JPS6291842A - Method for evaluating cleanliness - Google Patents

Method for evaluating cleanliness

Info

Publication number
JPS6291842A
JPS6291842A JP23122985A JP23122985A JPS6291842A JP S6291842 A JPS6291842 A JP S6291842A JP 23122985 A JP23122985 A JP 23122985A JP 23122985 A JP23122985 A JP 23122985A JP S6291842 A JPS6291842 A JP S6291842A
Authority
JP
Japan
Prior art keywords
wafer
detected
substrate
foreign matter
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23122985A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamura
博 田村
Atsushi Saiki
斉木 篤
Toshikazu Takahashi
高橋 俊和
Michio Suzuki
道夫 鈴木
Tetsuya Hayashida
哲哉 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP23122985A priority Critical patent/JPS6291842A/en
Publication of JPS6291842A publication Critical patent/JPS6291842A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Abstract

PURPOSE:To detect the foreign matter sticking onto a substrate with high sensitivity by coating the surface of the substrate with a material having >=70% reflectivity to light. CONSTITUTION:Al is deposited by sputter evaporation to about 50nm (91% reflectivity to He-Ne laser light) on the mirror surface side of, for example, an Si wafer (about 4 inch diameter) of which at least one face is finished to the specular surface. Such wafer is immersed into a standard particle suspension (for example, 10<5> pieces/ml particle concn. and 0.33mum particle size) and after drying, the number of the foreign matter on the wafer is measured by using an instrument for measuring the stuck foreign matter (using the He-Ne laser). The particles of the respective particle sizes on the Si wafer can be detected with the detection voltage lower by about 110V than on the Al deposited wafer. The 0.109mum particles cannot be detected on the Si wafer but can be detected at about 1,300V on the Al deposited wafer. The very small foreign matter on the substrate is, therefore, detected with the high accuracy by covering the substrate surface with the material having >=70% reflectivity to light.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、清浄な空間内で清浄に処理される必要のある
基板表面の清浄度の評価に係り、特に基板表面付着異物
の検出感度を高めるに好適な清浄度の評価法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to the evaluation of the cleanliness of a substrate surface that needs to be treated cleanly in a clean space, and particularly to the evaluation of the cleanliness of a substrate surface that needs to be treated cleanly, and in particular to increase the detection sensitivity of foreign substances attached to the substrate surface. This invention relates to a cleanliness evaluation method suitable for

〔発明の背景〕[Background of the invention]

従来、クリーンルームをはじめ環境の清浄度評価は長い
間、浮遊塵埃濃度を光散乱を利用したダストカウンタで
計測していた。しかしながら、LSIの品質向ヒの観点
から、実際に問題となるのは浮遊塵埃濃度ではなく、基
板上への付着異物数である。この評価法として、半導体
分野を対象として日立評論65巻、 p−39(198
3)に示されているように、Siウェーハに付着した異
物数を光散乱を利用した付着異物測定機で計1111’
lすることにより清浄度を評価する方法が提案されてい
る。
Conventionally, the cleanliness of environments such as clean rooms has long been evaluated using dust counters that utilize light scattering to measure the concentration of suspended dust. However, from the viewpoint of improving the quality of LSI, what is actually a problem is not the concentration of floating dust but the number of foreign particles adhering to the substrate. As this evaluation method, Hitachi Review Vol. 65, p-39 (198
As shown in 3), the number of foreign particles attached to the Si wafer was measured using an attached particle measurement device that uses light scattering to a total of 1111'.
A method has been proposed to evaluate cleanliness by

しかしながら、上記方法でSiウェーハを用いた場合最
小検出粒径は0.17μm程度が限界であった。検出粒
径は、使用ウェーハを除けば使用レーザおよび光電子増
倍の性能で決ってしまう。
However, when a Si wafer is used in the above method, the minimum detectable particle size is limited to about 0.17 μm. The detected particle size is determined by the performance of the laser and photomultiplier used, except for the wafer used.

以下で述べる本発明と同等の性能を得るためには、レー
ザ出力を約3倍とする必要があるが、(1)出力に応じ
てノイズも大きくなり、S/Nがそれほど改善されない
。(2)価格が1桁以上高くなるなどの問題が生じる。
In order to obtain performance equivalent to that of the present invention described below, it is necessary to increase the laser output approximately three times, but (1) the noise also increases according to the output, and the S/N ratio is not improved much. (2) Problems arise, such as the price becoming more than an order of magnitude higher.

〔発明の目的〕[Purpose of the invention]

本発明の目的は光反射率がSiよりも高い物質でウェー
ハ表面を被うことにより、ウェーハ上の異物を高感度に
計測できる清浄度評価法を提供することにま)る。
An object of the present invention is to provide a cleanliness evaluation method that can measure foreign substances on a wafer with high sensitivity by covering the wafer surface with a substance having a higher light reflectance than Si.

〔発明の概要〕[Summary of the invention]

発明者I゛)は、付着異物4(1定機を用いて、検出粒
径の下地材料依存性について詳細に検討した。その結果
以下のことが明らかとなった。(1)第1図に示すよう
に、同一粒径の粒子に対しF地材料としてSlを用いた
場合に比べ、AQ (膜)−’i、 : 50nm)を
用いた場合には約[10■低い検出電圧でよい。(2)
粒子からの信号電圧は、第2図に示すように、Siに比
べAQ (膜厚:50nm)で約3倍高い。
The inventor I゛) conducted a detailed study on the dependence of the detected particle size on the underlying material using an attached foreign matter 4 (1) machine. As a result, the following was clarified. (1) As shown in Fig. 1. As shown, when using AQ (film)-'i, : 50 nm), a detection voltage that is approximately [10 .mu.m] lower is required than when using Sl as the F base material for particles of the same particle size. (2)
As shown in FIG. 2, the signal voltage from the particles is about three times higher in AQ (film thickness: 50 nm) than in Si.

この結果は、より微細な粒子を対象とした清浄度評価に
利用できる。
This result can be used for cleanliness evaluation targeting finer particles.

〔発明の実施例〕[Embodiments of the invention]

実施例1 本発明の実施例を以下説明する。 Example 1 Examples of the present invention will be described below.

少なくとも片面を鏡面としたSiウェーハ(直径:4イ
ンチ)の鏡面側にAQ、を約50nm(Hp −N e
レーザ光に対する反射率=91%)スパッタ蒸着した。
AQ, approximately 50 nm (Hp - N e
(Reflectance to laser beam = 91%) Sputter deposition was performed.

本ウェーハを標準粒子懸濁液(粒子種度:105個/ 
m Q 、粒子径:0.3:うμm)に浸漬・乾燥後、
付着異物1lIII定機(He −Neレーザ使用)を
用いてウェーハ上の異物数計測を行った。検出電圧と粒
径の関係は第1図と同様にして?’)られる。各粒径粒
子のSiウェーハ上での検出電圧はAQデポウエーハ−
ヒに比べて110■稈低い電圧で検出できた。さらに、
 0.109μm粒子はSiウェーハ上では検出できな
いが、AQデボウェーハ上では約1300Vで検出する
ことができた。したがって1本実施例によれば、異物付
着測定機を改良することなく、ウェーハに付着した異物
を高感度に測定・評価できる効果がある。また、金(反
射率=92%)、銅(反射率:93%)を用いても同様
の効果がある。なお、蒸着膜厚は10〜500nmの範
囲では表面の平坦度・反射率とも変わらず、検出感度向
上の効果はかわらない。しかしながら、蒸着膜厚が薄い
場合には反射率が急激に低下して効果がなくなる。また
、厚い場合には表面に起伏が生じて乱反射を生じ、粒子
との区別ができなくなる。
This wafer was mixed with a standard particle suspension (particle degree: 105 particles/
mQ, particle size: 0.3 μm) and dried,
The number of foreign particles on the wafer was measured using a 1lIII constant machine (using a He-Ne laser). Is the relationship between detection voltage and particle size the same as in Figure 1? ') can be done. The detection voltage of each particle size on the Si wafer is
It was possible to detect the culm at a voltage 110 μ lower than that of the culm. moreover,
0.109 μm particles could not be detected on the Si wafer, but could be detected at about 1300 V on the AQ debo wafer. Therefore, according to this embodiment, it is possible to measure and evaluate foreign matter attached to a wafer with high sensitivity without improving the foreign matter adhesion measurement device. Further, similar effects can be obtained using gold (reflectance: 92%) and copper (reflectance: 93%). Note that in the range of 10 to 500 nm, the deposited film thickness does not change the flatness or reflectance of the surface, and the effect of improving detection sensitivity remains the same. However, when the thickness of the deposited film is thin, the reflectance decreases rapidly and the effect is lost. In addition, if it is thick, the surface becomes uneven and causes diffuse reflection, making it impossible to distinguish it from particles.

実施例2 少なくとも片面を鏡面としたSiウェーハ(直径:4イ
ンチ)の鏡面側に銀(Ag)を約200nm(反射率:
約98%)スパッタ蒸着した。本ウェーハを標準粒子懸
濁液(粒子濃度:105個/ m Q 、粒子径2.9
5μm)に浸漬・乾燥後、付着異物8(り定機を用いて
ウェーハ上の異物数計測を行った。結果は第1図と同様
にして得られる。
Example 2 Silver (Ag) was coated to a thickness of about 200 nm (reflectance:
(approximately 98%) was sputter deposited. This wafer was mixed with a standard particle suspension (particle concentration: 105 particles/mQ, particle size 2.9
The number of foreign particles on the wafer was measured using a measuring device.The results are obtained in the same manner as in FIG. 1.

Siウェーハ上での検出電圧は約770Vであるが、A
g蒸着ウェーハでは約630Vと約140V程低い電圧
で粒子を検出することができた。また、Si上では検出
できなかった0、109μm粒子をAg蒸着ウェーハ上
では約1300Vで検出することができた。本実施例に
よれば、ウェーハに付着した異物を、異物付着測定機を
を改良することなく、高感度に測定・評価できる効果が
ある。
The detection voltage on the Si wafer is about 770V, but A
On the g-deposited wafer, particles could be detected at a voltage as low as about 140V, about 630V. Furthermore, particles of 0.109 μm, which could not be detected on Si, could be detected at about 1300 V on the Ag-deposited wafer. According to this embodiment, it is possible to measure and evaluate foreign matter adhering to a wafer with high sensitivity without improving the foreign matter adhesion measurement device.

なお、本評価法は半導体だけでなく、光ディスクや磁気
バブルなどにも応用できる。
Note that this evaluation method can be applied not only to semiconductors but also to optical disks, magnetic bubbles, etc.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ウェーハへの付着異物がらの散乱光強
度を従来よりも3倍11A(検出電圧1」0■)強くで
きるので、異物を高感度に検出できる効果がある。
According to the present invention, the intensity of scattered light from foreign particles adhering to the wafer can be made three times stronger by 11 A (detection voltage 1''0) than the conventional method, so that foreign particles can be detected with high sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は0.546μm粒子検出数と検出電圧の関係(
SiウェーハおよびA12デボ(50n m)ウェーハ
との比較)図、第2図は粒子からの光散乱信号電圧と検
出電圧の関係(SiウェーハおよびAQ無蒸着50 n
 m)ウェーハとの比較)図である。
Figure 1 shows the relationship between the number of detected 0.546 μm particles and the detection voltage (
Figure 2 shows the relationship between the light scattering signal voltage from particles and the detection voltage (Si wafer and A12 non-evaporated 50nm wafer).
m) Comparison with wafer).

Claims (1)

【特許請求の範囲】 1、基板上に付着した微小異物粒子に、特定の波長を有
する光を照射して散乱光を検出することにより清浄度を
評価する方法において、基板表面を該光に対して反射率
が70%以上の物質で被つたことを特徴とする清浄度評
価法。 2、反射率が70%以上の物質として金属膜を用いた上
記第1項記載の清浄度評価法。
[Claims] 1. In a method of evaluating cleanliness by irradiating light having a specific wavelength onto minute foreign particles attached to a substrate and detecting scattered light, the surface of the substrate is exposed to the light. A method for evaluating cleanliness characterized by covering the surface with a substance having a reflectance of 70% or more. 2. The cleanliness evaluation method according to item 1 above, using a metal film as the substance with a reflectance of 70% or more.
JP23122985A 1985-10-18 1985-10-18 Method for evaluating cleanliness Pending JPS6291842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23122985A JPS6291842A (en) 1985-10-18 1985-10-18 Method for evaluating cleanliness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23122985A JPS6291842A (en) 1985-10-18 1985-10-18 Method for evaluating cleanliness

Publications (1)

Publication Number Publication Date
JPS6291842A true JPS6291842A (en) 1987-04-27

Family

ID=16920342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23122985A Pending JPS6291842A (en) 1985-10-18 1985-10-18 Method for evaluating cleanliness

Country Status (1)

Country Link
JP (1) JPS6291842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779279B1 (en) * 2000-09-26 2007-11-23 제너럴 일렉트릭 캄파니 Surface cleanliness measurement procedure and tools for measuring surface cleanliness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779279B1 (en) * 2000-09-26 2007-11-23 제너럴 일렉트릭 캄파니 Surface cleanliness measurement procedure and tools for measuring surface cleanliness

Similar Documents

Publication Publication Date Title
JP2559053B2 (en) Method for measuring layer thickness, method for measuring certain interactions using the method and means for performing the method
Mrksich et al. Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold
US7679748B2 (en) Coupled waveguide-surface plasmon resonance biosensor
Lilienfeld Optical detection of particle contamination on surfaces: a review
JPH081416B2 (en) Particle sorter
CA2253710A1 (en) Analyte assay using particulate labels
JP2011522215A5 (en)
EP0304461A1 (en) Improved assay technique and apparatus therefor
FR2800514A1 (en) METHODS AND SYSTEMS FOR MEASURING MICRO-ROUGHNESS OF A SUBSTRATE COMBINING PARTICLE COUNTER AND ATOMIC FORCE MICROSCOPE MEASUREMENTS
JPH05506936A (en) Immobilized analyte detection device
JP2003307414A (en) Abrasion loss measurement method and measurement device
JPH01213552A (en) Improved reflection photometer
JPS6291842A (en) Method for evaluating cleanliness
US6453263B1 (en) Surface analysis using ellipsometry
US7829349B2 (en) Base carrier for detecting target substance, element for detecting target substance, method for detecting target substance using the element, and kit for detecting target substance
TW201215875A (en) Fluorescence-detecting disk inspection system
Palla et al. Mathematical model for biomolecular quantification using large-area surface-enhanced Raman spectroscopy mapping
US6333785B1 (en) Standard for calibrating and checking a surface inspection device and method for the production thereof
Knollenberg A polarization diversity two-color surface analysis system
JPH09115973A (en) Inspecting method for foreign substance
JP2744807B2 (en) Foreign matter inspection method and foreign matter inspection device having judgment function
JPS6179142A (en) Infrared absorption analysis method
JP2937173B2 (en) Method for measuring the number of generated particles from semiconductor wafers
JPH07286967A (en) Inspecting method and inspecting device for optical disk
JP2001235473A (en) Device for detecting immobilized analyte