JPS629120B2 - - Google Patents

Info

Publication number
JPS629120B2
JPS629120B2 JP132778A JP132778A JPS629120B2 JP S629120 B2 JPS629120 B2 JP S629120B2 JP 132778 A JP132778 A JP 132778A JP 132778 A JP132778 A JP 132778A JP S629120 B2 JPS629120 B2 JP S629120B2
Authority
JP
Japan
Prior art keywords
glycoside
sterol
mixture
tetraacetate
sterol glycoside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP132778A
Other languages
Japanese (ja)
Other versions
JPS54117453A (en
Inventor
Masaichi Ueno
Akira Sano
Kyoichi Ideguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shinyaku Co Ltd
Original Assignee
Nippon Shinyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shinyaku Co Ltd filed Critical Nippon Shinyaku Co Ltd
Priority to JP132778A priority Critical patent/JPS54117453A/en
Publication of JPS54117453A publication Critical patent/JPS54117453A/en
Publication of JPS629120B2 publication Critical patent/JPS629120B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Steroid Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は天然物由来のステロール配糖体混合物
から、単一なステロール配糖体を迅速かつ多量に
製造する方法に関する。本発明によつて得られる
物質は止血作用、血管補強作用を有するし、医薬
品として有用である。すでに広く知られているよ
うに、天然物由来のステロール配糖体の構成糖は
一般にグルコースであるが、一方の構成ステロー
ルは天然に存在する遊離ステロールと同様に通常
は複数の極めて類似した構造のものから成つてい
て、完全に純粋な単一ステロール配糖体としての
存在は現在では考えられていない。 過去にある植物から得られたものが単一ステロ
ール配糖体として報告された場合であつても、最
近のガスクロマトグラフイー−マススペクトロメ
トリー分析(以下GC−MSと略記)等の再検討に
より、例外なく異種ステロール配糖体を含むこと
が明らかにされてつつある。上述したごとく、ス
テロール配糖体混合物を構成するステロール類の
構造が極めて類似しているために、現在までに適
用された精製法、たとえば再結晶法、各種液体ク
ロマトグラフイー、アルカリ金属塩による沈殿反
応等は、単にステロール配糖体混合物をこれと無
関係な混在物質から分離できるだけであつて、ス
テロール配糖体相互の分離に対しては全く無力で
あつた。したがつて、天然物由来のステロール配
糖体混合物を相互に分離し、純粋なステロール配
糖体をたとえ微量といえども分取することは困難
視され、これまでには成功例がなかつた。本発明
者らはこのような困難な状況を克服する目的で鋭
意研究を重ねた結果、天然物由来のステロール配
糖体を高純度で、しかも工業的規模で生産するこ
とが可能な分離方法を確立し、本発明を完成し
た。 以下に本発明をその操作の順を追つて詳細に説
明する。 (1) ステロール配糖体混合物の分離とそのアセチ
ル化原料からのステロール配糖体混合物の分離
は、公知の方法によつて行うことができるが、
本発明者らによる低級アルコール中でのステロ
ール配糖体とアルカリ金属炭酸塩との特異的な
沈殿反応(特願昭50−9996号、特公昭54−
18327号)によつても容易に高純度のものを得
ることができる。ステロール配糖体は一般的に
取り扱われる有機溶媒であるが、常法によりア
セチル化してテトラアセテートとすることによ
り、多くの有機溶媒による多量の取り扱いが可
能となり、また液体クロマトグラフイーにおけ
る移動相の種類の拡大を図ることができる。 (2) ステロール配糖体テトラアセテート混合物の
液体クロマトグラフイーによる分離 すでに述べたように、いままでステロール配
糖体混合物を相互に分離し得る有効な手段が存
在せず困難をきわめていたが、本発明者らは、
ステロール配糖体混合物の誘導体についてあら
ゆる予備検討の結果から液体クロマトグラフイ
ーによる方法によつて、ステロール配糖体の誘
導体を相互に分離する手段を発見した。即ち
種々の条件での液体クロマトグラフイーによる
ステロール配糖体テトラアセテート混合物の分
離を試みた。その結果、分離に有効な固定相と
しては、シリカゲル、硝酸銀含浸シリカゲル、
酸化マグネシウム、アルミナ、フロリジル等が
糖の結合していない遊離ステロールにおける分
離と同等の分離能力を示し、ステロール配糖体
においてもその分離は主として構成ステロール
の構造の差に基づいて極めて有効に行なわれる
ことが明らかになつた。 上述した固定相は、適当な移動相溶媒の選択
によつてステロール配糖体の分離に従来遊離ス
テロールに適用された場合と全く同一の方法で
使用することができる。 本発明者らは、さらにより実用的で高性能な
分離条件を検討し、その結果、安定な微細シリ
カゲル−ODS(オクタデシル基を化学的にシ
リカゲルに結合したもの)を固定相とし、単一
溶媒たとえばメタノール、アセトニトリル等を
移動相溶媒として用いるクロマトグラフイー
(HPLC)による分離方法を確立した。他の方
法では不可能であつたコレステロールグルコシ
ド、ブラシカステロールグルコシド、カンペス
テロールグルコシド、スチグマステロールグル
コシド、β−シトステロールグルコシドおよび
これらに対応するΔ−ステロール配糖体類や
還元体等を天然物由来のステロール配糖体混合
物から単離することが可能になつた。この条件
により大豆レシチンより得たステロール配糖体
テトラアセテートのHPLCクロマトグラムの一
例を第1図に示す。一般に多くの植物に含有さ
れるステロール配糖体混合物は、これと似たク
ロマトグラムを示す。また、このHPLCによる
分離は、スケールアツプに必要な、すべての有
利な条件を備えており、工業的規模での生産も
可能である。 (3) 脱アセチル化 単一となつたステロール配糖体テトラアセテ
ートは、常法にしたがつて、アルカリ性アルコ
ール処理をすれば、脱アセチルされた難溶性の
ステロール配糖体が定量的にアルコールから析
出し、容易に目的とする純ステロール配糖体を
得ることができる。 次に、天然に最も豊富に存在する三種のステロ
ール配糖体の単離を実施例1に、微量ステロール
配糖体の分離例を、実施例2に記載する。 実施例 1 β−シトステロールグルコシド、スチグマス
テロールグルコシド、およびカンペステロール
グルコシドの単離。 約10種のアセトン抽出エキス中の遊離ステロー
ルを、GC−MSにより分析し、の単離に適する
原料として、カポツク(Kapok seed)、大豆
(soybean)、オリーブ(olive)、とうもろこし
(corn)、および小麦(Wheat)等のΔ−ステロ
ール配糖体をほとんど含まないもの、の単離に
適する原料として、HPLCで分離困難なをほと
んど含まないじやがいも(Potato)を、の単離
に適する原料としてをほとんど含まない小麦胚
芽(wheat germ)を選択した。 これらの原料は、以後次の共通した操作によつ
て処理される。すなわちn−ヘキサンにより脱脂
し、乾燥した原料はその重量に対し、2倍容量の
アセトンで2回抽出しアセトンを留去する。残留
物重量に対し10%KOHメタノール20倍容量を加
え、1時間還流したのちK2CO3を飽和に達するま
で加え、引続き3時間還流する。抽出物をメタノ
ール次いで水で洗浄し、乾燥することにより高純
度のステロール配糖体混合物が得られる。これを
常法によりピリジン中で無水酢酸によりテトラア
セテートとし、HPLCによる分離の資料とする。 HPLCの条件は次の通りである。 固定相:シリカゲル−ODS(5μ) (カラム10mmφ×30cm) 移動相:アセトニトリル (流速10ml/分) この条件で、1回の試料処理量は0.1g、要す
る時間は10分以内である。1回の分離で各試料か
ら目的物を損失することなく、完全に単離するこ
とができた。単離された〜に対応するテトラ
アセテートは実施例2で得たものと共に第1表に
まとめた。 テトラアセテートは5%KOHメタノールで加
水分解することにより、定量にメタノールから析
出し、容易に純ステロール配糖体が得られた。 実施例 2 24−メチレンコレステロールグルコシドおよ
びアベナステロールグルコシドの分離 およびは、一般的にステロール配糖体混合
物中に少量成分として存在する。ここでは市販大
豆レシチンを原料として、これよりメタノール中
でのK COによる沈殿反応(特願昭50−9996
号、特公昭54−18327号)を利用してステロール
配糖体を分離精製し、さらにテトラアセテートと
しておよびの分離試料とした。この中に含ま
れるおよびは直接HPLCを適用して分離する
こともできるが、効率が悪いために予処理として
硝酸銀含浸シリカゲルを固定相とするカラムクロ
マトグラフイーを行い、最初に流出する主ステロ
ール配糖体〜をのぞき、ほとんどとのテ
トラアセテートのみから成る混合物をHPLC用の
試料とした。硝酸銀含浸シリカゲル、カラムクロ
マトグラフイーによる分離は、固定相に20%硝酸
銀含浸シリカゲル(4cmφ×40cm)、移動相溶媒
にクロロホルム/シクロヘキサン(5:1)を用
いて、1回5gの試料を処理し、25gの試料から
約1gのとのテトラアセテートの混合物を得
た。次にこの混合物を試料とし、実施例1の条件
に従つて、HPLCによる分離を行い、および
を相互に分離した。 なおHPLCおよびGCによる純度検定では純
度99%以上のものが得られ、は純度97%以上の
ものが得られたことを確認した。分離されたテト
ラアセテートについては第1表にまとめた。分離
されたテトラアセテートは5%KOH−メタノー
ルにより簡単に脱アセチルし、対応量のステロー
ル配糖体が定量的に析出した。
The present invention relates to a method for rapidly producing a single sterol glycoside in large quantities from a sterol glycoside mixture derived from natural products. The substance obtained according to the present invention has a hemostatic effect and a blood vessel reinforcing effect, and is useful as a pharmaceutical. As is already widely known, the constituent sugar of sterol glycosides derived from natural products is generally glucose, but the constituent sterols, like naturally occurring free sterols, usually contain multiple highly similar structures. Its existence as a completely pure single sterol glycoside is not currently believed to exist. Even if something obtained from a certain plant was reported as a single sterol glycoside in the past, recent reexaminations such as gas chromatography-mass spectrometry analysis (hereinafter abbreviated as GC-MS) have revealed that It is becoming clear that all proteins contain heterologous sterol glycosides without exception. As mentioned above, since the structures of the sterols that make up the sterol glycoside mixture are extremely similar, the purification methods that have been applied to date, such as recrystallization, various liquid chromatography methods, and precipitation using alkali metal salts, are extremely similar. Reactions and the like can only separate a sterol glycoside mixture from unrelated contaminants, but are completely powerless to separate sterol glycosides from each other. Therefore, it has been considered difficult to separate sterol glycoside mixtures derived from natural products from each other and to collect even a trace amount of pure sterol glycosides, and there has been no success story so far. As a result of extensive research aimed at overcoming this difficult situation, the present inventors have developed a separation method that can produce sterol glycosides derived from natural products with high purity and on an industrial scale. and completed the present invention. The present invention will be described in detail below, step by step. (1) Separation of the sterol glycoside mixture and separation of the sterol glycoside mixture from the acetylated raw material can be performed by known methods, but
Specific precipitation reaction of sterol glycosides and alkali metal carbonates in lower alcohols by the present inventors
18327) can also be used to easily obtain a highly pure product. Sterol glycosides are commonly handled organic solvents, but by acetylating them to tetraacetate using conventional methods, they can be handled in large quantities with many organic solvents, and they can also be used as mobile phases in liquid chromatography. It is possible to expand the variety of types. (2) Separation of sterol glycoside tetraacetate mixtures by liquid chromatography As mentioned above, until now there has been no effective means for separating sterol glycoside mixtures from each other, making it extremely difficult. The inventors
Based on the results of all preliminary studies on derivatives of sterol glycoside mixtures, we have discovered a means of separating sterol glycoside derivatives from each other by a method using liquid chromatography. That is, we attempted to separate sterol glycoside tetraacetate mixtures by liquid chromatography under various conditions. As a result, effective stationary phases for separation include silica gel, silver nitrate-impregnated silica gel,
Magnesium oxide, alumina, florisil, etc. show a separation ability equivalent to that of free sterols with no sugar attached, and sterol glycosides are also separated extremely effectively based mainly on differences in the structure of the constituent sterols. It became clear. The stationary phase described above can be used for the separation of sterol glycosides in exactly the same way as conventionally applied to free sterols by selecting the appropriate mobile phase solvent. The present inventors investigated further practical and high-performance separation conditions and found that stable fine silica gel-ODS (octadecyl group chemically bonded to silica gel) was used as the stationary phase, and a single solvent was used. For example, a separation method using chromatography (HPLC) using methanol, acetonitrile, etc. as a mobile phase solvent was established. Cholesterol glucoside, brassicasterol glucoside, campesterol glucoside, stigmasterol glucoside, β-sitosterol glucoside, and their corresponding Δ 7 -sterol glycosides and reduced forms, etc., which were not possible using other methods, are derived from natural products. It has now become possible to isolate sterol glycosides from a mixture of sterol glycosides. An example of the HPLC chromatogram of sterol glycoside tetraacetate obtained from soybean lecithin under these conditions is shown in FIG. Sterol glycoside mixtures, which are generally found in many plants, show chromatograms similar to this one. In addition, this HPLC separation has all the advantageous conditions necessary for scale-up and can be produced on an industrial scale. (3) Deacetylation If the single sterol glycoside tetraacetate is treated with alkaline alcohol according to a conventional method, the deacetylated poorly soluble sterol glycoside can be quantitatively removed from alcohol. By precipitation, the desired pure sterol glycoside can be easily obtained. Next, Example 1 describes the isolation of the three types of sterol glycosides that exist most abundantly in nature, and Example 2 describes an example of the isolation of trace sterol glycosides. Example 1 Isolation of β-sitosterol glucoside, stigmasterol glucoside, and campesterol glucoside. The free sterols in the acetone extracts of about 10 species were analyzed by GC-MS, and the raw materials suitable for isolation were Kapok seed, soybean, olive, corn, and As a raw material suitable for isolating wheat, which contains almost no Δ7 -sterol glycosides, it is suitable for isolating potatoes, which contain almost no Δ7-sterol glycosides, which are difficult to separate by HPLC. Wheat germ, which contains almost no grains, was selected as a raw material. These raw materials are then processed by the following common operations. That is, the raw material that has been defatted with n-hexane and dried is extracted twice with twice the volume of acetone based on its weight, and the acetone is distilled off. Add 20 times the volume of 10% KOH methanol based on the weight of the residue and reflux for 1 hour, then add K 2 CO 3 until saturation is reached and continue to reflux for 3 hours. A highly pure sterol glycoside mixture is obtained by washing the extract with methanol and then with water and drying. This is converted into tetraacetate using acetic anhydride in pyridine in a conventional manner and used as a material for separation by HPLC. The conditions for HPLC are as follows. Stationary phase: Silica gel-ODS (5 μ) (column 10 mmφ x 30 cm) Mobile phase: acetonitrile (flow rate 10 ml/min) Under these conditions, the amount of sample processed at one time is 0.1 g, and the required time is within 10 minutes. The target product could be completely isolated from each sample in a single separation without loss. The isolated tetraacetates corresponding to ~ are summarized in Table 1 together with those obtained in Example 2. Tetraacetate was quantitatively precipitated from methanol by hydrolysis with 5% KOH methanol, and pure sterol glycosides were easily obtained. Example 2 Separation of 24-methylenecholesterol glucoside and avenasterol glucoside and are generally present as minor components in sterol glycoside mixtures. Here, commercially available soybean lecithin is used as a raw material, and precipitation reaction with K CO in methanol (Japanese Patent Application No. 50-9996) is carried out.
The sterol glycosides were separated and purified using the method (Japanese Patent Publication No. 54-18327), and the sterol glycosides were further isolated as tetraacetates. Although it is possible to directly apply HPLC to separate the sterols contained in this, the efficiency is low, so column chromatography using silver nitrate-impregnated silica gel as the stationary phase is performed as a pretreatment, and the main sterol that flows out first is separated. A mixture consisting only of tetraacetate with the exception of glycosides was used as a sample for HPLC. For separation by silver nitrate-impregnated silica gel and column chromatography, 5 g of sample was processed at a time using 20% silver nitrate-impregnated silica gel (4 cmφ x 40 cm) as the stationary phase and chloroform/cyclohexane (5:1) as the mobile phase solvent. , a mixture of about 1 g of tetraacetate was obtained from a 25 g sample. Next, using this mixture as a sample, HPLC separation was performed according to the conditions of Example 1, and and were separated from each other. In addition, purity tests using HPLC and GC confirmed that a purity of 99% or higher was obtained, and a purity of 97% or higher was obtained. The separated tetraacetate is summarized in Table 1. The separated tetraacetate was easily deacetylated with 5% KOH-methanol, and a corresponding amount of sterol glycoside was quantitatively precipitated.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は大豆レシチンのステロールグルコシド
テトラアセテートの高速液体クロマトグラムを表
す。 横軸は溶出時間を表し、縦軸はピークの高さを
表す。カラムはシリカゲル−ODS(4mm×30
cm)を使用し、試料の注入量は10mg、移動相はア
セトニトリルを使い、圧力は50Kg/cm2、流速は
1.3ml/minで検出器は屈折率計を使用し、測定
温度は25℃であつた。ピーク中、1は24−メチレ
ンコレステロールグルコシドテトラアセテート
を、2はアベナステロールグルコシドテトラアセ
テートを、3はスチグマステロールグルコシドテ
トラアセテートを、4はカンペステロールグルコ
シドテトラアセテートを、5はβ−シトステロー
ルグルコシドテトラアセテートを、6はスチグマ
スタノールグルコシドテトラアセテートを、それ
ぞれ表す。
FIG. 1 represents a high performance liquid chromatogram of sterol glucoside tetraacetate of soybean lecithin. The horizontal axis represents elution time, and the vertical axis represents peak height. The column is silica gel-ODS (4 mm x 30
cm), the sample injection amount was 10 mg, the mobile phase was acetonitrile, the pressure was 50 Kg/cm 2 , and the flow rate was
A refractometer was used as a detector at a rate of 1.3 ml/min, and the measurement temperature was 25°C. Among the peaks, 1 is 24-methylenecholesterol glucoside tetraacetate, 2 is avenasterol glucoside tetraacetate, 3 is stigmasterol glucoside tetraacetate, 4 is campesterol glucoside tetraacetate, and 5 is β-sitosterol glucoside tetraacetate. and 6 represent stigmastanol glucoside tetraacetate, respectively.

Claims (1)

【特許請求の範囲】 1 植物原料より得たステロール配糖体混合物を
アセチル化剤と処理して対応するアセチル体混合
物とし、生成したアセチル体混合物を液体クロマ
トグラフイー法により個々のテトラアセチル体に
分離せしめ、更に分離後のアセチル体を塩基性条
件下に加水分解することを特徴とする、ステロー
ル配糖体混合物を含む原料からの高純度単一ステ
ロール配糖体の製造法。 2 植物原料が、小麦、米、とうもろこし、大
豆、カポツク、綿実、又はコーヒー豆である特許
請求の範囲第1項記載の製造法。 3 植物原料より得たステロール配糖体混合物
が、カンペステロール配糖体、スチグマステロー
ル配糖体、β−シトステロール配糖体、24−メチ
レンコレステロール配糖体、及びアベナステロー
ル配糖体よりなる群から選択される二種以上の物
質の混合物である、特許請求の範囲第1項又は第
2項記載の製造法。
[Scope of Claims] 1. A sterol glycoside mixture obtained from plant materials is treated with an acetylating agent to form a corresponding acetyl compound mixture, and the resulting acetyl compound mixture is converted into individual tetraacetyl compounds by liquid chromatography. A method for producing a highly pure single sterol glycoside from a raw material containing a sterol glycoside mixture, which comprises separating the acetyl form and hydrolyzing the separated acetyl form under basic conditions. 2. The manufacturing method according to claim 1, wherein the plant material is wheat, rice, corn, soybean, kapok, cottonseed, or coffee beans. 3. The sterol glycoside mixture obtained from plant materials is a group consisting of campesterol glycoside, stigmasterol glycoside, β-sitosterol glycoside, 24-methylene cholesterol glycoside, and avenasterol glycoside. The manufacturing method according to claim 1 or 2, which is a mixture of two or more substances selected from.
JP132778A 1978-01-09 1978-01-09 Preparation of high purity sterol glycoside Granted JPS54117453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP132778A JPS54117453A (en) 1978-01-09 1978-01-09 Preparation of high purity sterol glycoside

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP132778A JPS54117453A (en) 1978-01-09 1978-01-09 Preparation of high purity sterol glycoside

Publications (2)

Publication Number Publication Date
JPS54117453A JPS54117453A (en) 1979-09-12
JPS629120B2 true JPS629120B2 (en) 1987-02-26

Family

ID=11498390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP132778A Granted JPS54117453A (en) 1978-01-09 1978-01-09 Preparation of high purity sterol glycoside

Country Status (1)

Country Link
JP (1) JPS54117453A (en)

Also Published As

Publication number Publication date
JPS54117453A (en) 1979-09-12

Similar Documents

Publication Publication Date Title
US6355249B2 (en) Process for recovery and purification of saponins and sapogenins from quinoa (Chenopodium quinoa)
RU2395518C2 (en) Method of producing timosaponin bii
CA1180694A (en) Method of isolating sterols in commercial quantities from sterol-containing material
US20060116509A1 (en) Manufacture of limonoid compounds
Daxenbichler et al. A new thioglucoside,(R)-2-hydroxy-3-butenylglucosinolate from Crambe abyssinica seed
Peng et al. Furostanol glycosides from bulbs of Allium chinense
JPH0248533A (en) Remedy for hepatopathy composed of extract of wild grape
SE424077B (en) SET TO ISOLATE BETA-SITOSTEROL WITH LOW ALFA-SITOSTEROL CONTENT
Iwamoto et al. Studies on the Constituents of Actinostemma lobatum MAXIM. I Structures of Actinostemmosides A, B, C and D, Dammarane Triterpene Glycosides Isolated from the Herb
JP5634402B2 (en) Method for producing glucosylceramide-containing material
US4235992A (en) Method for producing high purity sterol glycosides
CN105541687A (en) Method for synchronously separating and purifying beta-cryptoflavin and stigmasterol in orange peel
CN111533772A (en) Preparation method of iridoid compound, iridoid compound and application
JPS629120B2 (en)
Kawano et al. Biologically active glycosides from asteroidea, XVII. Glycosphingolipids from the starfish Acanthaster planci, 3. Isolation and structure of two new ceramide lactosides
JPH08100131A (en) Method of recovering carotene
Báthori et al. New minor ecdysteroids from Silene otites (L.) Wib.
KR820001183B1 (en) Preparing process for sterol derivatives
CN103113439A (en) Method for preparing kaempferol-3-O-Beta-D-glucuronide in euphorbia sororia
GB2046758A (en) Separating Sterol Glycosides
Báthori et al. Isolation of a new member of the ecdysteroid glycoside family: 2-deoxy-20-hydroxyecdysone 22-O-β-D-glucopyranoside
Báthori et al. 5‐Alpha‐and 5‐beta‐2‐deoxyintegristerone A, a 5‐alpha and 5‐beta isomer pair of ecdysteroids isolated from the Silene genus
Ho et al. Isolation of a new class of ecdysteroid conjugates (glucosyl-ferulates) using a combination of liquid chromatographic methods
Waffo-Téguo et al. Acetylated glucuronide triterpene bidesmosidic saponins from Symplocos glomerata
KR20000055748A (en) Separation Method for Panaxadiol and Panaxatriol Using Benzene Ethylene Resin