JPS629207B2 - - Google Patents

Info

Publication number
JPS629207B2
JPS629207B2 JP56203961A JP20396181A JPS629207B2 JP S629207 B2 JPS629207 B2 JP S629207B2 JP 56203961 A JP56203961 A JP 56203961A JP 20396181 A JP20396181 A JP 20396181A JP S629207 B2 JPS629207 B2 JP S629207B2
Authority
JP
Japan
Prior art keywords
container
terminal cap
capacitor element
length
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56203961A
Other languages
Japanese (ja)
Other versions
JPS58103120A (en
Inventor
Shunichi Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP20396181A priority Critical patent/JPS58103120A/en
Publication of JPS58103120A publication Critical patent/JPS58103120A/en
Publication of JPS629207B2 publication Critical patent/JPS629207B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Circuit Boards (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はリードレス形アルミニウム電解コンデ
ンサに関する。 近年電子回路およびシステムにおける進歩は外
部端子を最小限度にすることにより単位体積当た
り最大限度の容量を有し、かつ回路基板へ自動搭
載しうる外形を有するリードレス形コンデンサの
開発が要望されてきた。 従来、上述の特徴をもつコンデンサとしてタン
タル固体電解コンデンサやセラミツクコンデンサ
が実用化されているが、アルミニウム電解コンデ
ンサのようにペースト状の駆動用電解液をコンデ
ンサ素子に浸み込ませるものにあつては該コンデ
ンサ素子の表面に前記駆動用電解液が付着してい
るため合成樹脂での成型がきわめて困難であり、
かつ成型時に150〜200℃の高熱が直接コンデンサ
素子に加わるため誘電体酸化皮膜の劣化や外装樹
脂に透過性があるため前記駆動用電解液の透過損
失をきたしコンデンサの電気的特性が不安定とな
る。またアルミニウム電解コンデンサは駆動用電
解液を浸み込ませているためタンタル固体電解コ
ンデンサのようにハンダ付け可能な金属を端子と
して使用すると腐蝕するので使用不能である。こ
のためアルミニウム電解コンデンサをリードレス
形コンデンサ化するには外装構造と端子の導出が
課題として残されている。また最近実開昭56−
12341号公報のように絶縁筒内にコンデンサ素子
を収容し前記絶縁筒の両端開口部に弾性部材を介
して端子用キヤツプを嵌合し、該端子用キヤツプ
の一部をかしめてなるリードレス形アルミニウム
電解コンデンサも提案されているが、コンデンサ
の組立作業が煩雑で手間がかかりコストアツプと
なるうえ、前記端子用キヤツプを駆動用電解液に
よる腐蝕防止のためアルミニウムなどの弁作用金
属で構成すると基板へのハンダ付けができなくな
り、銅などのハンダ付け可能な金属で構成すると
前記駆動用電解液により腐蝕して最悪の場合は前
記端子用キヤツプと内部端子線との接続部が剥離
し断線するなどの欠点がある。また本発明者によ
る実開昭56−121250号公報のような提案もある
が、容器の開口部外側にクラツド材からなる端子
キヤツプを圧着、嵌着または溶着などの方法で取
着するものであるため、基板への搭載時のハンダ
加熱または搭載後機器に加わる振動や熱シヨツク
などにより端子キヤツプの取着部にゆるみが生じ
密封性が劣化し、極端な場合は端子キヤツプが容
器開口部からはずれてしまう欠点があつた。 本発明は上記のような実情に鑑みてなされたも
ので、駆動用電解液を含浸したコンデンサ素子を
両端から長さ方向に中溝を設けた4弗化エチレン
―6弗化プロピレン共重合体のパイプからなる容
器に収容し、前記コンデンサ素子から導出した電
極引出線を接続したハンダ付け可能な金属と弁作
用金属とのクラツド材からなる端子キヤツプの外
周環の厚さを、前記容器の全長のそれぞぞれ1/4
〜2/5の長さを有する中溝の深さと同等または幾
分厚くして該中溝に嵌合して密封することによつ
て、腐蝕発生が全くなく基板への自動搭載による
ハンダ付けが可能でコンデンサの組立作業がきわ
めて容易な、しかも密封性がよく特性の安定した
リードレス形アルミニウム電解コンデンサを提供
せんとするものである。 以下本発明の一実施例につき図面を参照しなが
ら説明する。すなわち第1図に示すように4弗化
エチレン―6弗化プロピレン共重合体のパイプか
らなり、両端から該パイプ厚みの長さ方向に中溝
1を設け中間部の隔壁2で前記中溝1を2分した
容器3の中空内部に、第2図に示すように粗面化
により表面積を拡大し陽極酸化により誘電体酸化
皮膜を生成したアルミニウム陽極箔と、紙または
多孔質プラスチツクフイルムからなるセパレータ
と、アルミニウム陰極箔とを積層した積層体また
はこれらを巻回した巻回体からなり、駆動用電解
液を含浸したコンデンサ素子4を収容する。前記
中溝1は容器3の全長のそれぞれ1/4〜2/5の長さ
に設定する。前記コンデンサ素子4には陽陰両電
極箔からそれぞれ電極引出線5が導出され、該電
極引出線5は前記容器3の両端開口部を封口し外
部端子となる端子キヤツプ6に溶接などの方法で
接続する。該端子キヤツプ6は有底筒状で外周環
7を設けたハンダ付け可能な金属と弁作用金属と
を低温固相接合したクラツド材からなるもので、
外側すなわち基板にハンダ付けする側がCu,
Ni,Fe,Snなどのハンダ付け可能な金属、内側
すなわち駆動用電解液に接し前記電極引出線5を
接続する側がAl,Tiなどの弁作用金属になるよ
うにする。前記クラツド材はたとえばAl―Cu,
Al―Fe,Al―Ni,Ti―Niなどの低温固相接合し
たものである。ついで前記端子キヤツプ6の外周
環7を前記容器3の中溝1に圧入して嵌合し前記
容器3の両端開口部を封口し密封してなるもので
ある。この場合嵌合強度を増し密封性を向上させ
るために端子キヤツプ6の外周環7の厚さを中溝
1の深さと同等または幾分厚くしておき、該中溝
1に圧入して嵌合する。また端子キヤツプ6の外
周環7と中溝1との間にシリコンゴム、エポキシ
樹脂などの接着剤を介在させても有効である。 また容器3を構成する4弗化エチレン―6弗化
プロピレン共重合体は耐熱性、耐寒性、耐薬品性
にすぐれ、とくに融点が250−290℃(共重合組成
によつて異なる)と高いため、ハンダ加熱時の劣
化が少なく、しかも金属との密着性もよいため、
端子キヤツプ6の外周環7と中溝1との密封性も
よい。 このように本発明のリードレス形アルミニウム
電解コンデンサは、端子キヤツプをハンダ付け可
能な金属と弁作用金属とのクラツド材で構成し、
基板にハンダ付けする外側がハンダ付け可能な金
属、駆動用電解液に接する内側が弁作用金属にし
たのでハンダ付け性が良好で腐蝕発生も皆無とな
る。またコンデンサの組立作業も端子キヤツプ6
の外周環7の厚さを中溝の深さと同等または幾分
厚くして中溝1に圧入、嵌合するだけでよいた
め、きわめて容易となり大量生産に好適する。さ
らに中溝1の長さが容器3の全長のそれぞれ1/4
〜2/5と比較的長く接合面積が大きく、かつ端子
キヤツプ6の周環7を圧入して嵌合するため密封
性がよく安定した特性を持続することができる。 つぎに本発明の実施例と比較例および従来の参
考例との比較を表1に示す。実施例B,C,D,
E、比較例A,Fは4弗化エチレン―6弗化プロ
ピレン共重合体からなる直径5.0mm×長さ9.0mmの
容器の中溝にクラツド材からなる端子キヤツプの
外周環を圧入し嵌合した定格16WV−4.7μFのリ
ードレス形アルミニウム電解コンデンサであり、
参考例Gはポリフエニレンオキサイドからなる同
寸法の容器の両端外周にクラツド材からなる端子
キヤツプを嵌着した実開昭56−121250号公報によ
る定格同のリードレス形アルミニウム電解コンデ
ンサであり、表1はこれらの各試料を温度85℃、
湿度95%中で1000時間定格電圧印加後の静電容量
変化率と振動試験(振動周波数10〜55Hz、全振幅
1.5mm、掃引方法10〜55〜10Hz1分間とし、これ
をコンデンサの長軸方向とそれに直角な方向の2
方向に3時間ずつ6時間印加)後の誘電正接およ
び漏れ電流の値を示すものである。
The present invention relates to leadless aluminum electrolytic capacitors. Recent advances in electronic circuits and systems have created a need for the development of leadless capacitors that have the maximum capacitance per unit volume by minimizing the number of external terminals and have an external shape that allows automatic mounting on circuit boards. . Conventionally, tantalum solid electrolytic capacitors and ceramic capacitors have been put into practical use as capacitors with the above-mentioned characteristics, but in the case of aluminum electrolytic capacitors in which a paste-like driving electrolyte is soaked into the capacitor element, Since the driving electrolyte adheres to the surface of the capacitor element, it is extremely difficult to mold it with synthetic resin.
In addition, high heat of 150 to 200 degrees Celsius is directly applied to the capacitor element during molding, which causes deterioration of the dielectric oxide film and permeability of the exterior resin, which causes permeation loss of the driving electrolyte and makes the electrical characteristics of the capacitor unstable. Become. Furthermore, since aluminum electrolytic capacitors are impregnated with driving electrolyte, if a solderable metal such as a tantalum solid electrolytic capacitor is used as a terminal, it will corrode and cannot be used. Therefore, in order to convert an aluminum electrolytic capacitor into a leadless type capacitor, the exterior structure and terminal derivation remain issues. Also, recently opened in 1988.
12341, a leadless type in which a capacitor element is housed in an insulating cylinder, a terminal cap is fitted into openings at both ends of the insulating cylinder via an elastic member, and a part of the terminal cap is caulked. Aluminum electrolytic capacitors have also been proposed, but the assembly of the capacitors is complicated and time-consuming, which increases costs.In addition, if the terminal caps are made of a valve metal such as aluminum to prevent corrosion from the driving electrolyte, it may cause damage to the board. If the terminal cap is made of a solderable metal such as copper, it will be corroded by the drive electrolyte, and in the worst case, the connection between the terminal cap and the internal terminal wire may peel off and break. There are drawbacks. There is also a proposal by the present inventor as in Japanese Utility Model Application Publication No. 56-121250, in which a terminal cap made of clad material is attached to the outside of the opening of the container by crimping, fitting, or welding. As a result, the terminal cap attachment may become loose due to solder heating during mounting on the board, vibration or heat shock applied to the device after mounting, and the sealing performance deteriorates, and in extreme cases, the terminal cap may become detached from the container opening. There were some drawbacks. The present invention has been made in view of the above-mentioned circumstances, and is a pipe made of tetrafluoroethylene-hexafluoropropylene copolymer, in which a capacitor element impregnated with a driving electrolyte is provided with grooves in the length direction from both ends. The thickness of the outer circumferential ring of a terminal cap made of a cladding material of a solderable metal and a valve metal, to which the electrode lead wire led out from the capacitor element is connected, is that of the total length of the container. 1/4 each
Capacitors with a depth equal to or slightly thicker than the inner groove with a length of ~2/5 are fitted into the inner groove and sealed, allowing automatic mounting and soldering to the board without corrosion. It is an object of the present invention to provide a leadless aluminum electrolytic capacitor that is extremely easy to assemble, has good sealing properties, and has stable characteristics. An embodiment of the present invention will be described below with reference to the drawings. That is, as shown in FIG. 1, it is made of a pipe made of tetrafluoroethylene-hexafluoropropylene copolymer, and a middle groove 1 is provided from both ends in the length direction of the pipe thickness, and a partition wall 2 in the middle part connects the middle groove 1 to 2. In the hollow interior of the divided container 3, as shown in FIG. 2, an aluminum anode foil whose surface area has been expanded by roughening and a dielectric oxide film formed by anodization, and a separator made of paper or porous plastic film are placed. The capacitor element 4 is made of a laminate formed by laminating aluminum cathode foils or a wound body formed by winding these layers, and accommodates a capacitor element 4 impregnated with a driving electrolyte. The length of the inner groove 1 is set to be 1/4 to 2/5 of the total length of the container 3, respectively. Electrode lead wires 5 are led out from both positive and negative electrode foils to the capacitor element 4, and the electrode lead wires 5 are welded to terminal caps 6 that seal the openings at both ends of the container 3 and serve as external terminals. Connecting. The terminal cap 6 has a cylindrical shape with a bottom and is made of a clad material in which a solderable metal and a valve metal are bonded in a low-temperature solid state, and has an outer peripheral ring 7.
The outside, that is, the side to be soldered to the board, is Cu,
The inner side, that is, the side that contacts the driving electrolyte and connects the electrode lead wire 5, is made of a solderable metal such as Ni, Fe, or Sn, and a valve metal such as Al or Ti. The cladding material is, for example, Al--Cu,
This is a low-temperature solid phase welding of Al-Fe, Al-Ni, Ti-Ni, etc. Next, the outer circumferential ring 7 of the terminal cap 6 is press-fitted into the inner groove 1 of the container 3, and the openings at both ends of the container 3 are closed and hermetically sealed. In this case, in order to increase the fitting strength and improve the sealing performance, the thickness of the outer peripheral ring 7 of the terminal cap 6 is made equal to or somewhat thicker than the depth of the inner groove 1, and the outer ring 7 of the terminal cap 6 is press-fitted into the inner groove 1. It is also effective to interpose an adhesive such as silicone rubber or epoxy resin between the outer ring 7 of the terminal cap 6 and the inner groove 1. In addition, the tetrafluoroethylene-hexafluoropropylene copolymer that makes up the container 3 has excellent heat resistance, cold resistance, and chemical resistance, with a particularly high melting point of 250-290°C (depending on the copolymer composition). , because it has little deterioration during solder heating and also has good adhesion to metal.
The sealing performance between the outer ring 7 of the terminal cap 6 and the inner groove 1 is also good. As described above, the leadless aluminum electrolytic capacitor of the present invention has a terminal cap made of a cladding material of a solderable metal and a valve metal.
The outside part that is soldered to the board is made of solderable metal, and the inside part that comes into contact with the driving electrolyte is made of valve metal, so solderability is good and there is no corrosion. Also, when assembling the capacitor, use the terminal cap 6.
It is only necessary to make the thickness of the outer circumferential ring 7 equal to or slightly thicker than the depth of the inner groove and press fit into the inner groove 1, which is extremely easy and suitable for mass production. Furthermore, the length of the inner groove 1 is 1/4 of the total length of the container 3.
It is relatively long and has a large joint area of ~2/5, and because the peripheral ring 7 of the terminal cap 6 is press-fitted, good sealing performance and stable characteristics can be maintained. Next, Table 1 shows a comparison between the examples of the present invention, comparative examples, and conventional reference examples. Examples B, C, D,
E. Comparative Examples A and F were made by press-fitting the outer ring of a terminal cap made of clad material into the inner groove of a container with a diameter of 5.0 mm and a length of 9.0 mm made of tetrafluoroethylene-hexafluoropropylene copolymer. It is a leadless aluminum electrolytic capacitor with a rating of 16WV-4.7μF,
Reference example G is a leadless aluminum electrolytic capacitor with the same rating as disclosed in Japanese Utility Model Application No. 56-121250, in which terminal caps made of clad material are fitted around the outer periphery of both ends of a container of the same size made of polyphenylene oxide. 1, each of these samples was heated to 85℃,
Capacitance change rate and vibration test after applying rated voltage for 1000 hours in 95% humidity (vibration frequency 10-55Hz, full amplitude
1.5mm, sweep method 10-55-10Hz for 1 minute, and two
The figure shows the values of the dielectric loss tangent and leakage current after applying the dielectric material for 3 hours in each direction for 6 hours.

【表】 表1から実施例B,C,D,Eは比較例A,F
と比べて静電容量変化率および振動試験後の誘電
正接・漏れ電流とも安定した値を示し、参考例G
と比べればその安定性は一層顕著である。 また上記試料中、実施例Cと参考例Gとの寿命
試験(温度85℃、湿度95%RH、定格電圧印加)
における静電容量変化率を第3図に、誘電正接の
変化を第4図に示す。第3図および第4図から実
施例Cは参考例Gよりも密封性がよいため変化が
少なく、しかも長寿命であることがわかる。 以上詳述したように本発明によれば、駆動用電
解液を含浸したコンデンサ素子を両端から長さ方
向に中溝を設けた4弗化エチレン―6弗化プロピ
レン共重合体のパイプからなる容器に収容し、前
記コンデンサ素子から導出した電極引出線を接続
したハンダ付け可能な金属と弁作用金属とのクラ
ツド材からなる端子キヤツプの外周環の厚さを、
前記容器の全長のそれぞれ1/4〜2/5の長さを有す
る中溝の深さと同等または幾分厚くして該中溝に
嵌合して密封したことによつて、腐蝕発生が全く
なく基板への自動搭載によるハンダ付けが可能で
コンデンサの組立作業がきわめて容易な、しかも
密封性がよく長寿命で特性の安定したリードレス
形アルミニウム電解コンデンサを提供することが
できる。
[Table] From Table 1, Examples B, C, D, and E are Comparative Examples A and F.
Compared to Reference Example G, both the capacitance change rate and the dielectric loss tangent and leakage current after the vibration test showed stable values.
Its stability is even more remarkable. Also, among the above samples, life test of Example C and Reference Example G (temperature 85°C, humidity 95%RH, rated voltage applied)
FIG. 3 shows the capacitance change rate, and FIG. 4 shows the change in dielectric loss tangent. From FIG. 3 and FIG. 4, it can be seen that Example C has better sealing performance than Reference Example G, has less change, and has a longer life. As detailed above, according to the present invention, a capacitor element impregnated with a driving electrolyte is placed in a container made of a tetrafluoroethylene-hexafluoropropylene copolymer pipe with grooves extending from both ends in the longitudinal direction. The thickness of the outer circumferential ring of the terminal cap made of a cladding material of a solderable metal and a valve metal, which houses the terminal cap and connects the electrode lead wire led out from the capacitor element, is as follows:
By fitting into and sealing the inner grooves, each having a length of 1/4 to 2/5 of the total length of the container with a depth equal to or slightly thicker, no corrosion occurs and no damage to the substrate is achieved. It is possible to provide a leadless aluminum electrolytic capacitor that can be soldered automatically and is extremely easy to assemble, and has good sealing performance, long life, and stable characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る容器を示す側
断面図、第2図は本発明の一実施例に係るリード
レス形アルミニウム電解コンデンサを示す側断面
図、第3図および第4図は本発明の実施例Cと従
来の参考例Gとの寿命試験における特性比較を示
すもので第3図は静電容量変化率を示す曲線図、
第4図は誘電正接の変化を示す曲線図である。 1……中溝、2……隔壁、3……容器、4……
コンデンサ素子、5……電極引出線、6……端子
キヤツプ、7……外周環。
FIG. 1 is a side sectional view showing a container according to an embodiment of the present invention, FIG. 2 is a side sectional view showing a leadless aluminum electrolytic capacitor according to an embodiment of the present invention, and FIGS. 3 and 4 3 shows a comparison of characteristics in a life test between Example C of the present invention and conventional Reference Example G, and FIG. 3 is a curve diagram showing the capacitance change rate.
FIG. 4 is a curve diagram showing changes in dielectric loss tangent. 1... Middle groove, 2... Partition wall, 3... Container, 4...
Capacitor element, 5... Electrode lead wire, 6... Terminal cap, 7... Outer ring.

Claims (1)

【特許請求の範囲】[Claims] 1 駆動用電解液を含浸し電極引出線を導出した
コンデンサ素子と、該コンデンサ素子を収容する
4弗化エチレン―6弗化プロピレン共重合体のパ
イプからなる容器と、該容器のパイプ厚みの長さ
方向中間部の隔壁で2分した前記容器の全長のそ
れぞれ1/4〜2/5の長さを有する中溝と、前記電極
引出線を接続し前記中溝に嵌合する外周環を設け
たハンダ付け可能な金属と弁作用金属とのクラツ
ド材からなる端子キヤツプとを具備し、前記外周
環の厚さを前記中溝の深さと同等または幾分厚く
して圧入嵌合したことを特徴とするリードレス形
アルミニウム電解コンデンサ。
1. A capacitor element impregnated with a driving electrolyte and from which an electrode lead wire is led out, a container consisting of a pipe of tetrafluoroethylene-hexafluoropropylene copolymer that houses the capacitor element, and the length of the pipe thickness of the container. A solder having a middle groove having a length of 1/4 to 2/5 of the total length of the container, which is divided into two by a partition wall in the middle part in the width direction, and an outer peripheral ring that connects the electrode lead wire and fits into the middle groove. A leadless terminal comprising a terminal cap made of a cladding material of an attachable metal and a valve metal, and the outer circumferential ring has a thickness equal to or slightly thicker than the depth of the inner groove and is press-fitted. Aluminum electrolytic capacitor.
JP20396181A 1981-12-16 1981-12-16 Leadless type aluminum electrolytic condenser Granted JPS58103120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20396181A JPS58103120A (en) 1981-12-16 1981-12-16 Leadless type aluminum electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20396181A JPS58103120A (en) 1981-12-16 1981-12-16 Leadless type aluminum electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS58103120A JPS58103120A (en) 1983-06-20
JPS629207B2 true JPS629207B2 (en) 1987-02-27

Family

ID=16482514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20396181A Granted JPS58103120A (en) 1981-12-16 1981-12-16 Leadless type aluminum electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS58103120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432503U (en) * 1987-08-21 1989-03-01

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951521A (en) * 1982-09-17 1984-03-26 ニチコン株式会社 Chip type electrolytic condenser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513386Y2 (en) * 1972-07-31 1976-01-31
JPS6041725Y2 (en) * 1980-02-18 1985-12-19 マルコン電子株式会社 Chip-shaped aluminum electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432503U (en) * 1987-08-21 1989-03-01

Also Published As

Publication number Publication date
JPS58103120A (en) 1983-06-20

Similar Documents

Publication Publication Date Title
US4591951A (en) Mounting arrangement for electronic components
JPS60245115A (en) Electronic part
KR20040019926A (en) Solid electrolytic capacitor
JPS5934130Y2 (en) Chip type solid electrolytic capacitor
JPS629207B2 (en)
JPS6028128Y2 (en) Chip type aluminum electrolytic capacitor
EP0169261B1 (en) Electronic component
JPS6137771B2 (en)
CN218241605U (en) Laminated solid-state aluminum electrolytic capacitor with good sealing performance
JPS608425Y2 (en) Chip type aluminum electrolytic capacitor
JPH02194614A (en) Chip capacitor and manufacture thereof
JPS6041725Y2 (en) Chip-shaped aluminum electrolytic capacitor
JP2000348975A (en) Chip-shaped solid-state electrolytic capacitor and manufacture thereof
JPS608424Y2 (en) Chip type aluminum electrolytic capacitor
JPS6011634Y2 (en) Electrolytic capacitor
JPS605579Y2 (en) Chip type aluminum electrolytic capacitor
JPH03116812A (en) Solid electrolytic capacitor
JPS6228756Y2 (en)
CN115376830A (en) Laminated solid aluminum electrolytic capacitor with good sealing performance
JPS6357937B2 (en)
JP2902715B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0244135B2 (en) CHITSUPUGATAARUMIDENKAIKONDENSA
JPH0459767B2 (en)
CN115938806A (en) Laminated solid capacitor
JPH02277215A (en) Electrolytic capacitor