JPS6290986A - Array type infrared detector - Google Patents

Array type infrared detector

Info

Publication number
JPS6290986A
JPS6290986A JP60231609A JP23160985A JPS6290986A JP S6290986 A JPS6290986 A JP S6290986A JP 60231609 A JP60231609 A JP 60231609A JP 23160985 A JP23160985 A JP 23160985A JP S6290986 A JPS6290986 A JP S6290986A
Authority
JP
Japan
Prior art keywords
detector
gate
junction
type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60231609A
Other languages
Japanese (ja)
Inventor
Yukihiko Maejima
前島 幸彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60231609A priority Critical patent/JPS6290986A/en
Publication of JPS6290986A publication Critical patent/JPS6290986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To reduce leakage current of a P-N junction, to improve a resolution and to simplify the manufacturing steps by forming a mask provided with a terminal to which a voltage of a conductor of the shape for interrupting incident infrared light is to be applied to a region except the P-N junction through an insulating film on a semiconductor photodetecting surface side. CONSTITUTION:A P-type HgCdTe film 1, an N-type HgCdTe film 2, a substrate 3 of a detector, a passivation film 4, N-type side and P-type side electrodes 5, 6 and a gate 8 are formed. Since the infrared ray is incident from the opposite side to a substrate, the substrate is not necessary formed of transparent CdTe for the infrared light. When the gate 8 uses, for example, aluminum of approx. 5,000Angstrom thick, it does not pass infrared light or visible light. Accordingly, the gate for reducing the leakage current of a P-N junction is used also as a mask for preventing photon from being incident to a portion except the P-N junction. An electric connection of the detector with an exterior is obtained by the portion projected at a part of each electrode gate. Thus, since the dark current of the detector is reduced by a voltage applied to the gate, the sensitivity of the detector itself is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体を用いた配列型光起電力型赤外線検知
器の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of an array type photovoltaic infrared detector using a semiconductor.

(従来技術とその問題点) 半導体を用いた配列型光起電力型赤外線検知器では、主
として半導体のpn接合を配列した構造がとられる。こ
の構造においては、pn接合付近で入射赤外光によって
生成された少数キャリアが接合部まで拡散していって電
気的信号となり、出力される。検知器材料となる半導体
としては特にHgCdIeが高性能を得られる材料とし
て最も多く使用されている。
(Prior art and its problems) Arrayed photovoltaic infrared detectors using semiconductors mainly have a structure in which pn junctions of semiconductors are arranged. In this structure, minority carriers generated by incident infrared light near the pn junction diffuse to the junction, become an electrical signal, and are output. As a semiconductor material for a detector, HgCdIe is most often used as a material capable of achieving high performance.

HgCdTeを用いた場合の検出器の構成例の断面図が
第3図である。第3図において、1はp型Hg□−8C
d、I’e(xは普通0.2か0.3で、前者の時は波
長10m帯用の赤外線検知器であり、後者の時は3〜5
梃帯用)、2はイオン注入等によって作られたn型Hg
CdTe層、3は検出器の基板、4はパシベーション膜
(ZnsかSin、が一般には用いられる)、5及び6
はそれぞれn側電極及びp側電極である。本図では赤外
光を上側から入射させて用いる事にしであるが、p型H
gCdTe 1をエピタキシャル成長による結晶にした
場合には基板3として成長の基板となったCdTeをそ
のまま使用でき、 CdTeは赤外光に対して透明であ
るから赤外光を下側から入射させて使用する事も可能で
ある。第3図の構造をとった場合の欠点として、パシベ
ーション膜4下のp型HgCdTe 1表面に空乏層、
あるいはn型反転届を形成する事がある。これらが形成
されると、pn接合間の生成−再結合電流(G−R電流
)の源となり、pn接合間で表面を通じてのリーク電流
が増大する。pn接合を用いた赤外線検知器においては
、リーク電流が大きいと検知器としての感度が低下する
。特に、HgCdTe結晶を用いた赤外線検知器の場合
、例えばセミコンダクターズアンドセミメタルズ第18
巻(Sem1conductorSand Semim
etalsvol、 1B (1981) Acade
mic Press )で述べられでいる様にHgo 
、 5cde 、 sTe 、 Hga 、 ycde
 、 sTeどちらの場合でも検知器の動作温度(前者
は77に、後者は150に以下)程度ではリーク電流は
主にG−R電流に帰因するので、これは大幅に検知器特
性を劣化きせる原因となる。
FIG. 3 is a cross-sectional view of a configuration example of a detector using HgCdTe. In Figure 3, 1 is p-type Hg□-8C
d, I'e (x is usually 0.2 or 0.3, the former is an infrared detector for the 10m wavelength band, and the latter is 3 to 5
(for leverage), 2 is n-type Hg made by ion implantation, etc.
CdTe layer, 3 is the substrate of the detector, 4 is a passivation film (Zns or Sin is generally used), 5 and 6
are an n-side electrode and a p-side electrode, respectively. In this figure, infrared light is incident from above, but p-type H
If gCdTe 1 is made into a crystal by epitaxial growth, the CdTe that became the growth substrate can be used as it is as the substrate 3, and since CdTe is transparent to infrared light, infrared light is input from the bottom when used. It is also possible. A drawback of the structure shown in FIG. 3 is that there is a depletion layer on the surface of the p-type HgCdTe layer under the passivation film 4.
Alternatively, an n-type reversal report may be formed. When these are formed, they become a source of generation-recombination current (GR current) between the pn junctions, increasing leakage current through the surface between the pn junctions. In an infrared detector using a pn junction, if the leakage current is large, the sensitivity as a detector decreases. In particular, in the case of infrared detectors using HgCdTe crystals, for example, Semiconductors and Semimetals No. 18
Volume (Sem1conductorSand Semim
etalsvol, 1B (1981) Acade
mic Press), Hgo
, 5cde, sTe, Hga, ycde
In both cases, the leakage current is mainly attributed to the G-R current at the operating temperature of the detector (below 77 for the former and 150 for the latter), which significantly deteriorates the detector characteristics. Cause.

この点を改善する為に、例えばアイ・イー・イー・イー
エレクトロンデバイス レターズ(IEEE Elec
tron Device Letters EDL−1
(1980) 12 )やジャーナルオブバキュアムサ
イエンスアンドテクノロジー(Journal of 
Vacuum 5cienceand Iechnol
ogy A3(1) (1985) 280)で述べら
れている様に、pn接合周囲にゲートを設けた構造が提
案された。この構造は、ゲートに適度な電圧を印加して
ゲート直下のp型HgCdTe表面の電圧を制御する事
によって、表面の空乏層あるいは反転層を除去して良好
な検知器特性を得るものである。
In order to improve this point, for example, IEEE Elec Device Letters (IEEE Elec
tron Device Letters EDL-1
(1980) 12) and Journal of Vacuum Science and Technology (1980) 12) and Journal of Vacuum Science and Technology.
Vacuum 5science and Iechnol
ogy A3(1) (1985) 280), a structure in which a gate is provided around a pn junction has been proposed. In this structure, by applying an appropriate voltage to the gate and controlling the voltage on the p-type HgCdTe surface directly under the gate, the depletion layer or inversion layer on the surface is removed and good detector characteristics are obtained.

この構造を利用した配列型赤外線検知器の構成の断面図
が第4図である。この構造の場合には、パシベーション
膜4上にゲート8を設け、ゲートの電圧を制御する事に
よって表面リーク電流を最小にして検出器を動作させる
。この方式では、p型HgCdre 1の上側の配線は
複雑になるので、配線用の基板10を設け、その上で配
線を行なう。従って、第45!3の構造では、赤外光を
上側から入射させて用いる事はできず、下側から入射さ
せて用いなければならない。従って、検知器の基板とし
ては、赤外光に対して透明なCdTeを用いなければな
らず、他の物質、例えばサファイア等を接着して基板に
する事は接着剤の赤外光透過率等の問題の為に不可能で
ある。従ってこの構成をとれるのはCdTe等、赤外光
に対して透明である基板上にエピタキシャル成長したH
gCdTe結晶を用いた場合のみである。
FIG. 4 is a sectional view of the configuration of an array type infrared detector using this structure. In this structure, a gate 8 is provided on the passivation film 4, and by controlling the gate voltage, the surface leakage current is minimized and the detector is operated. In this method, the wiring above the p-type HgCdre 1 is complicated, so a substrate 10 for wiring is provided and wiring is performed on it. Therefore, in the structure No. 45!3, infrared light cannot be used by entering it from above, but must be used by entering it from below. Therefore, as the substrate of the detector, CdTe, which is transparent to infrared light, must be used, and other materials such as sapphire may be bonded to the substrate, depending on the infrared light transmittance of the adhesive. This is not possible due to the problem of Therefore, this configuration can be achieved by epitaxially growing H on a substrate transparent to infrared light, such as CdTe.
This is only the case when gCdTe crystal is used.

更に、第3図及び第4図の構造の検知器の共通の欠点と
しては配列中の単位素子間の間隔を小きくしていったと
きのが像度の劣化がある。配列型赤外線検知器を使用す
る際はミラー等で入射赤外光を結像させてその焦点面に
検知器を配置して各単位素子毎の出力を得る。この栄位
素子は各々のpn接合、すなわち、第3図、第4図両者
においてn型層2の形成された部分と考えてよい。赤外
光はn型層2の上側(あるいは下側)のみに入射する訳
ではなく、隣接するn型層の間にも入射する。この際に
生成した少数キャリアは近接したpn接合のどれかとの
距離がその拡散長(例えばp型Hgb 、 5cda 
、 *I’eの場合は数10〜100)QTI )以内
ならば接合まで拡散していき、その素子の出力となる。
Furthermore, a common drawback of the detectors having the structures shown in FIGS. 3 and 4 is that the image quality deteriorates when the distance between the unit elements in the array is reduced. When using an array type infrared detector, incident infrared light is imaged with a mirror or the like, and the detector is placed on the focal plane to obtain an output for each unit element. This prime element can be considered as each pn junction, that is, the portion where the n-type layer 2 is formed in both FIGS. 3 and 4. Infrared light does not enter only above (or below) the n-type layer 2, but also enters between adjacent n-type layers. The minority carriers generated at this time have a diffusion length (for example, p-type Hgb, 5 cda
, *In the case of I'e, if it is within several 10 to 100)QTI), it will diffuse to the junction and become the output of the element.

単位素子間の間隔が拡散長以内ならこの間で生成きれた
少数キャリアはどの近接pn接合にも拡散していく事が
できる。従って、この間で発生した少数キャリアによる
出力信号は近接単位素子に振り分けられた形となり、解
像度劣化の原因となる。
If the interval between unit elements is within the diffusion length, minority carriers generated in this interval can diffuse into any nearby pn junction. Therefore, output signals due to minority carriers generated during this time are distributed to adjacent unit elements, causing resolution deterioration.

解像度を良好にする為には素子面積、素子間隔を小さく
する必要があるが、この為にこれらを小さくしても良好
な解像度は得られなくなる。
In order to improve the resolution, it is necessary to reduce the element area and element spacing, but even if these are reduced, good resolution cannot be obtained.

そこで、本発明の目的は、配列型光起電力型赤外線検知
器において、pn接合のリーク11!流が少なく、解像
度が良好で、かつ製造工程の簡易な配列型赤外線検知器
を得ることにある。
Therefore, an object of the present invention is to provide a pn junction leakage 11! in an array type photovoltaic infrared detector. The object of the present invention is to obtain an array-type infrared detector with a small flow, good resolution, and a simple manufacturing process.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、半導体上に複数のpn接合が配列されて成る配列型赤
外線検知器であって、前記pn接合以外の領域への赤外
光入射を遮断せしめる形の導電体のマスクが前記半導体
の受光面側に絶縁膜を介して形成きれており、かつ、前
記マスクには電圧を印加させるべき端子が設けてあるこ
とを特徴とする特 (実施例) 以下、第1図及び第2図を参照して本発明の実施例につ
いて説明する。第1図及び第2図は、それぞれ本発明を
一次元配列型赤外線検知器に応用した例(本発明の一実
施例)の平面図及び断面図である。図において、1はp
型HgCdTe、 2はn型HgCdTe、 3は検知
器の基板(サファイア、CdTe等)、4はパシベーシ
ョン膜(Zns 、 Sign等)、5及び6はそれぞ
れn側及びp側の電極、8はゲートである。この検知器
においては、赤外光は上側、すなわち、基板と反対側か
ら入射させて用いるので、基板は赤外光に対して透明な
Cd’s等を用いる必要はない。従って、この構造はエ
ピタキシャル成長したugcaTe結晶を用いる場合だ
けでなく、バルク成長法で得た結晶を用いる場合にも適
用できる。ゲート8として、例えば膜厚が5000人程
度のMを用いれば、赤外光あるいは可視光はこれを透過
しない。従って、ゲート直下のp型HgCdTe1には
赤外光が入射しない。すなわち、本検知器の特徴は、p
n接合のリーク電流を減少せしめる為のゲートが、pn
接合以外の部分に光子が入射するのを防止する為のマス
クを兼ねている点である。
(Means for Solving the Problems) Means provided by the present invention to solve the above-mentioned problems is an array type infrared detector in which a plurality of pn junctions are arranged on a semiconductor, the pn junctions being arranged on a semiconductor. A conductive mask that blocks infrared light from entering areas other than the junction is formed on the light-receiving surface side of the semiconductor via an insulating film, and the mask has a terminal to which a voltage is to be applied. Features (Embodiments) Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2. FIGS. 1 and 2 are a plan view and a sectional view, respectively, of an example in which the present invention is applied to a one-dimensional array type infrared detector (one embodiment of the present invention). In the figure, 1 is p
type HgCdTe, 2 is n-type HgCdTe, 3 is the detector substrate (sapphire, CdTe, etc.), 4 is the passivation film (Zns, Sign, etc.), 5 and 6 are the n-side and p-side electrodes, respectively, and 8 is the gate. be. In this detector, since the infrared light is incident from the upper side, that is, the side opposite to the substrate, it is not necessary to use Cd's or the like as the substrate, which is transparent to infrared light. Therefore, this structure can be applied not only when using an epitaxially grown ugcaTe crystal but also when using a crystal obtained by a bulk growth method. If, for example, M having a film thickness of about 5,000 is used as the gate 8, infrared light or visible light will not pass through it. Therefore, infrared light does not enter the p-type HgCdTe1 directly under the gate. In other words, the feature of this detector is that p
The gate to reduce the leakage current of the n-junction is a pn
The point is that it also serves as a mask to prevent photons from entering areas other than the bonded area.

検知器と外部との電気的接続は、第1図上側に示す様に
、各電極ゲートの一部を突出させた部分にボンディング
等の方法を用いる事により得られる。これにより、例え
ば、SiのCCD 、 MOSスイッチ配列等にこの配
列型検知器を接続せしめる事も可能である。 pn接合
のリーク電流、すなわち検知器の暗電流はゲートに印加
したWEEによって小さくする事が可能であるので、検
知器自体の感度が向上するのに加えて、例えばCCDへ
の電荷注入効率も増大し、ひいては高性能の一次元電子
走査式赤外線検知器が得られる。
Electrical connection between the detector and the outside can be obtained by bonding or the like to a partially protruding portion of each electrode gate, as shown in the upper part of FIG. This makes it possible to connect this array type detector to, for example, a Si CCD or MOS switch array. The leakage current of the pn junction, that is, the dark current of the detector, can be reduced by WEE applied to the gate, which not only improves the sensitivity of the detector itself, but also increases the efficiency of charge injection into the CCD, for example. As a result, a high-performance one-dimensional electronic scanning infrared detector can be obtained.

また、本実施例においては、ゲートが赤外線を遮光する
マスクを兼ねているので、構造の複雑化は最小限に押さ
えられる。すなわち ゲートと遮光マスクとを別々に設
けて同様の特性改善を行なった検知器よりは著しく構造
、製造工程が単純である。また、第3図の構造と比べる
と、相違点としてはパシベーション膜4中にゲート8と
なるべき金属膜が埋め込まれ、その一部に電圧印加可能
な端子が設けである点だけにすぎず、製造工程はさほど
複雑化していない。
Further, in this embodiment, since the gate also serves as a mask for blocking infrared rays, the complexity of the structure can be kept to a minimum. That is, the structure and manufacturing process are significantly simpler than a detector in which a gate and a light-shielding mask are provided separately to achieve similar characteristic improvements. Moreover, compared to the structure shown in FIG. 3, the only difference is that a metal film to become the gate 8 is embedded in the passivation film 4, and a terminal to which a voltage can be applied is provided in a part of the metal film. The manufacturing process is not very complicated.

(発明の効果) 従って、本発明によれば、配列型赤外線検知器において
、暗電流が小さく、かつ解像度が良好であり、製造工程
も比較的簡単な配列型赤外線検知器を得る事ができる。
(Effects of the Invention) Therefore, according to the present invention, it is possible to obtain an array-type infrared detector that has a small dark current, good resolution, and a relatively simple manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である一次元配列型赤外線検
知器の平面図であり、第2図はその断面図である。第3
図及び第4図は互いに異なる方式の従来の配列型赤外線
検知器をそれぞれ示す断面図である。 図において、1はp型HgCdTe、 2はn型HgC
dTe、 3は基板、4はパシベーション膜、5はn(
Jl電極、6はp側電極、7はCdTe基板、8はゲー
ト、9はゲート電極、10は配線用基板をそれぞれ表わ
す。 代理人 弁理士 本 庄 伸 介 第1図 n捌庭極 賊 第2図 第3図 パシベー4ン恢
FIG. 1 is a plan view of a one-dimensional array type infrared detector which is an embodiment of the present invention, and FIG. 2 is a sectional view thereof. Third
1 and 4 are cross-sectional views showing conventional array-type infrared detectors of different types. In the figure, 1 is p-type HgCdTe, 2 is n-type HgC
dTe, 3 is the substrate, 4 is the passivation film, 5 is n(
Jl electrode, 6 a p-side electrode, 7 a CdTe substrate, 8 a gate, 9 a gate electrode, and 10 a wiring substrate, respectively. Agent Patent Attorney Shinsuke Honsho Figure 1 n The gangsters Figure 2 Figure 3 Passive 4 n

Claims (1)

【特許請求の範囲】[Claims] 半導体上に複数のpn接合が配列されて成る配列型赤外
線検知器において、前記pn接合以外の領域への赤外光
入射を遮断せしめる形の導電体のマスクが前記半導体の
受光面側に絶縁膜を介して形成されており、かつ、前記
マスクには電圧を印加させるべき端子が設けてあること
を特徴とする配列型赤外線検知器。
In an array type infrared detector in which a plurality of pn junctions are arranged on a semiconductor, an insulating film is provided on the light-receiving surface side of the semiconductor, and a conductive mask is arranged to block infrared light from entering areas other than the pn junctions. 1. An array-type infrared detector, characterized in that the mask is formed through a mask, and a terminal to which a voltage is to be applied is provided on the mask.
JP60231609A 1985-10-17 1985-10-17 Array type infrared detector Pending JPS6290986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60231609A JPS6290986A (en) 1985-10-17 1985-10-17 Array type infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60231609A JPS6290986A (en) 1985-10-17 1985-10-17 Array type infrared detector

Publications (1)

Publication Number Publication Date
JPS6290986A true JPS6290986A (en) 1987-04-25

Family

ID=16926193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60231609A Pending JPS6290986A (en) 1985-10-17 1985-10-17 Array type infrared detector

Country Status (1)

Country Link
JP (1) JPS6290986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272678A (en) * 1988-09-07 1990-03-12 Nikon Corp Multiple-type photodetector
US5420445A (en) * 1993-02-22 1995-05-30 Texas Instruments Incorporated Aluminum-masked and radiantly-annealed group II-IV diffused region

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272678A (en) * 1988-09-07 1990-03-12 Nikon Corp Multiple-type photodetector
US5420445A (en) * 1993-02-22 1995-05-30 Texas Instruments Incorporated Aluminum-masked and radiantly-annealed group II-IV diffused region
US5462882A (en) * 1993-02-22 1995-10-31 Texas Instruments Incorporated Masked radiant anneal diffusion method

Similar Documents

Publication Publication Date Title
US5113076A (en) Two terminal multi-band infrared radiation detector
US6498336B1 (en) Integrated light sensors with back reflectors for increased quantum efficiency
US4422091A (en) Backside illuminated imaging charge coupled device
US4866499A (en) Photosensitive diode element and array
US5101255A (en) Amorphous photoelectric conversion device with avalanche
US20020139922A1 (en) Photo-sensor cross-section for increased quantum efficiency
Tsaur et al. 128x128-element IrSi Schottky-barrier focal plane arrays for long-wavelength infrared imaging
JPH05267695A (en) Infrared image sensing device
US3904879A (en) Photovoltaic infra-red detector
JPS6290986A (en) Array type infrared detector
US3633077A (en) Semiconductor photoelectric converting device having spaced elements for decreasing surface recombination of minority carriers
GB2100511A (en) Detector for responding to light at a predetermined wavelength, and method of making the detector
US4751560A (en) Infrared photodiode array
Konuma et al. A standard-television compatible 648* 487 pixel Schottky-barrier infrared CCD image sensor
JP3939430B2 (en) Photodetector
JPS5833373A (en) Semiconductor image pickup device
JPH02237154A (en) Light-detecting device
JPH0492481A (en) Photosensor
JPS63273365A (en) Infrared-ray detector
JP2848345B2 (en) Infrared detector
US5665998A (en) Geometric enhancement of photodiodes for low dark current operation
JP2616707B2 (en) Manufacturing method of infrared detector
JPH0263312B2 (en)
JP2643592B2 (en) Array type infrared detector and manufacturing method thereof
US20020140004A1 (en) Photo-sensor layout for increased quantum efficiency