化反応が急冷のみでは進行し勤い系における
例を示ずものであり、低沸点化合物であるCO2から炭
素の超微粒子を製造するものである。<Reference example> (+-1-C-0 system) In order to serve as a reference when further developing the present invention, this reference example does not show an example of a system in which the disproportionation reaction proceeds only by rapid cooling. This method produces ultrafine carbon particles from CO2, a low-boiling compound.
まず、CO2をト12と混合させて800°C以上に加
熱すると、第7図に示す化学ポテンシャル図から判るよ
うに、CO2がCOに水素還元された蒸気種が得られる
。First, when CO2 is mixed with To 12 and heated to 800° C. or higher, a vapor species in which CO2 is hydrogen-reduced to CO is obtained, as can be seen from the chemical potential diagram shown in FIG.
CO2(気相)ト1−f2(気相)
→Co(気相)七t−120(気相)
次いで、この高温の蒸気種を680℃以下に急冷させる
と共にFJf分圧(PO2)を下げると、第7図からは
、不拘化成1芯にJ−り炭素が超微粒子として析出され
ると判断される。これは平衡論的には正しい判断である
が、速麻論的に(ユn−シクない。CO2 (vapor phase) t1-f2 (vapor phase) → Co (vapor phase) 7t-120 (vapor phase) Next, this high-temperature vapor species is rapidly cooled to below 680°C and the FJf partial pressure (PO2) is lowered. From FIG. 7, it is determined that J-carbon is precipitated as ultrafine particles in the unrestricted chemically formed core. This is a correct judgment in terms of equilibrium theory, but it is not correct in terms of speed theory.
2CO(気相)→C(同相)十C02(気相)すなわち
、この場合に(alGO(気相)が常温でも安定に存在
することから、」l記不拘化反応の速度が非常に遅いこ
とがわかる。これを改善するためには、U e N N
+ 、Co等の触媒が必要で、例えば少量のフェロセ
ン(Fe (C5t−15) 2 )を耐熱容器1内に
添加しモの熱分Mにj2る鉄用微粒子をエアロゾルとし
て!?!濁しておくことで実現される。2CO (gas phase) → C (same phase) 10C02 (gas phase) In other words, in this case, (alGO (gas phase) exists stably even at room temperature, so the speed of the immobilization reaction is very slow. In order to improve this, U e N N
For example, a small amount of ferrocene (Fe (C5t-15) 2 ) is added to the heat resistant container 1 and the heat content M is converted into an aerosol! ? ! This is achieved by keeping it cloudy.
〈発明の効宋〉
本発明によれば、金属超微粒子を容易に1作ることがで
きると共に、該超微粒子を収率良く捕捉し−14=
て高純度(、イ利を1璽7ることができる。ぞして、本
発明をシリコンの製造に適用した場合には、安ll1l
iなS+CI4を原オ′:1とすることかできて大巾な
]スト低減か図れると其に、効率の悪い通電加熱を省く
ことかできる。<Effects of the Invention> According to the present invention, ultrafine metal particles can be easily produced, and the ultrafine particles can be captured with a high yield and have a high purity (-14 = 1). Therefore, when the present invention is applied to silicon production,
If S+CI4 can be set to 0:1, and a large amount of stress can be reduced, inefficient electrical heating can also be omitted.
第1図は本発明を実施する装置の一例を表す概略構成図
、第2図〜第6図はそれぞれ実施例に対応した化学ポテ
ンシャル図、第7図は参考例の化学ポテンシャル図であ
る。
特許出願人 古才翠 昭 宣株式会礼
白興礼
代理人 弁理上 先負 土部(他1名)涙LFIG. 1 is a schematic configuration diagram showing an example of an apparatus for implementing the present invention, FIGS. 2 to 6 are chemical potential diagrams corresponding to the embodiments, and FIG. 7 is a chemical potential diagram of a reference example. Patent Applicant Kosai Midori Akira Noriyuki Co., Ltd.
Hakuheungrei's attorney, Dobe (and 1 other person), Tears L
Claims (1)
分的に水素還元された低沸点金属化合物から成る高温で
安定な蒸気種を作る工程と、前記蒸気種を減圧域に超音
速で噴出させて不均化反応及び内部急冷により前記低沸
点化合物中の金属を超微粒子として析出させる工程と、
前記減圧域に設けられた捕捉材に飛翔する前記超微粒子
を取込む工程とを備えたことを特徴とする超微粒子を経
由する金属の製造方法。A step of heating a low-boiling point metal compound in a mixed state with hydrogen to produce a vapor species stable at high temperatures consisting of a partially hydrogen-reduced low-boiling point metal compound, and ejecting the vapor species at supersonic speed into a reduced pressure region. a step of precipitating the metal in the low boiling point compound as ultrafine particles through a disproportionation reaction and internal quenching;
A method for manufacturing metal using ultrafine particles, comprising the step of capturing the flying ultrafine particles into a trapping material provided in the reduced pressure area.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23319285A JPS6293302A (en) | 1985-10-21 | 1985-10-21 | Production of metal by way of ultrafine particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23319285A JPS6293302A (en) | 1985-10-21 | 1985-10-21 | Production of metal by way of ultrafine particle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6293302A true JPS6293302A (en) | 1987-04-28 |
JPS6354764B2 JPS6354764B2 (en) | 1988-10-31 |
Family
ID=16951185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23319285A Granted JPS6293302A (en) | 1985-10-21 | 1985-10-21 | Production of metal by way of ultrafine particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6293302A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0238501A (en) * | 1988-06-22 | 1990-02-07 | Hermann C Starck Berlin | Fine powders of an earth-acid metal having a high purity, method for its production and use |
CN105108172A (en) * | 2015-09-14 | 2015-12-02 | 山东大学 | Method for preparing silicon powder |
-
1985
- 1985-10-21 JP JP23319285A patent/JPS6293302A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0238501A (en) * | 1988-06-22 | 1990-02-07 | Hermann C Starck Berlin | Fine powders of an earth-acid metal having a high purity, method for its production and use |
CN105108172A (en) * | 2015-09-14 | 2015-12-02 | 山东大学 | Method for preparing silicon powder |
CN105108172B (en) * | 2015-09-14 | 2017-05-10 | 山东大学 | Method for preparing silicon powder |
Also Published As
Publication number | Publication date |
---|---|
JPS6354764B2 (en) | 1988-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3345134A (en) | Process and apparatus for the manufacture of titanium nitride | |
JP5427452B2 (en) | Method for producing titanium metal | |
KR101698895B1 (en) | Method and device for the production of high-purity silicon | |
US20120171848A1 (en) | Method and System for Manufacturing Silicon and Silicon Carbide | |
JPS6293302A (en) | Production of metal by way of ultrafine particle | |
JPS61127617A (en) | Manufacture of superhigh purity silicon rod | |
JP3379957B2 (en) | Preparation method of niobium nitride | |
JPH02233509A (en) | Manufacture of powdery matallic nitride | |
CN106477534B (en) | A kind of preparation method of selenium arsenic alloy | |
KR101182178B1 (en) | APPARATUS FOR PREPARING SiO2 NANO POWDER WITH HIGH PURITY | |
JP4231283B2 (en) | High purity magnesium oxide fine powder production apparatus and high purity magnesium oxide fine powder production method using the same | |
CN205099363U (en) | System for production silicon nitride | |
CN108190950B (en) | Preparation method of zirconium dioxide | |
JPS6221707A (en) | Production of trichlorosilane | |
CN109437300A (en) | The method that solid phase method prepares high-purity sodium metavanadate | |
JPS5891018A (en) | Manufacture of fine nitride powder | |
US2162619A (en) | Metallurgical process | |
JPS62288109A (en) | Production of trichlorosilane | |
JP2003002627A (en) | Method for manufacturing silicon | |
JPS6042164B2 (en) | Powder manufacturing method | |
JPH0438801B2 (en) | ||
JPH0264100A (en) | Production of aln whisker | |
US2789047A (en) | Thermal production of sodium | |
JP4195278B2 (en) | Metallic magnesium melt evaporation apparatus and method for producing high-purity magnesium oxide fine powder using the same | |
Marceau et al. | Synthesis and thermal decomposition of antimony (III) oxide hydroxide nitrate |