JPS6291675A - Micropump - Google Patents

Micropump

Info

Publication number
JPS6291675A
JPS6291675A JP23025685A JP23025685A JPS6291675A JP S6291675 A JPS6291675 A JP S6291675A JP 23025685 A JP23025685 A JP 23025685A JP 23025685 A JP23025685 A JP 23025685A JP S6291675 A JPS6291675 A JP S6291675A
Authority
JP
Japan
Prior art keywords
thin plates
fluid
displacement
convex
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23025685A
Other languages
Japanese (ja)
Inventor
Satoru Tagami
悟 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23025685A priority Critical patent/JPS6291675A/en
Publication of JPS6291675A publication Critical patent/JPS6291675A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to control the flow accurately with the driving frequency by furnishing permanent elastic thin plates with the part processed in a convex and a displacement generating device installed connecting to the thin plates, to a micropump to convey a minute amount fluid. CONSTITUTION:This pump has valves 1 and 2 variable in the direction of arrows at the inlet and the exit respectively, and the operations of the valves 1 and 2 are controlled by stoppers 5. Furthermore, between the inlet and the exit, convex form thin plates 3 and 4 of a permanent elastic metal such as elinvar are arranged, to each of which is connected an end of an expansion device consisting of a piezoelectric actuator element 10 between a pair of parallel square plates 9. By a displacement to pull the thin plates 3 and 4 in the direction to increase the pumping volume through applying power to the piezoelectric actuator element 10, the valve 1 is opened to inhale the fluid, and then, by restoring the thin plates 3 and 4 through decreasing the power application, the valve 2 is opened to discharge the said fluid.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、医用機器や化学分析機器へ応用されるマイク
ロポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a micropump applied to medical equipment and chemical analysis equipment.

(従来の技術) 従来、マイクロポンプは、ビニール管などに外部から圧
力を加えて変形させ、変形による体積減少分だけ流体が
輸送されるという機構の機械的ポンプがあった。
(Prior Art) Conventionally, micro pumps have been mechanical pumps that have a mechanism in which a vinyl pipe or the like is deformed by applying pressure from the outside, and fluid is transported by an amount equal to the volume reduction caused by the deformation.

あるいは、圧電セラミック全利用したものでは圧電ベイ
モルフ素子を対向して配置し、バイモルフ素子を逆相で
変位させることにより、両バイモルフ素子間の流体を排
除するものであった。
Alternatively, in the case where all piezoelectric ceramics are used, the piezoelectric baymorph elements are arranged facing each other, and the fluid between the two bimorph elements is eliminated by displacing the bimorph elements in opposite phases.

(発明が解決しようとする問題点) 機械的カマイクロポンプの場合、輸送される流量を精確
(てコントロールすることは、動作原理から明らかなよ
うに困難であった。また圧73(バイモルフ素子を利用
したものは共振周波数で駆動しないとバイモルフの変位
量が小さいため、輸送される流量が極端に小さくなる。
(Problems to be Solved by the Invention) In the case of mechanical micropumps, it is difficult to accurately control the transported flow rate, as is clear from the principle of operation. If the device used is not driven at a resonant frequency, the amount of displacement of the bimorph is small, so the flow rate transported becomes extremely small.

また流+に全任意にコントロールするのは困難である。Also, it is difficult to control it freely and completely.

本発明の目的は、この問題点を解決したマイクロポンプ
を提供することにある。
An object of the present invention is to provide a micropump that solves this problem.

(問題点全解決するための手段) 本発明はその一部がコンベックス状に加工された恒弾性
の薄板と、該薄板に接して積付けられた変位発生手段と
を備えているマイクロポンプである。
(Means for Solving All Problems) The present invention is a micropump comprising a constant elastic thin plate, a part of which is processed into a convex shape, and a displacement generating means stacked in contact with the thin plate. .

(作用) 本発明では、一部分がコンベックス状に加工された恒弾
性金属薄板に圧電縦効果を利用して変位する圧電アクチ
ュエータの積層体、あるいは横効果を利用した圧電アク
チュエータ、あるいは電歪効果素子がはりつけられてい
る。さらに比較的大きな流tを得たい時には、アクチュ
エータの変位全機械的に搏犬する機構がはりつけられる
。周知のようにコンベックス形状の板は、双安定の位置
がある。従って圧電アクチュエータの伸縮によりコンベ
ックス薄板に変位のきっかけ金与えると安定位置まで一
気に変位をする。
(Function) In the present invention, a stack of piezoelectric actuators that are displaced using a piezoelectric longitudinal effect, a piezoelectric actuator that uses a transverse effect, or an electrostrictive effect element is mounted on a constant elastic metal thin plate partially processed into a convex shape. Being crucified. When a relatively large flow t is desired to be obtained, a mechanism for mechanically controlling the entire displacement of the actuator is installed. As is well known, a convex plate has bistable positions. Therefore, when a trigger for displacement is given to the convex thin plate by the expansion and contraction of the piezoelectric actuator, it will be displaced all at once to a stable position.

この結果、1回の駆動で排除される流量は一定に保たれ
る。さらに、圧電アクチェエータの駆動周波数全変える
ことによりコンベックス状薄板の変位周期も適当に選べ
る。即ち流量のコントロールが可能と彦る。但し、フン
ペックス状薄板が変位全完了するに要する時間より短か
い周期でのアクチュエータの駆動は意味がない事は明ら
かである。従って正確にはこの周期内でステップ的に流
tをコントロールすることができる。
As a result, the flow rate removed in one drive is kept constant. Furthermore, by changing the drive frequency of the piezoelectric actuator, the displacement period of the convex thin plate can be appropriately selected. In other words, it is possible to control the flow rate. However, it is clear that it is meaningless to drive the actuator at a cycle shorter than the time required for the Humpex-like thin plate to completely complete its displacement. Therefore, accurately, the flow t can be controlled in steps within this period.

(実施例) 第1図は本発明の構成例を示す全体の断面図である。ポ
ンプの入口、出口には、それぞれ矢印の方向に動く弁1
,2がついている。弁1,2f″iストッパー5により
それぞれ運動を制限されている。
(Example) FIG. 1 is an overall sectional view showing a configuration example of the present invention. At the inlet and outlet of the pump, there is a valve 1 that moves in the direction of the arrow.
, 2 is attached. The movements of the valves 1 and 2f'' are restricted by stoppers 5, respectively.

入口の弁Itコンベックス薄板3,4がポンプ内容積を
減少する方向に変位した時′に、V′i封止、コンベッ
クス薄板3がポンプ内容積を増大させる方向に変位した
時にはフリーと力るように作用する。
When the inlet valve It's convex thin plates 3 and 4 are displaced in the direction of decreasing the pump internal volume, V'i is sealed, and when the convex thin plate 3 is displaced in the direction of increasing the pump internal volume, it is freed. It acts on

出口弁2fi上記とは逆に作用し、この弁1,2より流
体は一方向にのみ流れるようになる。
Outlet valve 2fi acts in the opposite manner to the above, and fluid flows only in one direction from these valves 1 and 2.

次に、流体の輸送機構部について説明する。エリンバ々
ど恒弾性金属のコンベックス状薄板3゜4riポンプ内
容積を減少する方向に変位した位置で1圧電アクチュエ
ータに電界を印加しない状態で、拡大機構の先端部をコ
ンベックス薄板3,4に接着する。そこで電界を印加す
ると圧電アクチュエータは伸び拡大機構先端部は、薄板
3,4をポンプ内容積が増大する方向に引張るように変
位する。この時弁1が開き、流体が流入する。(この時
弁2は封止されている)次に印加する電界全零に戻すと
、拡大機構先端はポンプ内容積を減少するようにコンベ
ックス薄板3,4全変位させる。
Next, the fluid transport mechanism section will be explained. At a position displaced in the direction of reducing the internal volume of the 3゜4ri pump's convex-shaped thin plate made of a constant elastic metal such as Erimba, 1, without applying an electric field to the piezoelectric actuator, glue the tip of the expansion mechanism to the convex thin plates 3 and 4. . Then, when an electric field is applied, the piezoelectric actuator expands and the distal end of the expansion mechanism is displaced so as to pull the thin plates 3 and 4 in the direction of increasing the internal volume of the pump. At this time, valve 1 opens and fluid flows in. (At this time, the valve 2 is sealed.) When the applied electric field is then returned to zero, the tip of the expanding mechanism completely displaces the convex thin plates 3 and 4 so as to reduce the internal volume of the pump.

この時弁1は封止され、弁2が開き、流体が排出される
。この一連の動作により、ポンプとしての機能が実現さ
れる。
At this time, valve 1 is sealed and valve 2 is opened, allowing fluid to be discharged. This series of operations realizes the function of a pump.

ここで変位拡大機構について説明する。第2図に構成例
の断面図を示す。平行に配置した角材9の間に圧l厩素
子がはさみこまれ、固定された構成となっている。
Here, the displacement magnification mechanism will be explained. FIG. 2 shows a sectional view of a configuration example. The pressing element is sandwiched between the square members 9 arranged in parallel and is fixed.

原理は次の通ゆである。圧電アクチュエータ素子10に
電界を印加して発生した変位Δlは支点情6金介してこ
の原理によゆ拡大される。
The principle is as follows. According to this principle, the displacement Δl generated by applying an electric field to the piezoelectric actuator element 10 is magnified via the fulcrum information 6.

コンベックス状薄板3,4に接着される拡大機構先端7
,8で得られる変位をlX とすると、Δlの大きさは
、グリーンシート法により炸裂された積層圧電アクチュ
エータ(形状2x3x9tn2層間115μm)の場合
、IK物程変の電界全印加すると8μm程度となる。1
2/llは希望する流量の大きさにエリ調節すれば良い
Expansion mechanism tip 7 glued to convex thin plates 3 and 4
, 8, the magnitude of Δl is about 8 μm when the entire electric field of IK displacement is applied in the case of a laminated piezoelectric actuator exploded by the green sheet method (shape: 2x3x9tn, 115 μm between two layers). 1
2/ll may be adjusted to the desired flow rate.

ここで、コンベックス状の部分全含む薄板全20x20
 xO,l t wx、、コンベックス部分を曲率半径
R=156門程度の球面とし、また、ポンプ駆動部をお
おうボックスfjr:20x20x20mの立方体とす
る。
Here, the entire thin plate including the convex part is 20x20
xO,l t wx, The convex part is a spherical surface with a radius of curvature R = about 156 gates, and the box fjr covering the pump drive section is a cube of 20 x 20 x 20 m.

この時、流れろ流体を非圧縮流体と仮定して、体積変化
分がすべて流体の排除にまわるとすると1サイクルの駆
動により輸送される量は約12−程度と々る。これに駆
動周波数を乗ずれば毎秒あ九りの流量が得られる。
At this time, assuming that the flowing fluid is an incompressible fluid, and assuming that the volume change is all used to remove the fluid, the amount transported by one cycle of driving is about 12-. Multiplying this by the drive frequency will give you a huge flow rate per second.

尚、コンベックス状薄板3は1枚だけでもポンプ機能が
実現されるのは言うまでも々い。
It goes without saying that the pump function can be achieved with just one convex thin plate 3.

また実施例では変位発生手段はアクチュエータ金利用し
た変位拡大機構の例を示したが、アクチュエータのみを
用Aてもよい。
Further, in the embodiment, an example of a displacement magnifying mechanism using an actuator as the displacement generating means is shown, but it is also possible to use only the actuator.

(発明の効果) 以上述べたように、駆動周波数によりステップ的に流量
の精確なフントロールが可能と々る。
(Effects of the Invention) As described above, it is possible to precisely control the flow rate in steps depending on the drive frequency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明によるマイクロポンプの全体を構成例
を示す断面図、第2図は変位拡大機構の構成例を示す断
面図。 図中、1,2は弁、3,4はコンベククス状薄板、5は
ストッパー、6は支点軸、7,8は拡大機構の先端、9
は角材、102アクチュエータ素亭  1   図 5、ストッlマー
FIG. 1 is a cross-sectional view showing an example of the overall configuration of a micropump according to the present invention, and FIG. 2 is a cross-sectional view showing an example of the configuration of a displacement magnifying mechanism. In the figure, 1 and 2 are valves, 3 and 4 are convex thin plates, 5 is a stopper, 6 is a fulcrum shaft, 7 and 8 are the tips of the expansion mechanism, and 9
is square material, 102 actuator element 1 Figure 5, stocker

Claims (3)

【特許請求の範囲】[Claims] (1)微小量の流体を輸送するポンプにおいて、一部が
コンベックス状に加工された恒弾性の薄板と、該薄板に
接続して取付けられた変位発生手段とを備えたことを特
徴とするマイクロポンプ。
(1) A pump for transporting a minute amount of fluid, characterized by comprising a constant elastic thin plate partially processed into a convex shape, and a displacement generating means attached in connection with the thin plate. pump.
(2)恒弾性の薄板は2枚が対向して配置されている特
許請求の範囲第1項記載のマイクロポンプ。
(2) The micropump according to claim 1, wherein two constant elastic thin plates are arranged facing each other.
(3)変位発生手段はアクチュエータ又はアクチュエー
タを組込んだ変位拡大機構である特許請求の範囲第1項
又は第2項記載のマイクロポンプ。
(3) The micropump according to claim 1 or 2, wherein the displacement generating means is an actuator or a displacement magnification mechanism incorporating an actuator.
JP23025685A 1985-10-15 1985-10-15 Micropump Pending JPS6291675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23025685A JPS6291675A (en) 1985-10-15 1985-10-15 Micropump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23025685A JPS6291675A (en) 1985-10-15 1985-10-15 Micropump

Publications (1)

Publication Number Publication Date
JPS6291675A true JPS6291675A (en) 1987-04-27

Family

ID=16904950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23025685A Pending JPS6291675A (en) 1985-10-15 1985-10-15 Micropump

Country Status (1)

Country Link
JP (1) JPS6291675A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266376A (en) * 1988-04-15 1989-10-24 Res Dev Corp Of Japan Liquid micro-valve and micro-pump
US7302970B2 (en) 2002-09-10 2007-12-04 Canon Kabushiki Kaisha Liquid delivery device
CN105736333A (en) * 2016-01-27 2016-07-06 蚌埠移山压缩机制造有限公司 Low-noise air compressor
JP2018031290A (en) * 2016-08-24 2018-03-01 株式会社Screenホールディングス Pump device and substrate treatment device
WO2023023133A1 (en) * 2021-08-17 2023-02-23 Meta Platforms Technologies, Llc Fluid pump having a polyvinylidene fluoride membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266376A (en) * 1988-04-15 1989-10-24 Res Dev Corp Of Japan Liquid micro-valve and micro-pump
US7302970B2 (en) 2002-09-10 2007-12-04 Canon Kabushiki Kaisha Liquid delivery device
CN105736333A (en) * 2016-01-27 2016-07-06 蚌埠移山压缩机制造有限公司 Low-noise air compressor
JP2018031290A (en) * 2016-08-24 2018-03-01 株式会社Screenホールディングス Pump device and substrate treatment device
US10790165B2 (en) 2016-08-24 2020-09-29 SCREEN Holdings Co., Ltd. Pump apparatus and substrate treating apparatus
WO2023023133A1 (en) * 2021-08-17 2023-02-23 Meta Platforms Technologies, Llc Fluid pump having a polyvinylidene fluoride membrane

Similar Documents

Publication Publication Date Title
US6179586B1 (en) Dual diaphragm, single chamber mesopump
US6869275B2 (en) Piezoelectrically driven fluids pump and piezoelectric fluid valve
Amirouche et al. Current micropump technologies and their biomedical applications
Linnemann et al. A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases
TWI306490B (en) Apparatus for driving microfluid driving the method thereof
US20090297372A1 (en) Dual Chamber Valveless Mems Micropump
CN101354030B (en) Micro-fluid pump with active control capability
Murray et al. Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators
US20120027620A1 (en) Forced vibration piezo generator and piezo actuator
Berg et al. Peristaltic pumps
JPH09287571A (en) Micropump
JPS6291675A (en) Micropump
Kalyonov et al. Valveless microfluidic pump based on IPMC actuator for drug delivery
Lee et al. A multi-channel micro valve for micro pneumatic artificial muscle
JPS61171891A (en) Piezo-electric pump
Wen et al. A valveless micro impedance pump driven by PZT actuation
EP3510284A1 (en) Micropumps
Johnston et al. Elastomer-glass micropump employing active throttles
Shabanian et al. The deformable valve pump (DVP)
JPH0242184A (en) Piezoelectric type micropump
CN110762271A (en) Piezoelectric stack driving type normally closed microfluidic valve
WO2022124177A1 (en) Fluid control device, fluid control system, and fluid control device manufacturing method
JPS62233499A (en) Micropump
Rakotondrabe et al. Design and modeling of a piezoelectrically actuated microvalve.
Tay Literature review for micropumps