JPS6291534A - Method of bonding polyoxymethylene - Google Patents

Method of bonding polyoxymethylene

Info

Publication number
JPS6291534A
JPS6291534A JP60231045A JP23104585A JPS6291534A JP S6291534 A JPS6291534 A JP S6291534A JP 60231045 A JP60231045 A JP 60231045A JP 23104585 A JP23104585 A JP 23104585A JP S6291534 A JPS6291534 A JP S6291534A
Authority
JP
Japan
Prior art keywords
polyoxymethylene
plasma
adhesive
low
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60231045A
Other languages
Japanese (ja)
Inventor
Teruhiko Matsuo
輝彦 松尾
Tsuneo Igarashi
恒夫 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60231045A priority Critical patent/JPS6291534A/en
Publication of JPS6291534A publication Critical patent/JPS6291534A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Abstract

PURPOSE:To bond polyoxymethylene firmly to each other or to other material, by treating its surface with a low-temperature plasma, brining it into contact with a compd. having a C=C bond and bonding it with an adhesive. CONSTITUTION:In bonding polyoxymethylene to each other or to other material, its surface is previously treated with a low-temperature plasma and then brought into contact with a compd. contg. a carbon-to-carbon double bond to polymerize said compd. Said plasma must be a low-temperature one. A high-temperature plasma has excessively high energy that it causes high-molecular material to be broken during treatment, so that is is impossible to treat only the surface of the polymer. When a low-temperature plasma is used, only the surface can be treated under specified conditions.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は改良されたポリオキシメチレンの接着方法に関
するものである。さらに詳しくいえば、本発明は、ポリ
オキシメチレン同士又はポリオキシメチレンと他物質と
を接着剤で接着する際に、両者を強固に接着させる一方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to an improved method of bonding polyoxymethylene. More specifically, the present invention relates to a method for firmly adhering polyoxymethylenes to each other or polyoxymethylene and another substance when using an adhesive.

従来の技術 ポリオキシメチレ/は、通常ポリアセタール樹脂とも呼
ばれ、極めてl1lll性が大きいことから、エンジニ
アリングプラスチックとして、射出成形品や押出成形品
などの形で、例えば自動車、家庭電気製品、精密機械部
品などの分野において幅広く用いられている。
Conventional technology Polyoxymethylene is also commonly called polyacetal resin, and because it has extremely high lllllllility, it is used as an engineering plastic in the form of injection molded products and extrusion molded products, such as automobiles, home appliances, precision machinery parts, etc. It is widely used in various fields.

また、最近、ポリオキシメチレンを延伸して、力学的性
質を改良し、繊維−?+!1iil材として使用するこ
とが行われている。例えはポリオキシメチレンを高い延
伸比で延伸する方法、すなわち超延伸技術が開発され〔
「工業材料」第62巻、第4号、第92ページ(198
4年〕、[ポリ”  (Poly−mar ) J第2
6巻、第426ページ(1985年)、特開昭60−5
2618号公報〕、この超延伸方法で得られるポリオキ
シメチレンの繊維や線材は1.5 GPa程度の引張強
度と40 GPa以上の引張弾性率を示すスチールに近
い物性を有する材料となることが知られている。
Recently, polyoxymethylene has been stretched to improve its mechanical properties, and fibers have been improved. +! It is being used as a 1III material. For example, a method of stretching polyoxymethylene at a high stretching ratio, that is, a super-stretching technology, was developed.
“Industrial Materials” Volume 62, No. 4, Page 92 (198
4th year], [Poly-mar] J 2nd
Volume 6, page 426 (1985), Japanese Patent Publication No. 60-5
No. 2618], it is known that the polyoxymethylene fibers and wires obtained by this ultra-stretching method are materials with physical properties close to those of steel, exhibiting a tensile strength of about 1.5 GPa and a tensile modulus of over 40 GPa. It is being

このような、超延伸法によって得られる繊維や線材をロ
ープやワイヤーなどの材料として用いる場合、結節やカ
シメが困難なため、末端を接着剤によって連結する必要
があるが、この際の接着ヵは使用時の荷重に十分に耐え
うるほどの強さでなければならない。多くの用途で1k
l?/lllI2以上の接着強度が要求されている。
When fibers and wire rods obtained by such super-stretching methods are used as materials such as ropes and wires, it is difficult to knot or caulk, so it is necessary to connect the ends with adhesive. It must be strong enough to withstand the load during use. 1k for many uses
l? An adhesive strength of /lllI2 or higher is required.

しかしながら、ポリオキシメチレンの接着については、
一般の射出成形品のような非配向性のもの及び前記超延
伸で得られる線材のような配向性のもの、いずれにおい
ても同一質問ある〜・警i他物質との間の接着剤による
接着が極め℃困難で、1ゆ/言−以上の接着強度はおろ
か実用に供しうる接着方法は、これまで見出され′C−
1な0ツカ実状テある。
However, regarding adhesion of polyoxymethylene,
The same question applies to both non-oriented products such as general injection molded products and oriented products such as the wire obtained by super-stretching. Until now, no adhesive method has been found that is extremely difficult and can be put to practical use, let alone that has an adhesive strength of 1 yu/word or more.
There is a real situation.

ところで、ポリオキシメチレンを接着剤で処理する方法
としては、これまでポリオキシメチレンのウィスカーを
ポリウレタン系接着剤で処理したものを、複合材料の強
化用繊維として使用する方法が知られているが(特開昭
48−96631号公@)、この方法においても十分な
接着強度を末得られていない。
By the way, as a method of treating polyoxymethylene with an adhesive, a method is known in which polyoxymethylene whiskers are treated with a polyurethane adhesive and used as reinforcing fibers for composite materials ( Even in this method, sufficient adhesive strength cannot be obtained.

発明が解決しようとする問題点 本発明の目的は、ポリオキシメチレン同士又はポリオキ
シメチレンと他物質とを接着剤を用いて接着する際に、
1に9/寵2以上の大きな接着強度が得られるような接
着方法を提供することにある。
Problems to be Solved by the Invention The purpose of the present invention is to solve the following problems when bonding polyoxymethylene to each other or to bonding polyoxymethylene to another substance using an adhesive.
An object of the present invention is to provide a bonding method capable of obtaining a large adhesive strength of 1 to 9/2 or more.

問題点を解決するための手段 本発明者は前記問題点を解決すべく鋭意研究を重ねた結
果、あらかじめポリオキシメチレンの表面を低温プラズ
マ処理することで接着強度が向上し、アクリルアミドな
どの炭素−炭素二1結合を有する化合物をプラズマ処理
を施したポリオキシメチレンの表面に接触させることで
更に接着強度は向上し、1に9/寵2を越えることを見
出し、この知見に基づいて本発明を完成するに至った。
Means for Solving the Problems As a result of extensive research in order to solve the above problems, the inventors of the present invention have found that adhesive strength is improved by subjecting the surface of polyoxymethylene to a low-temperature plasma treatment in advance, and carbon-based materials such as acrylamide It was discovered that by bringing a compound having a carbon-21 bond into contact with the surface of polyoxymethylene that had been subjected to plasma treatment, the adhesive strength exceeded 1 to 9/2, and based on this knowledge, the present invention was developed. It was completed.

すなわち、本発明lよポリオキシメチレン同士又はポリ
オキシメチレンと他物質とを接着剤音用いて接着するに
当り、該ポリオキシメチレンの表面をあらかじめ低温プ
ラズマ処理し、炭素−炭素二重結合を有する化合物を該
表面に接触させて、該化合物を重合せしめることを特徴
とするポリオキシメチレンの接着方法である。
That is, according to the present invention, when bonding polyoxymethylene to each other or to bonding polyoxymethylene to another substance using an adhesive, the surface of the polyoxymethylene is treated with low-temperature plasma in advance to form a carbon-carbon double bond. This is a method for adhering polyoxymethylene, which is characterized by bringing a compound into contact with the surface and polymerizing the compound.

本発明方法で用いるポリオキ7メチレンは、原料として
ホルムアルデヒドやトリオキサンなどを用い、公知の重
合方法によって得られるものでよく、マた、ホモポリマ
ー及びエチレンオキシドなどを共重合して得られたコポ
リマーのいずれでもよい、さらに非配向性のものであっ
てもよいし、配向性のものであってもよい。
The polyoxy7-methylene used in the method of the present invention may be obtained by a known polymerization method using formaldehyde, trioxane, etc. as a raw material, or may be a copolymer obtained by copolymerizing polymers, homopolymers, ethylene oxide, etc. Furthermore, it may be non-oriented or oriented.

ポリオキシメチレンの非配向体には、例えばペレット、
射出成形品、押出成形品など延伸や圧延などの応力を加
えて高分子を配向させる工程を経ないものすべてが含ま
れる。
Examples of non-oriented polyoxymethylene include pellets,
This includes all products that do not undergo a process of applying stress such as stretching or rolling to orient the polymer, such as injection molded products and extrusion molded products.

一方、ポリオキシメチレン配肉体には、例えは溶融紡糸
して得られる未延伸繊維を延伸して成る超延伸繊維、押
出成形品を延伸して得られる超延伸線材、あるいは−軸
又は二軸延伸フィルムなどがあり、複屈折率、広角xf
il散乱法、小角X@散乱法、赤外線二色法などの方法
によって、高分子の配向が観察されるものはすべてが含
まれる。
On the other hand, polyoxymethylene-coated bodies include, for example, ultra-drawn fibers obtained by drawing undrawn fibers obtained by melt spinning, ultra-drawn wire rods obtained by drawing extruded products, or -axially or biaxially drawn fibers. There are films, etc., birefringence, wide-angle xf
This includes all methods in which the orientation of polymers can be observed by methods such as il scattering, small-angle X@ scattering, and infrared dichroism.

本発明方法は、このようなポリオキシメチレン同士を接
着する場合及びポリオキシメチレンと他物質とを接着す
る場合のいず゛れt適用でき、また、接着剤とポリオキ
シメチレンの表面間との接着を対象とするものである。
The method of the present invention can be applied to both cases of adhering polyoxymethylene to each other and adhesion of polyoxymethylene to other substances. It is intended for adhesion.

フラズマトは物質にエネルギーが那えもれて、物質の構
成要素である陰陽の荷電粒子に解離し電離気体になった
もので、通常の気体に比べて高度に励起された不安定状
態である。
A plasmat is a substance in which energy leaks and dissociates into Yin and Yang charged particles, which are the constituent elements of the substance, resulting in an ionized gas, which is in a highly excited and unstable state compared to a normal gas.

系全体が高いエネルギー状態に均一化されたプラズマを
高温プラズマと称し、低圧電離気体のように電子だけが
高いエネ/I/イー状態を持っている状態を低温プラズ
マと称す。容器内でプラズマを実現するには、電界を印
〃口して放電する方法がとられる。通常直流電界と高周
波電界にわけられる。
A plasma in which the entire system is homogenized to a high energy state is called a high-temperature plasma, and a state in which only electrons have a high energy/I/E state, such as in a low-pressure ionized gas, is called a low-temperature plasma. To create plasma within a container, a method of applying an electric field and discharging it is used. Usually divided into DC electric field and high frequency electric field.

内に封入したガスの圧を低下させると、低温プラズマが
生じ10” T+Orr程度から電流が流れ始め、10
−にtorr程度では、放電tmも増して、封入ガス固
有の励起発光が認められる。放電の担(・手は電子で、
この電子とがス分子の衝突でガス分子を励起もしくはイ
オン化する。したがって、プラダマ中には高エネルギー
電子、励起分子または励起原子、イオン、ラジカルなど
が共存する。
When the pressure of the gas sealed inside is lowered, a low-temperature plasma is generated, and current begins to flow from about 10" T+Orr, and
At around - torr, the discharge tm also increases, and excited light emission unique to the filled gas is observed. Responsible for electric discharge (・Hands are electronic,
These electrons and gas molecules collide with each other to excite or ionize gas molecules. Therefore, high-energy electrons, excited molecules or atoms, ions, radicals, etc. coexist in Pradamas.

プラズマ発生の方法には平板の電極間で行なうグロー放
電、針状の電極などと対極間で行なうコロナ放電などの
電極を用いる方法と電極を用いない方法がある。−HK
高分子の処理には上記の電極を用いる方法が多く用いら
れ、高周波放電が普通である。
There are two methods for generating plasma: methods that use electrodes, such as glow discharge between flat electrodes, and corona discharge between a needle-like electrode and a counter electrode, and methods that do not use electrodes. -HK
Methods using the above-mentioned electrodes are often used to treat polymers, and high-frequency discharge is common.

本発明においてはプラズマは、いわゆる低温プラズマで
なければならない。高温プラズマではエネルギーが大き
すぎ、高分子材料では処理中に仮象され、宍面のみの処
理は出来ない。低温プラズマでは条件を選択することで
高分子材料の光面のみを処理することが出来る。
In the present invention, the plasma must be a so-called low-temperature plasma. High-temperature plasma requires too much energy, and with polymeric materials, the material is imaginary during processing, making it impossible to process only the surface. With low-temperature plasma, it is possible to process only the optical surface of a polymer material by selecting conditions.

本発明における低温プラズマの発生方式はいずれの方法
でも良いが、グロー放電およびコロナ放電が好ましい。
Although any method may be used to generate low-temperature plasma in the present invention, glow discharge and corona discharge are preferred.

また用いる電界は高周波電界が好ましく、通常13.5
6 MHzが用いられる。プラズマ発生に用いるがスは
アルプン、ヘリウムなどの不活性ガス、0□、N2、C
O2、NH3などの反応性のがスのいずれでも良いが、
処理の効果の再現性から不活性ガスの方が好ましい。
The electric field used is preferably a high frequency electric field, usually 13.5
6 MHz is used. The gas used for plasma generation is an inert gas such as alpine or helium, 0□, N2, or C.
Any reactive gas such as O2 or NH3 may be used, but
Inert gas is preferred from the viewpoint of reproducibility of treatment effects.

第1図にプラズマ処理装置(グロー放電処理装置)の1
例を示す。1は電極、2は試料(ポリオキシメチレン)
、3は支持台、4は真仝ポンプ、5は真空計、6は高周
波発振機(13,56MHz )で、処理電力、真空度
、処理時間を必要に応じて適宜選んで処理の程度をD0
減する。
Figure 1 shows one of the plasma treatment equipment (glow discharge treatment equipment).
Give an example. 1 is the electrode, 2 is the sample (polyoxymethylene)
, 3 is a support stand, 4 is a true pump, 5 is a vacuum gauge, and 6 is a high frequency oscillator (13,56MHz), and the processing power, degree of vacuum, and processing time are selected as necessary to control the degree of processing to D0.
reduce

プラズマによるポリオキシメチレンの宍面処理の程度は
、処理によって光面に凹凸が生ずる(エツチング)程度
が接層性向上にとっては好ましい。
For improving adhesion, the degree of plasma treatment of polyoxymethylene that causes unevenness (etching) on the optical surface is preferable.

本発明においては、プラズマ処理したポリオキシメチレ
ンは、処理後直ちに炭素−炭素二重結合を有する化合物
と接触させるのが好ましい。処理後時間が経過し過ぎる
とプラズマ処理で生じたラジカルが消滅するため、該化
合物と接触させても重合が十分起らなくなるからである
。プラズマ処理したポリオキシメチレンを保存するには
液体窒素温度のような低温で保存するのが好ましい。
In the present invention, the plasma-treated polyoxymethylene is preferably brought into contact with a compound having a carbon-carbon double bond immediately after the treatment. This is because if too much time passes after the treatment, the radicals generated by the plasma treatment will disappear, and polymerization will not occur sufficiently even if the compound is brought into contact with the compound. Plasma-treated polyoxymethylene is preferably stored at low temperatures, such as liquid nitrogen temperatures.

本発明においては炭素−炭素二重結合を有する化合物と
はビニル化合物、ビニリデン化合物、オレフィン、ジエ
ンなどの二重結合を有して、且つ付DO重合によって重
合体となり得る化合物である〇接着剤との親和性を高め
るために、側鎖に反応性または極性の高い化合物が好ま
しく、アクリルアミド、アクリル酸、スチレン、塩化ビ
ニル、塩化ビニリデンなどがその例である。
In the present invention, a compound having a carbon-carbon double bond is a compound having a double bond such as a vinyl compound, a vinylidene compound, an olefin, a diene, etc., and which can be turned into a polymer by DO polymerization. In order to increase the affinity for , compounds with highly reactive or polar side chains are preferred, such as acrylamide, acrylic acid, styrene, vinyl chloride, and vinylidene chloride.

プラズマ処理したポリオキシメチレンと該化合物を接触
させるには、該化合物または該化合物の浴液、または該
化合物のエマルションを直接塗布するか、あるいはポリ
オキシメチレンを液中に浸漬する方法で良い。該化合物
の重合は、常温のまま進行する場合もあるし、加熱が必
要な場合もあり、該化合物の反応性によって重合温度を
選べば良い。
To bring the plasma-treated polyoxymethylene into contact with the compound, the compound, a bath solution of the compound, or an emulsion of the compound may be directly applied, or the polyoxymethylene may be immersed in the solution. The polymerization of the compound may proceed at room temperature or may require heating, and the polymerization temperature may be selected depending on the reactivity of the compound.

重合反応の終了後はポリオキシメチレンの光面から未反
応のモノマー、水分および溶剤を除去して後、接着剤を
使用した方が好ましい。
After the polymerization reaction is completed, it is preferable to use the adhesive after removing unreacted monomers, water and solvent from the optical surface of the polyoxymethylene.

本発明方法における接着剤としては、例えばエポキシ系
、フェノール樹脂系、イソシアネート系などの熱硬化型
接着剤、ポリエステル系、ポリアミド系などのホントメ
ルト接着剤、あるいはゴム系接着剤など、接着を目的と
して使用される物質の中から任意のものを用いることが
できるが、用いた炭素−炭素二1結合を有する化合物の
種類に合わせて適切なものを選ぶのが良い。
Examples of adhesives used in the method of the present invention include thermosetting adhesives such as epoxy, phenol resin, and isocyanate adhesives, real melt adhesives such as polyester and polyamide adhesives, and rubber adhesives. Although any substance can be used, it is preferable to select an appropriate substance according to the type of compound having a carbon-carbon21 bond used.

実施例 次に実施例により本発明をさらに詳細に説明するが、本
発明はこれらの例によってなんら限定されるものではな
゛い。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

なお、接着強度は次に示す方法に従って測定した。Note that the adhesive strength was measured according to the method shown below.

すなわち、立方体の紙の型枠中に接着剤の液ヲ流し込み
、その液中にポリオキシメチレンの試料を垂直に立てて
、接層剤液を固化させる。接着剤の固化後、紙の型枠を
除去し第2図に示すような形状の試料を得る。次にこの
試!#+を第3図及び第斗図に示すように引張試験機に
装着し、該ポリオキシメチレン試料の引抜き試験を行い
、引抜きに要した力F(kl?)とポリオキシメチレン
試料と接着剤の接触面積S (mm” )とから、接着
強度A(ゆ/*v+2)を式(1) %式%(1) に従つ″′C算出する。
That is, an adhesive liquid is poured into a cubic paper mold, a polyoxymethylene sample is vertically placed in the liquid, and the adhesive liquid is allowed to solidify. After the adhesive hardens, the paper form is removed to obtain a sample having the shape shown in FIG. Next, try this! #+ was attached to a tensile tester as shown in Figure 3 and Figure 2, and a pullout test was performed on the polyoxymethylene sample, and the force F (kl?) required for pulling out, the polyoxymethylene sample, and the adhesive were From the contact area S (mm"), the adhesive strength A (y/*v+2) is calculated according to the formula (1).

ポリオキシメチレン拭材の断面が円形の場合には、その
直径d(mm)及び接着剤と試料の接触長A(龍)から
、式(II) A−F/πde     ・・・(■)に従って接着強
度A(ゆ7mm2)を算出する。
If the polyoxymethylene wiping material has a circular cross section, from its diameter d (mm) and the contact length A (dragon) between the adhesive and the sample, according to the formula (II) A-F/πde ... (■) Calculate the adhesive strength A (7 mm2).

実施例1、比較例1 誘電加熱延伸法によって得られたポリオキシメチレンホ
モポリマー(無化成工業(株)展、テナック3010)
の超延伸体(引張強度1.5GPa、引張弾性率45 
GPa 、外径1.3龍)に低温プラズマ処理を施した
Example 1, Comparative Example 1 Polyoxymethylene homopolymer obtained by dielectric heating stretching method (Mukasei Kogyo Co., Ltd. Exhibition, Tenac 3010)
(Tensile strength 1.5 GPa, tensile modulus 45
GPa, outer diameter 1.3 mm) was subjected to low temperature plasma treatment.

プラズマ処理装置は、13.56 MHzの高周波電界
を用いグロー族1!をさせる方式(島津製作所裂LVC
D−21W ) t−用いた。
The plasma processing equipment uses a high frequency electric field of 13.56 MHz to produce glow family 1! (Shimadzu LVC)
D-21W) t-used.

プラズマ処理条件は次の如くである。The plasma processing conditions are as follows.

雰囲気がス  アルゴン がス流i   1001d/分 処理電力 200W 真  空  度   0.2  zorr微鋭で表面が
エツチングされ凹凸が生じていることを確認した。
The atmosphere was Argon flow i 1001d/min Processing power 200W Vacuum degree 0.2 zorr It was confirmed that the surface was etched and uneven.

次にプラズマ処理した試料をアクリルアミげの304[
i%水溶液中に常温で24時間浸漬した。
Next, the plasma-treated sample was coated with acrylic 304[
i% aqueous solution for 24 hours at room temperature.

浸漬後の試料は表面にアクリルアミドの付IJDM合体
が生成していることを赤外吸収スペクトルで確認した。
After immersion, it was confirmed by infrared absorption spectrum that acrylamide-attached IJDM coalescence was formed on the surface of the sample.

浸漬後の試料を水洗後風乾した。The sample after immersion was washed with water and then air-dried.

次に、立方体の紙製型枠中にエポキシ系接着剤(チパが
イギー社製、アラルダイトラビッド)を付属の硬化剤と
共に流し込み、この液中に、前記の風乾した表面にアク
リルアミドの重合体を有するポリオキシメチレンを垂直
に立てた状態で硬化させた。この時の接触長は20聴と
した。硬化後の試料を1時間放置した後、紙製型枠を除
去し接着強度を所定の方法に従って測定した。また、比
較例としてポリオキシメチレンの超延伸体試料の未処理
の試料およびプラズマ処理のみで留めた試料についても
同じ接着試験を行なった。
Next, an epoxy adhesive (manufactured by Chipaga Iggy Co., Ltd., Araldite Travid) is poured into a cubic paper mold together with an attached curing agent, and the acrylamide polymer is applied to the air-dried surface in this liquid. The polyoxymethylene was cured in a vertical position. The contact length at this time was 20 listens. After the cured sample was left for one hour, the paper mold was removed and the adhesive strength was measured according to a prescribed method. In addition, as a comparative example, the same adhesion test was conducted on an untreated ultrastretched sample of polyoxymethylene and a sample fixed only by plasma treatment.

接着試験は5点の試料について行なった。これらの結果
を第1表に示す。
The adhesion test was conducted on five samples. These results are shown in Table 1.

第1走 第1表かられかるようにプラズマ処理後の試料よりも、
本発明法による試料は明らかに接着強度の増大がみられ
1ゆ/−以上の接着強度となっている。
As can be seen from Table 1 of the first run, compared to the sample after plasma treatment,
The adhesive strength of the sample obtained by the method of the present invention was clearly increased, and the adhesive strength was 1 Y/- or more.

実施例2、比較ψす2 ポリオキ7メチレンホモボリマー(無化成工業(株)M
!、テナンク3010)を押出成形して得られた外径2
,5y+m、内径1龍のロッド(引張強度0−06 C
)Pa 、引張弾性率3 GPa ) f実施例1と同
じ装置で同じ条件のプラズマ処理を行なった。
Example 2, Comparison ψS2 Polyoxy7 methylene homopolymer (Mukasei Kogyo Co., Ltd.)
! , Tenanku 3010) with an outer diameter of 2 obtained by extrusion molding
, 5y+m, inner diameter 1 rod (tensile strength 0-06C
) Pa, tensile modulus of elasticity 3 GPa) f Plasma treatment was performed using the same equipment as in Example 1 under the same conditions.

プラズマ処理をした試料について走査型電子顯微鏡で表
面がエツチングされ凹凸を生じていることを確認した。
Using a scanning electron microscope, we confirmed that the surface of the plasma-treated sample was etched and had irregularities.

次にアクリルアミドの6o重量%水浴液にこのプラズマ
処理をした試料を常温で1時間浸漬した。
Next, this plasma-treated sample was immersed in a 60% by weight acrylamide water bath solution at room temperature for 1 hour.

浸漬後の試料は表面にアクリルアミドの付加1合体が生
成していることを赤外吸収スペクトルで確認した。
After immersion, it was confirmed by infrared absorption spectrum that an adduct of acrylamide was formed on the surface of the sample.

浸漬後の試料を水洗後風乾した。The sample after immersion was washed with water and then air-dried.

この試料について、実施例1と全く同じ接着試験を行な
い、接着強度を測定し、第2弐に示す。
This sample was subjected to the same adhesive test as in Example 1, and the adhesive strength was measured, and the results are shown in Part 2.

比較例として未処理およびプラズマ処理後のポリオキシ
メチレンの試料についても同じ接着試験を行ない、接着
強度を測定した。その結果を第2衆に示す。
As a comparative example, the same adhesion test was conducted on untreated and plasma-treated polyoxymethylene samples to measure the adhesion strength. The results will be shown to the second group.

第2懺 第2衆かられかるようにプラズマ処理のみの試料よりも
本発明法による試料は明らかに接着強度の増大がみられ
、1 kg/mm”以上の接着強度となっている。
As can be seen from the second report, the adhesive strength of the sample prepared by the method of the present invention was clearly increased compared to the sample treated only with plasma, and the adhesive strength was 1 kg/mm'' or more.

発明の効果 本発明の方法によると、ポリオキシメチレンと接着剤と
の接着強度は、無処理の場合の0.1 kl?/顛2以
下2以下ズマ処理のみの場合の0.8kg/mm2に対
して、1.1 kg/龍”以上に向上し、多くの用途で
望まれる接着強度1す712以上に達している。
Effects of the Invention According to the method of the present invention, the adhesive strength between polyoxymethylene and adhesive is 0.1 kl? /2 or less 2 or less Compared to 0.8 kg/mm2 in the case of only Zuma treatment, the adhesive strength has improved to more than 1.1 kg/mm2, reaching the adhesive strength of 1712 or more, which is desired in many applications.

プラズマ処理でポリオキシメチレンの実表面積が拡大し
た効果に、プラズマ処理で生じたフリーラジカルを開始
剤として生成した重合体と接着剤との親和性から生じる
効果が1なって更に接着強度の向上に至ったものと思わ
れる。
The effect of expanding the actual surface area of polyoxymethylene through plasma treatment, combined with the effect of the affinity between the adhesive and the polymer generated using free radicals generated during plasma treatment as an initiator, further improves adhesive strength. It seems that it has been reached.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はグラズマ処理装置の1例を示す図である。 第2図は接着力測定を行う際の試料の形状を示す斜視図
であり、図中符号7はポリオキシメチレン、8は固化後
の接着剤である。 第6図は第2図で示される試料を引張試験機に装着した
状態を示す断面図、第4図は第6図の試料の部分の拡大
図であり、図中符号fOは試料、9.11はチャックで
ある。 特許出願人 旭化成工業株式会社 第1図 第3図 第4図 手続補正書(自発) 昭和61年1り月/−日 特許庁長官 黒 1)明 雄 殿 16事件の表示 昭和60年特許願第231045号 2、発明の名称 ポリオキシメチレンの接着方法 3、補正をする者 事件との関係   特許出願人 大阪市北区堂島浜1丁目2番6号 (003)旭化成工業株式会社 代表取締役社長 世 古 真 臣 4、補正の対象 明細書の「発明の詳細な説明」の欄 5、補正の内容 補正の内容 (1)  明細書、第11頁第3行rA−F/SJをr
A=F/SJと訂正する。 (2)  同、第11頁第8行rA−F/πdNJをr
A=F/πdlJ訂正する。 (3)同、第15頁第2表を下記のとおり訂正する。 第2表 (4)同、第16頁第5行r0.8kg/msJをro
、7kg/龍2」と訂正する。 以上
FIG. 1 is a diagram showing an example of a glazma processing device. FIG. 2 is a perspective view showing the shape of a sample when measuring adhesive strength, in which reference numeral 7 indicates polyoxymethylene and 8 indicates the adhesive after solidification. FIG. 6 is a sectional view showing the sample shown in FIG. 2 mounted on a tensile tester, and FIG. 4 is an enlarged view of the sample shown in FIG. 11 is a chuck. Patent Applicant Asahi Kasei Kogyo Co., Ltd. Figure 1 Figure 3 Figure 4 Procedural Amendment (Voluntary) January 1985/- Japan Patent Office Commissioner Kuro 1) Akio Tono 16 Case Indication 1985 Patent Application No. 231045 No. 2, Name of the invention Method for adhesion of polyoxymethylene 3, Relationship with the amended person case Patent applicant: 1-2-6 Dojimahama, Kita-ku, Osaka (003) Makoto Seiko, President and Representative Director of Asahi Kasei Industries, Ltd. Section 4, "Detailed Description of the Invention" column 5 of the specification subject to amendment, Contents of the amendment Contents of the amendment (1) Specification, page 11, line 3 rA-F/SJ
Correct A=F/SJ. (2) Same, page 11, line 8 rA-F/πdNJ
Correct A=F/πdlJ. (3) Table 2 on page 15 of the same is amended as follows. Table 2 (4) Same, page 16, line 5 r0.8kg/msJ ro
, 7kg/Ryu 2”. that's all

Claims (1)

【特許請求の範囲】[Claims] ポリオキシメチレン同士またはポリオキシメチレンと他
物質とを接着剤を用いて接着するに当り、該ポリオキシ
メチレンの表面をあらかじめ低温プラズマ処理し、炭素
−炭素二重結合を有する化合物を該表面に接触させて該
化合物を重合せしめることを特徴とするポリオキシメチ
レンの接着方法
When bonding polyoxymethylenes to each other or to other substances using an adhesive, the surface of the polyoxymethylene is treated with low-temperature plasma in advance, and a compound having a carbon-carbon double bond is brought into contact with the surface. A method for adhering polyoxymethylene, characterized by polymerizing the compound by
JP60231045A 1985-10-18 1985-10-18 Method of bonding polyoxymethylene Pending JPS6291534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60231045A JPS6291534A (en) 1985-10-18 1985-10-18 Method of bonding polyoxymethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60231045A JPS6291534A (en) 1985-10-18 1985-10-18 Method of bonding polyoxymethylene

Publications (1)

Publication Number Publication Date
JPS6291534A true JPS6291534A (en) 1987-04-27

Family

ID=16917414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60231045A Pending JPS6291534A (en) 1985-10-18 1985-10-18 Method of bonding polyoxymethylene

Country Status (1)

Country Link
JP (1) JPS6291534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493090A (en) * 2011-07-19 2013-01-23 Surface Innovations Ltd Producing a porous polymer, using an exciting medium and an emulsion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493090A (en) * 2011-07-19 2013-01-23 Surface Innovations Ltd Producing a porous polymer, using an exciting medium and an emulsion
GB2493090B (en) * 2011-07-19 2013-09-18 Surface Innovations Ltd Method for producing porous polymer structures

Similar Documents

Publication Publication Date Title
Wertheimer et al. Surface property modification of aromatic polyamides by microwave plasmas
CA1137268A (en) Process for the treatment of aromatic polyamide fibers, which are suitable for use in construction materials and rubbers, as well as so treated fibers and shaped articles strengthened with these fibers
US5108780A (en) Enhanced thermoplastic adhesion to fibers by using plasma discharge
Dilsiz et al. Surface energy and mechanical properties of plasma-modified carbon fibers
US5183701A (en) Articles of highly oriented polyolefins of ultrahigh molecular weight, process for their manufacture, and their use
US3462335A (en) Bonding of thermoplastic composition with adhesives
AU607544B2 (en) Articles of highly oriented polyolefins of ultrahigh molecular weight, process for their manufacture, and their use
SK732005A3 (en) Method of arrangement fabric bracing materials, with a view to increase adhesion into rubber mixture
EP0912629B1 (en) A method of modifying the surface of a solid polymer substrate and the product obtained
CH646095A5 (en) METHOD FOR PRODUCING A POLARIZING FILM OR SHEET.
Zheng et al. Surface modification of ultrahigh‐molecular‐weight polyethylene fibers
JPS6291534A (en) Method of bonding polyoxymethylene
Occhiello et al. Adhesion properties of plasma-treated carbon/PEEK composites
JPS61276830A (en) Production of polyolefin product
JPS62235339A (en) Modification of plastic surface
Luo et al. Surface modification of textile tire cords by plasma polymerization for improvement of rubber adhesion
JPH06184334A (en) Method for using amino group which is formed on polymer material by electrically treating it in nitrogen atmosphere and is used for accelerating graft reaction
JPS62169827A (en) Bonding of high-modulus super-drawn filament
Zhang The surface characterization of mulberry silk grafted with acrylamide by plasma copolymerization
Rostami et al. Surface modification of spectra™‐900 polyethylene fibers using RF‐plasma
JP3006340B2 (en) Resin hose for automobile and continuous production method
Manenq et al. Some plasma treatment of PET fibres and adhesion testing to rubber
JPS6291535A (en) Method of bonding polyoxymethylene
US3493416A (en) Bonding of polypropylene to adhesives
Weisweiler et al. Surface modification of carbon fibres by plasma polymerization