JPS6290843A - High-pressure discharge lamp - Google Patents

High-pressure discharge lamp

Info

Publication number
JPS6290843A
JPS6290843A JP28172185A JP28172185A JPS6290843A JP S6290843 A JPS6290843 A JP S6290843A JP 28172185 A JP28172185 A JP 28172185A JP 28172185 A JP28172185 A JP 28172185A JP S6290843 A JPS6290843 A JP S6290843A
Authority
JP
Japan
Prior art keywords
tube
discharge lamp
pressure discharge
arc tube
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28172185A
Other languages
Japanese (ja)
Other versions
JPH0630244B2 (en
Inventor
Seigo Wada
和田 成伍
Atsunori Okada
岡田 淳典
Shoichi Morii
森井 彰一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Publication of JPS6290843A publication Critical patent/JPS6290843A/en
Publication of JPH0630244B2 publication Critical patent/JPH0630244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PURPOSE:To avoid acoustic resonance and enable to maintain stable illumination by making high frequency lighting, by means of a frequency modulation process, of a high-pressure discharge lamp made up of an illumination tube which has curved surface part where the ends of the tube are flared from the electrode sealing ends toward the middle of the illumination tube. CONSTITUTION:An illumination tube is made to have a curve surface part where the ends of the tube are flared from the electrode sealing ends toward the middle of the illumination tube. The illumination tube is used as a high- pressure discharge lamp to be lighted with high frequency by means of a frequency modulation process. The radius of curvature of the curved surface part of this illumination tube divided by the inner diameter of the tube is made greater than zero. Mercury vapor density is kept below 7.5mg/cm<2> with arc column electric field intensity kept below 40V/cm and power consumption per unit volume of arc column kept below 350W/cm<2>. The tube end is shaped so that the electrode sealing end is located off the center axis of the illumination tube. The high-pressure discharge lamp thus constructed is lighted with high frequency by means of a frequency modulation process, to avoid acoustic resonance of the discharge lamp and to maintain stable illumination.

Description

【発明の詳細な説明】 (技術分野) 本発明は、高圧放電ランプを高周波点灯する高圧放電灯
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a high-pressure discharge lamp that is operated at high frequency.

(背景技術) 第1図は従来の高圧放電ランプの一例を示し、石英ガラ
ス等で形成された発光管1の両端には電極2a、2bが
対向して配設され、該両電極2a、2bは封止部3a、
3bに封入されたモリブデン箔等の金属箔4a、4bに
接続されている。金属箔4a、4bは発光管1の支持も
兼ねる支持導線5a、5bに接続されており、発光管1
は固定冶具6a、6bを介して支持導線5a、5bに固
定されている。支持導線5a、5bは口金7を介して外
部回路に接続される。また、発光管l内には希ガス及び
発光物質が適量封入されており、発光管1を被う外管8
内にはガスが封入され、外管8の内面には螢光体9が塗
布されている。
(Background Art) FIG. 1 shows an example of a conventional high-pressure discharge lamp, in which electrodes 2a and 2b are disposed facing each other at both ends of an arc tube 1 made of quartz glass or the like. is the sealing part 3a,
It is connected to metal foils 4a and 4b, such as molybdenum foil, sealed in 3b. The metal foils 4a and 4b are connected to support conductors 5a and 5b which also serve as support for the arc tube 1.
are fixed to the support conductors 5a, 5b via fixing jigs 6a, 6b. Support conductors 5a and 5b are connected to an external circuit via a base 7. In addition, an appropriate amount of rare gas and a luminescent substance are sealed inside the arc tube 1, and an outer tube 8 that covers the arc tube 1 is provided.
Gas is sealed inside, and the inner surface of the outer tube 8 is coated with a fluorescent substance 9.

かかる従来の高圧放電ランプを高周波電源で点灯すると
、発光効率が向上すると共に、点灯回路の電子化による
安定器の小型・軽量化、低損失化が図れるという利点が
ある。しかし、一方では発光管内の音速と発光管形状で
決定される特定の周波数で音響的共鳴現象が発生し、ア
ーク柱の湾曲、揺らぎ、立ち消え、発光管の破壊等が発
生するといった欠点がある。
When such a conventional high-pressure discharge lamp is lit with a high-frequency power source, there are advantages in that the luminous efficiency is improved, and the ballast can be made smaller and lighter, and its loss can be reduced by electronicizing the lighting circuit. However, on the other hand, it has the disadvantage that an acoustic resonance phenomenon occurs at a specific frequency determined by the speed of sound in the arc tube and the shape of the arc tube, causing curvature, fluctuation, and extinction of the arc column, and destruction of the arc tube.

安定に点灯するためには、高圧放電ランプが安定に点灯
する周波数域を選択して点灯(例えば特開昭54−91
971号公報参照)すれば良いが、安定に点灯する周波
数域はランプの種類によって異なり、また、同一種類の
ランプに対しても、ランプ個体間にばらつきが有るため
、特定の周波数を設定するのは困難であった。
In order to turn on the lamp stably, select a frequency range in which the high-pressure discharge lamp can turn on stably.
(Refer to Publication No. 971) However, the frequency range for stable lighting varies depending on the type of lamp, and even for the same type of lamp, there are variations between individual lamps, so it is difficult to set a specific frequency. was difficult.

また、100kHz以上の周波数での高周波点灯、直流
点灯(例えば特開昭57−61295号公報参照)、矩
形波点灯(例えば特開昭57−61294号公報参照)
あるいは周波数変調方式で高周波点灯する(例えば特開
昭56−48095)等により音響的共鳴現象を回避す
る方法が提案されているが、かかる点灯方法においては
、回路構成の複雑化や放射電波雑音の発生等の問題があ
る。
Also, high-frequency lighting at a frequency of 100 kHz or more, DC lighting (see, for example, Japanese Patent Application Laid-Open No. 57-61295), and square wave lighting (see, for example, Japanese Patent Application Laid-Open No. 57-61294).
Alternatively, methods have been proposed to avoid the acoustic resonance phenomenon by lighting at high frequencies using a frequency modulation method (for example, Japanese Patent Laid-Open No. 56-48095), but such lighting methods require complicated circuit configurations and radiated radio noise. There are problems such as occurrence.

(発明の目的) 本発明は、上記欠点を除去するために成されたもので、
その目的とするところは5.高周波点灯時に、音響的共
鳴現象による不安定なアークが発光管に発生しない高圧
放電灯を提供するにある。
(Object of the invention) The present invention was made in order to eliminate the above-mentioned drawbacks.
Its purpose is 5. To provide a high-pressure discharge lamp in which unstable arc is not generated in the arc tube due to acoustic resonance phenomenon during high-frequency lighting.

(発明の開示) 本発明は、管端部形状が電極封止端(管端頂部)から発
光管中央部に向かって広がりを持つ曲面部を有するよう
に形成された発光管を持つ高圧放電ランプを、あるいは
電極封止端(管端頂部)が発光管中心軸上から外れた所
に位置するように形成された発光管を持つ高圧放電ラン
プを、周波数変調方式で高周波点灯することにより、点
灯時に発生する音響的共鳴現象を回避したことを特徴と
する。
(Disclosure of the Invention) The present invention provides a high-pressure discharge lamp having an arc tube in which the tube end shape has a curved surface section that widens from the electrode-sealed end (tube end top) toward the center of the arc tube. Alternatively, a high-pressure discharge lamp with an arc tube formed such that the electrode-sealed end (the top of the tube end) is located off the center axis of the arc tube is lit at high frequency using a frequency modulation method. It is characterized by avoiding the acoustic resonance phenomenon that sometimes occurs.

まず、音響的共鳴現象について説明する。音響的共鳴現
象は、発光管形状と封入物質で決まる固有振動数と、入
力電力の時間変化による発光管内の圧力変動とが一致し
た時に定在波が立つために生じる共鳴現象である。
First, the acoustic resonance phenomenon will be explained. Acoustic resonance is a resonance phenomenon that occurs when a standing wave is created when the natural frequency determined by the arc tube shape and the enclosed material matches the pressure fluctuation within the arc tube due to time changes in input power.

発光管を円筒形状と仮定し、円筒座標系(r。Assuming that the arc tube has a cylindrical shape, the cylindrical coordinate system (r.

θ、z)を考える。なお、rは径方向、θは周方向、2
は軸方向の座標を表す。かかる場合、上記各方向に対す
る共鳴現象の基本周波数Fr、Fθ、Fzは、次のよう
になる。
θ, z). Note that r is the radial direction, θ is the circumferential direction, and 2
represents the coordinate in the axial direction. In such a case, the fundamental frequencies Fr, Fθ, Fz of the resonance phenomenon in each of the above directions are as follows.

r方向共鳴: F r =3.83C/ (2WR)θ
方向共鳴:Fθ= 1.84C/ (2πR)2方向共
鳴: F z =C/ (2L)ただし Lは発光管長。
r direction resonance: F r =3.83C/ (2WR)θ
Directional resonance: Fθ = 1.84C/ (2πR) Two-way resonance: F z =C/ (2L) where L is the arc tube length.

Rは発光管の半径。R is the radius of the arc tube.

Cは発光管内の音速であり、管内封入物と管内l黒度で
決まる。
C is the sound velocity inside the arc tube, which is determined by the inclusions inside the tube and the blackness inside the tube.

C−JT]コ−77 γ一定圧比熱/定積比熱 P=気体定数 T=発光管内温度 M−封入物質の平均原子量 そして、この基本周波数の整数倍の周波数で共鳴現象が
発生する。音響的共鳴現象が発生すると、共鳴現象によ
って生じた力が、アーク柱自体が有する安定放電を持続
させようとする力に打ち勝って、アーク柱が変形する。
C-JT] Co-77 γ Constant pressure specific heat/constant volume specific heat P = Gas constant T = Temperature inside the arc tube M - Average atomic weight of the enclosed substance And a resonance phenomenon occurs at a frequency that is an integral multiple of this fundamental frequency. When an acoustic resonance phenomenon occurs, the force generated by the resonance phenomenon overcomes the force of the arc column itself to maintain stable discharge, causing the arc column to deform.

そこで、本発明者らは種々の発光管形状を持つ高圧放電
ランプを試作し、これらのランプを種々の高周波点灯方
式で点灯することにより、音響的共鳴現象発生の有無を
検討したところ、以下のことが判明した。
Therefore, the present inventors fabricated prototype high-pressure discharge lamps with various arc tube shapes, and investigated whether acoustic resonance phenomenon occurred by lighting these lamps with various high-frequency lighting methods, and found the following. It has been found.

一般に、高周波点灯をするときには、可聴周波数領域を
避けて点灯する。また、 100KHz以上の周波数で
点灯すると放射電波雑音が発生して問題となる。そこで
、点灯方式として20KIIz以下及び100KIlz
以上の周波数を含まない領域で周波数変調方式により点
灯したところ、発光管形状を特定すれば音響的共鳴現象
の回避に有効であることが判明した。第2図はかかる実
験に用いた高圧放電灯点灯装置の一例を示す回路図で、
図中DCは直流電源、FMは周波数変調信号発生装置、
SWはスイッチング素子、Zは限流要素、LAは高圧放
電ランプ、COはコンデンサである。
Generally, when high-frequency lighting is performed, the lighting is performed while avoiding the audible frequency range. Furthermore, if the lamp is turned on at a frequency of 100 KHz or higher, radiated radio noise will be generated, causing a problem. Therefore, the lighting method is 20KIIz or less and 100KILz.
When lighting was performed using a frequency modulation method in a region that does not include the above frequencies, it was found that specifying the shape of the arc tube is effective in avoiding acoustic resonance phenomena. Figure 2 is a circuit diagram showing an example of a high pressure discharge lamp lighting device used in such experiments.
In the figure, DC is a direct current power supply, FM is a frequency modulation signal generator,
SW is a switching element, Z is a current limiting element, LA is a high pressure discharge lamp, and CO is a capacitor.

次に、種々の発光管形状を持つ250Wの高圧放電ラン
プを上記点灯方式で点灯したところ、発光管の管軸方向
端部(以下、管端部という)の形状が音響的共鳴現象と
大きな関係があることが判明した。すなわち、管端部形
状が略平坦であれば、音響的共鳴現象は回避できること
が判明した(特願昭59−265052号)。
Next, when 250W high-pressure discharge lamps with various arc tube shapes were lit using the lighting method described above, it was found that the shape of the end of the arc tube in the tube axis direction (hereinafter referred to as the tube end) has a large relationship with the acoustic resonance phenomenon. It turns out that there is. That is, it has been found that the acoustic resonance phenomenon can be avoided if the tube end shape is substantially flat (Japanese Patent Application No. 59-265052).

更に、管端部形状に注目して種々検討を重ねた結果、管
端部形状が電極封止端から発光管中央部に向かって広が
りを持つ曲面部を有するように形成された発光管を持つ
高圧放電ランプを、あるいは電極封止端が発光管中心軸
上から外れた所に位置するように形成された発光管を持
つ高圧放電ランプを、周波数変JjM方式で高周波点灯
すると音響的共鳴現象の回避効果が著しいことが判明し
た。
Furthermore, as a result of various studies focusing on the shape of the tube end, we found that the tube end has a curved surface that expands from the electrode-sealed end toward the center of the arc tube. When a high-pressure discharge lamp, or a high-pressure discharge lamp whose arc tube is formed such that the electrode sealing end is located off the center axis of the arc tube, is lit at high frequency using the variable frequency JjM method, an acoustic resonance phenomenon occurs. It was found that the avoidance effect was significant.

本発明は上記発見に基づいてなされたもので、以下、本
発明を実施例に基づき更に詳細に説明する。
The present invention has been made based on the above discovery, and will be described in more detail below based on Examples.

種々の発光管形状の中で、製造上、最も容易な円筒形状
であって、管端部の形状、寸法を種々変化させた各種の
高圧放電ランプによる実験結果を第3図および第4図に
比較して示す。なお、第3図および第4図において横軸
は点灯周波数の中心周波数[K Ilz ]であり、縦
軸は周波数変調幅[KHz]である。また、×印は音響
的共鳴現象が生じた場合、O印は音響的共鳴現象が生じ
なかった場合を示す。
Among various arc tube shapes, the cylindrical shape is the easiest to manufacture, and the experimental results using various high-pressure discharge lamps with various shapes and dimensions of the tube end are shown in Figures 3 and 4. Compare and show. In addition, in FIG. 3 and FIG. 4, the horizontal axis is the center frequency [K Ilz ] of the lighting frequency, and the vertical axis is the frequency modulation width [KHz]. Further, an x mark indicates a case where an acoustic resonance phenomenon occurs, and an O mark indicates a case where an acoustic resonance phenomenon does not occur.

第3図(alは従来例に係るもので、管端部形状が略球
状で、曲面部寸法Lr1 (第5図+a)参照)が約1
1酊の場合である。同図より従来例では、音響的共鳴現
象を回避することは殆どできないことがわかる。第3図
(blは管端部形状が略球状で、曲面部寸法Lr1が従
来例の略半分の6mmであり、より平坦な形状に近づい
ている。この場合には、音響的共鳴現象を回避する領域
が、従来例の略2倍にまで広がっており、管端部形状を
平坦に近づけることの効果が現れている。次に、第4図
(al〜(C1に示すものは、曲面部寸法Lrz  (
第5図fb)参照)を変化させた場合の実験結果である
。曲面部寸法Lr2はそれぞれ、(at : Omm、
 (bl : 6 mm、 (cl:9mmである。こ
こで、同図中(blに示すものは、曲面部寸法が第3図
(blに示す場合と同様6mmであるが、管端部形状が
球状ではなく、電極封止端から発光管中央部に向かって
広がりを持つ曲面部を有するような形状、例えば、I’
ll 哄形状にしたものである。この場合、音響的共鳴
現象を回避する領域が更に広がり、殆ど全領域で回避で
きることがわかる。
Fig. 3 (al indicates a conventional example, the tube end shape is approximately spherical, and the curved surface dimension Lr1 (see Fig. 5 + a)) is approximately 1
This is a case of drunkenness. From the figure, it can be seen that in the conventional example, it is almost impossible to avoid the acoustic resonance phenomenon. Fig. 3 (bl is a tube whose end shape is approximately spherical, and the curved surface dimension Lr1 is 6 mm, which is approximately half of the conventional example, and is closer to a flat shape. In this case, the acoustic resonance phenomenon can be avoided. The area where the tube ends are approximately twice as large as that of the conventional example, demonstrating the effect of making the tube end shape nearly flat.Next, the area shown in FIG. Dimension Lrz (
This is an experimental result when changing the temperature (see FIG. 5 fb)). The curved surface dimension Lr2 is (at: Omm,
(bl: 6 mm, (cl: 9 mm). Here, in the case shown in (bl) in the same figure, the curved surface dimension is 6 mm as in the case shown in Fig. 3 (bl), but the tube end shape is The shape is not spherical, but has a curved surface that spreads from the electrode sealing end toward the center of the arc tube, for example, I'
ll It is shaped like a bell. In this case, the area in which the acoustic resonance phenomenon can be avoided is further expanded, and it can be seen that the acoustic resonance phenomenon can be avoided in almost the entire area.

また、第4図より明らかなように、中心周波数30K 
llz 〜60K Hz、周波数変調幅0K)Iz−1
0KIIzの領域において、管端部の曲面部寸法の差に
よる音響的共鳴現象の回避効果に大きな差があることが
判る。
Also, as is clear from Figure 4, the center frequency is 30K.
llz ~60K Hz, frequency modulation width 0K) Iz-1
It can be seen that in the 0KIIz region, there is a large difference in the effect of avoiding the acoustic resonance phenomenon due to the difference in the dimensions of the curved surface of the tube end.

そこで、これらの関係を曲面部寸法と音響的共鳴現象発
生領域(以下、不安定領域と称す)との関係でみると、
第6図に示すようになる。すなわち、横軸に曲面部寸法
/管内径をとり、縦軸に不安定領域の割合(中心周波数
30KHz〜60KHz、周波数変調幅0KIIz〜1
0 K llzの領域における不安定領域の割合)をと
る。なお、第6図に示す×印(不安定領域の割合が略1
00%の位置の)は、第3図(alに示す従来例に係る
ものである。
Therefore, if we look at these relationships in terms of the curved surface dimensions and the acoustic resonance phenomenon occurrence region (hereinafter referred to as the unstable region),
The result is as shown in FIG. In other words, the horizontal axis represents the curved surface dimension/pipe inner diameter, and the vertical axis represents the unstable area ratio (center frequency 30KHz to 60KHz, frequency modulation width 0KIIz to 1
The ratio of unstable region in the region of 0 Kllz) is taken. Note that the x mark shown in Figure 6 (the ratio of unstable region is approximately 1)
00% position) relates to the conventional example shown in FIG. 3 (al).

ここで、ランプ個体間のばらつき、回路定数のばらつき
を考慮し、音響的共鳴現象回避のための限界を、不安定
領域の割合で50%(望ましくは40%)とすると、第
6図より明らかなように、曲面部寸法/管内径の限界は
「0以上」、望ましくはro、07以上」となる。
Here, it is clear from Fig. 6 that the limit for avoiding the acoustic resonance phenomenon is set at 50% (preferably 40%) in terms of the proportion of the unstable region, taking into account the variations between individual lamps and the variations in circuit constants. As such, the limit of the curved surface dimension/pipe inner diameter is "0 or more", preferably ro, 07 or more.

なお、第5図fatは第3図で用いた発光管の形状、寸
法を示すものであり、第5図(b)は第4図で用いた発
光管の形状、寸法を示すものである。寸法はそれぞれ下
記の通りである。
Note that FIG. 5 fat shows the shape and dimensions of the arc tube used in FIG. 3, and FIG. 5(b) shows the shape and dimensions of the arc tube used in FIG. 4. The dimensions are as follows.

管内径D:15mm 曲面部寸法Lr1 第3図(alに示すもの:11mm 第3図(blに示すもの:6mm 曲面部寸法Lr2 第4図(alに示すもの= 01 第4図(blに示すもの:6mm 第4図(C1に示すもの=9mm 電極間距離Ll)755mm 次に、電極封止端から発光管中央部に向かって広がりを
持つ曲面は、発光管の全周に存在する必要はなく、第7
図に示すように一部であってもよい。かかる形状であっ
て、管内径D=18mm、曲面部寸法Lr5=1in+
m、電極間距離Lp=35mmなる発光管を具備した高
圧放電ランプを点灯した結果を第8図に示す。かかる場
合、不安定領域の割合は46%であった。
Pipe inner diameter D: 15 mm Curved surface dimension Lr1 Fig. 3 (as shown in al: 11 mm Fig. 3 (as shown in bl: 6 mm) Curved surface section dimension Lr2 Fig. 4 (as shown in al = 01 Fig. 4 (as shown in bl) 6mm Figure 4 (Thing shown in C1 = 9mm Distance between electrodes Ll) 755mm Next, the curved surface that spreads from the electrode sealing end toward the center of the arc tube does not need to exist around the entire circumference of the arc tube. No, 7th
It may be a part as shown in the figure. With such a shape, the pipe inner diameter D = 18 mm and the curved surface dimension Lr5 = 1 inch +
FIG. 8 shows the results of lighting a high-pressure discharge lamp equipped with an arc tube with an electrode distance Lp of 35 mm. In this case, the percentage of unstable regions was 46%.

また、電極封止端から発光管中央部に向かう曲線の広が
りは、必ずしも第5図(b)に示すように凹状である必
要はなく、第9図(al、山)に示すように凹状と凸状
の組合せであってもよい。
Furthermore, the spread of the curve from the electrode sealing end toward the center of the arc tube does not necessarily have to be concave as shown in FIG. 5(b), but may be concave as shown in FIG. 9 (al, mountain). It may also be a combination of convex shapes.

なお、上記実験結果は高圧放電ランプを垂直点灯した場
合のデータであるが、一般に、水平点灯の場合には、ア
ークに働く浮力がアーク安定化の力として働くので、音
響的共鳴現象によるアークの変形は、垂直点灯の場合よ
りも発生し難く、従って、本発明は点灯方向(垂直、水
平、傾斜)に関わりなく効果があるものである。実際に
、前記第8図に示す垂直点灯の場合の実験において使用
した高圧放電ランプを水平点灯すると第10図に示す結
果となり、不安定領域の割合は36%にまで減少する。
Note that the above experimental results are data when the high-pressure discharge lamp is lit vertically, but in general, when the lamp is lit horizontally, the buoyant force acting on the arc acts as a stabilizing force, so the arc is not affected by the acoustic resonance phenomenon. Deformation is less likely to occur than in the case of vertical lighting, and therefore the present invention is effective regardless of the lighting direction (vertical, horizontal, tilted). Actually, when the high-pressure discharge lamp used in the vertical lighting experiment shown in FIG. 8 is turned on horizontally, the results shown in FIG. 10 are obtained, and the ratio of the unstable region is reduced to 36%.

また、本発明によれば、管端部の曲面部寸法をより長く
とることが可能となるので、管内封入物質の蒸発を充分
に促進するのに有利となり、特に、管内に水銀、希ガス
と同時に金属ハロゲン化物を封入したメタルハライドラ
ンプの場合に有利となる。
Further, according to the present invention, it is possible to make the curved surface part of the tube end longer, which is advantageous in sufficiently promoting the evaporation of the substance sealed in the tube. At the same time, this is advantageous in the case of a metal halide lamp containing a metal halide.

次に、上述のことを250W以下の小型の高圧放電ラン
プに通用したところ、250Wの場合と同様に、発光管
の管端部形状を、電極封止端から発光管中央部に向かっ
て広がりを持つ曲面部を有するように形成することによ
り、音響的共鳴現象を回避し得ることが明らかになった
Next, when we applied the above to a small high-pressure discharge lamp of 250W or less, we found that the shape of the end of the arc tube was changed to widen from the electrode-sealed end toward the center of the arc tube, as in the case of 250W. It has become clear that the acoustic resonance phenomenon can be avoided by forming the device to have a curved surface portion.

一般に、250W以下の小型高圧放電ランプにおいては
、封入発光物質の蒸発を促進するために、管壁負荷を大
きくすると共に、管端部を高温にするために、発光管形
状は第11図に示すように球状あるいは楕円形状に構成
されている。しかしながら、上記のような管端部断面形
状が球状に形成された高圧放電ランプを高周波点灯する
と、音響的共鳴現象の発生が盛んになる。これを回避す
るためには、前記管端部曲面部寸法を3n+m±2mm
に制限しなければならず、小型高圧放電ランプの場合に
は管端部を高温に保つことが困難になり、封入発光物質
の蒸発が不十分になるために、発光効率が低下したり、
発光色にむらができる等の欠点があった。
Generally, in small high-pressure discharge lamps of 250 W or less, the arc tube shape is shown in Figure 11 in order to increase the load on the tube wall and raise the temperature of the tube end to promote evaporation of the enclosed luminescent material. It has a spherical or elliptical shape. However, when a high-pressure discharge lamp having a spherical tube end cross-sectional shape as described above is operated at a high frequency, acoustic resonance phenomena frequently occur. In order to avoid this, the dimensions of the curved surface of the pipe end should be set to 3n+m±2mm.
In the case of small high-pressure discharge lamps, it is difficult to maintain the tube end at a high temperature, and the luminescent material enclosed in the lamp does not evaporate sufficiently, resulting in a decrease in luminous efficiency.
There were drawbacks such as uneven emission color.

そこで、第12図に示すように、管端部形状を電極封止
端から発光管中央部に向かって広がりを持つ曲面部を有
するように形成すると、音響的共鳴現象を回避するため
に許容される管端部の前記曲面部寸法は0mm以上であ
ればよく、自由に長くとることが可能となり、管端部温
度を高温に保ち、発光効率を低下させることなく、また
発光色むらを発生することなく音響的共鳴現象を回避す
ることが可能になった。
Therefore, as shown in FIG. 12, if the tube end shape is formed to have a curved surface section that expands from the electrode-sealed end toward the center of the arc tube, it is acceptable to avoid the acoustic resonance phenomenon. The dimension of the curved surface of the tube end need only be 0 mm or more, and it can be made as long as desired, keeping the tube end temperature at a high temperature, without reducing the luminous efficiency, and causing uneven luminescence color. This makes it possible to avoid acoustic resonance phenomena without any problems.

なお、電極の挿入位置は必ずしも管端部でなくてもよく
、例えば、第12図に示すように発光管中央部に挿入位
置をもつ、いわゆるシングルエンド型であってもよい。
Note that the insertion position of the electrode does not necessarily have to be at the end of the tube; for example, it may be of a so-called single-end type, in which the electrode is inserted at the center of the arc tube as shown in FIG.

次に、第2の発明について説明する。Next, the second invention will be explained.

第14図fa)に示すものは本発明に係るもので、前記
第3図〜第13図に示す発光管の管端部形状が、発光管
中心軸上に電極封止端(管端頂部)が位置している形状
であるのに対して、電極封止端(管端頂部)は発光管中
心軸上から外れた所に位置するように形成され、しかも
、曲面部寸法Lr2 (第15図ta+参照)は前記第
3図ta)と同様61としたものである。この場合には
、音響的共鳴現象を回避する領域が更に広がっているこ
とがわかる。
The one shown in FIG. 14 fa) is according to the present invention, in which the tube end shape of the arc tube shown in FIGS. In contrast, the electrode sealing end (tube end apex) is formed to be located off the central axis of the arc tube, and the curved surface dimension Lr2 (Fig. 15) ta+) is set to 61 as in FIG. 3 ta). In this case, it can be seen that the area in which the acoustic resonance phenomenon is avoided is further expanded.

更に、第14図fblに示すものは曲面部寸法が9mm
の場合であるが、同様の効果がある。
Furthermore, the curved surface dimension of the one shown in Fig. 14 fbl is 9 mm.
However, the same effect is obtained.

本発明における電極封止端の発光管中心軸上からの偏在
の仕方は、第16図(al〜(C1に示すように3通り
考えられる。上記第14図(al、fblに示すものは
第16図(b)の場合に相当する。そこで、異なる実施
例として、第16図ta+に相当し曲面部寸法Lr2 
(第15図(bl参照)が9mmの場合の実験結果を第
17図に示す。同図より第14図(a)、(blとほぼ
同等の効果を奏することがわかる。
In the present invention, there are three ways in which the electrode sealing end may be unevenly distributed from the central axis of the arc tube, as shown in FIGS. 16 (al to C1). This corresponds to the case of FIG. 16(b).Therefore, as a different example, the curved surface portion dimension Lr2 corresponds to FIG. 16 ta+.
FIG. 17 shows the experimental results when (FIG. 15 (see BL)) is 9 mm. From the same figure, it can be seen that the effect is almost the same as that of FIG. 14 (a) and (BL).

従って、電極封止端の発光管中心軸上からの偏在の仕方
にかかわらず、偏在しておれば音響的共鳴現象の防止効
果があると言える。
Therefore, regardless of how the electrode sealing end is unevenly distributed from the central axis of the arc tube, it can be said that as long as it is unevenly distributed, there is an effect of preventing the acoustic resonance phenomenon.

なお、電極封止端と発光管とを結ぶ面は、曲面形成であ
っても第16図(dl、(elに示すように直面形成(
偏心した円錐状)であってもよく、偏在さえしておれば
よい。また、管端部先端は尖っている必要はなく、第1
6図(el、(f)に示すように平坦であってもよい。
Note that even if the surface connecting the electrode sealing end and the arc tube is formed into a curved surface, it may be formed into a flat surface (as shown in FIG. 16 (dl, (el)).
It may be an eccentric conical shape), and it is sufficient that it is unevenly distributed. Also, the tip of the tube end does not need to be sharp;
It may be flat as shown in Figure 6 (el, (f)).

更に異なる実施例として、一方の管端部形状が本発明の
形状で、他方の管端部形状が従来例と同様に球状である
場合について考える。第18図はこのような発光管形状
のランプを垂直点灯した場合の実験結果である。第18
図+a)に示すものは本発明の管端部形状を下端にした
場合、第18図(blに示すものは球状管端部を下端に
した場合であり、曲面部寸法Lrz(第15図(C1参
照)は6mn+である。同図より明らかなように、垂直
点灯の場合には、少なくとも下端が本発明に係る形状で
あれば音響的共鳴現象の防止効果があると言える。また
、本発明においても前記第1の発明と同様、点灯方向(
垂直、水平、傾斜)に関わりなく効果があると言える。
As a further different embodiment, consider a case where one tube end shape is the shape of the present invention and the other tube end shape is spherical like the conventional example. FIG. 18 shows the experimental results when such an arc tube-shaped lamp was lit vertically. 18th
The one shown in Figure +a) is when the tube end shape of the present invention is the lower end, and the one shown in Figure 18 (bl) is when the spherical tube end is the lower end. C1) is 6 mn+.As is clear from the figure, in the case of vertical lighting, if at least the lower end has the shape according to the present invention, it can be said that there is an effect of preventing acoustic resonance phenomenon. Similarly to the first invention, the lighting direction (
It can be said that it is effective regardless of whether it is vertical, horizontal, or tilted.

なお、第15図(alは第14図(alおよび第14図
(blで用いたものであり、第15図(b)は第17図
で用いたものであり、第15図(C)は第18図で用い
たものである。
Note that Figure 15 (al) is the one used in Figure 14 (al) and Figure 14 (bl), Figure 15 (b) is the one used in Figure 17, and Figure 15 (C) is the one used in Figure 14 (al) and Figure 14 (bl). This is the one used in FIG.

寸法はそれぞれ下記の通りである。The dimensions are as follows.

管内径D:15mm 曲面部寸法Lr2 第14図(a)に示すもの: 61 第14図(blに示すもの:9mm 第17図に示すもの :9mm 第18図に示すもの :6ff111!電極間距離L+
):55mm 次に、上述のことを250W以下の小型の高圧放電ラン
プに通用したところ、250Wの場合と同様に、発光管
の管端部形状を、電極封止端が発光管中心軸から外れた
所に位置するように形成することにより、音響的共鳴現
象を回避し得ることが明らかになった。
Pipe inner diameter D: 15 mm Curved surface dimension Lr2 As shown in Figure 14 (a): 61 As shown in Figure 14 (bl): 9 mm As shown in Figure 17: 9 mm As shown in Figure 18: 6ff111! Distance between electrodes L+
): 55mm Next, when we applied the above to a small high-pressure discharge lamp of 250W or less, we found that, as in the case of 250W, we changed the tube end shape of the arc tube so that the electrode sealed end was deviated from the center axis of the arc tube. It has become clear that the acoustic resonance phenomenon can be avoided by forming the filter so that it is located at a certain location.

そこで、第19図および第20図に示すように、発光管
の管端部形状を、電極封止端が発光管中心軸上から外れ
た所に位置するような形状に構成すると、管端部の前記
曲面部寸法を長くとれるので、管端部温度を高温に保ち
、発光効率を低下させることなく、また発光色むらを発
生することなく音響的共鳴現象を回避することが可能に
なった。
Therefore, as shown in FIGS. 19 and 20, if the shape of the tube end of the arc tube is configured such that the electrode sealing end is located off the center axis of the arc tube, the tube end Since the dimension of the curved surface part can be made long, it has become possible to maintain the temperature of the tube end at a high temperature and avoid acoustic resonance phenomena without reducing the luminous efficiency or producing uneven luminescent color.

なお、本発明においても第1の発明と同様に、管端部の
曲面部寸法をより長(とることが可能となるので、管内
封入物質の蒸発を充分に促進するのに有利となり、特に
、管内に水銀、希ガスと同時に金属ハロゲン化物を封入
したメタルハライドランプの場合に有利となる。
In addition, in the present invention, as in the first invention, it is possible to make the curved surface part of the tube end longer, which is advantageous in sufficiently promoting the evaporation of the substance sealed in the tube, and in particular, This is advantageous in the case of a metal halide lamp in which a metal halide is sealed in the tube at the same time as mercury and rare gas.

次に、点灯動作時の水11M気密度、アーク柱電界強度
およびアーク柱内の単位体積当りの消費電力について検
討したところ、それぞれの値を所定値以下に制限するこ
とが、音響的共鳴現象の回避により有効であることが判
明した。
Next, we examined the water 11M airtight density, arc column electric field strength, and power consumption per unit volume in the arc column during lighting operation, and found that limiting each value to below a predetermined value will reduce the acoustic resonance phenomenon. It turns out that avoidance is more effective.

まず、点灯動作時の水銀蒸気密度について述べる。音響
的共鳴現象は、電界により加速されたイオンが中性原子
に141突することにより圧力変動が発生し、発光管の
共鳴周波数と圧力変動の周波数が一致した時、定在波が
発生するために生じる現象である。従って、電界、イオ
ン密度、中性原子密度、イオン質量、中性原子質量が大
きいほど発生しやすくなる。高圧放電ランプの場合、中
性原子、イオンとも水銀が主体となる。
First, the mercury vapor density during lighting operation will be described. The acoustic resonance phenomenon occurs because ions accelerated by an electric field collide with neutral atoms, causing pressure fluctuations, and when the resonance frequency of the arc tube matches the frequency of the pressure fluctuations, a standing wave is generated. This is a phenomenon that occurs in Therefore, the larger the electric field, ion density, neutral atom density, ion mass, and neutral atomic mass, the more likely it is to occur. In the case of high-pressure discharge lamps, both neutral atoms and ions are mainly composed of mercury.

そこで、点灯時のランプ電圧は同一に保ちながら、点灯
動作時の水銀蒸気密度が変化するような高圧放電ランプ
を試作し、周波数変調型の高周波点灯を行い、音響的共
鳴現象の発生領域を検討した。その結果を第21図に示
す。同図より明らかなように、水銀蒸気密度が大きくな
るほど音響的共鳴現象の発生領域が広くなる。そこで、
前述と同様の方法で、点灯動作時の水銀蒸気密度と不安
定領域の割合をプロットすると第22図に示すようにな
る。ここで、前記同様、音響的共鳴現象回避のための限
界を、不安定領域の割合で50%とすると、動作時の水
銀蒸気密度は7.5ng/ai!以下であればよい。な
お、実験に用いた発光管の形状は、前記第5図(blと
同様のもので、それぞれの寸法は下記の通りである。
Therefore, we prototyped a high-pressure discharge lamp in which the mercury vapor density changes during lighting operation while keeping the lamp voltage the same during lighting, performed frequency modulation high-frequency lighting, and investigated the region where acoustic resonance phenomena occur. did. The results are shown in FIG. As is clear from the figure, the higher the mercury vapor density, the wider the area where the acoustic resonance phenomenon occurs. Therefore,
When the mercury vapor density and the unstable area ratio during lighting operation are plotted using the same method as described above, the result is shown in FIG. 22. Here, as above, if the limit for avoiding the acoustic resonance phenomenon is set to 50% in terms of the ratio of the unstable region, the mercury vapor density during operation is 7.5 ng/ai! The following is sufficient. The shape of the arc tube used in the experiment was the same as that shown in FIG. 5 (bl) above, and the dimensions of each are as follows.

管内径D:15mm 曲面部寸法Lr2:6IIIIll 電極間距離Lp 第21図fa)に示すもの:80mm 第21図fblに示すもの:60mm 第21図(C1に示すもの:40mm 第21図(diに示すもの:2011Il11なお、点
灯動作時の水銀蒸気密度は第21図ta>、(bl、(
C1、(diに対応して、それぞれ1.95■/d、2
゜83ng/c+4.4.56mg/c+4.13.3
0 axr/ctlであり、また、不安定領域の割合は
それぞれ、1%、13%、29%、100%である。
Pipe inner diameter D: 15 mm Curved surface dimension Lr2: 6IIIll Distance between electrodes Lp As shown in Figure 21 fa): 80 mm As shown in Figure 21 fbl: 60 mm As shown in Figure 21 (C1: 40 mm As shown in Figure 21 (di) Shown: 2011Il11 The mercury vapor density during lighting operation is shown in Figure 21 ta>, (bl, (
C1, (corresponding to di, 1.95■/d, 2
゜83ng/c+4.4.56mg/c+4.13.3
0 axr/ctl, and the percentages of unstable regions are 1%, 13%, 29%, and 100%, respectively.

次に、点灯時のランプ電圧は同一に保ちながら、点灯動
作時のアーク柱電界強度が変化するような高圧放電ラン
プを試作し、周波数変調型の高周波点灯を行い、音響的
共鳴現象の発生領域を検討した。なお、実験に用いた発
光管の形状、寸法は、前記点灯動作時の水銀蒸気密度を
検討したものと同じであり、その結果も第21図と同じ
であるので省略する。第21図より明らかなように、ア
ーク柱電界強度が太き(なるほど音響的共鳴現象の発生
領域が広くなる。そこで、前述と同様の方法で、点灯動
作時のアーク柱電界強度と不安定領域の割合をプロット
すると第23図に示すようになる。
Next, we prototyped a high-pressure discharge lamp in which the electric field strength of the arc column changes during lighting operation while keeping the lamp voltage the same, and conducted frequency-modulated high-frequency lighting to determine the region where acoustic resonance occurs. It was investigated. Note that the shape and dimensions of the arc tube used in the experiment are the same as those used in the study of the mercury vapor density during the lighting operation, and the results are also the same as those shown in FIG. 21, so a description thereof will be omitted. As is clear from Fig. 21, the arc column electric field strength is thick (indeed, the area where acoustic resonance phenomenon occurs is wide).Therefore, using the same method as described above, we calculated the arc column electric field strength during lighting operation and the unstable region. If the ratio is plotted, it will be as shown in Fig. 23.

ここで、前記同様、音響的共鳴現象回避のための限界を
、不安定領域の割合で50%とすると、動作時のアーク
柱電界強度は40 V / cra以下であればよい。
Here, as above, if the limit for avoiding the acoustic resonance phenomenon is set to 50% in terms of the proportion of the unstable region, the arc column electric field strength during operation may be 40 V/cra or less.

なお、点灯動作時のアーク柱電界強度は第21図(al
、(bl、(C)、(d)に対応して、それぞれ13.
3V/cm、18.8V / c+a、 25.3V 
/ C11,67、OV/Cotである。
The arc column electric field strength during lighting operation is shown in Figure 21 (al
, (bl, (C), (d), respectively, 13.
3V/cm, 18.8V/c+a, 25.3V
/ C11,67, OV/Cot.

但し、アーク柱電界強度は(ランプ電圧[V]−20[
V])、/電極間距離[cLII]で表現するものとす
る。
However, the arc column electric field strength is (lamp voltage [V] - 20 [
V]), /interelectrode distance [cLII].

更に、点灯動作中のアーク柱内の単位体積当りの消費電
力について説明する。発光管の管端部形状を相似形に保
ちながら、点灯動作時のアーク柱内の単位体積当りの消
費電力をか変化するような高圧放電ランプを試作し、周
波数変調型の高周波点灯を行い、音響的共鳴現象の発生
領域を検討した。その結果を第24図に示す。同図より
明らかなように、アーク柱内の単位体積当りの消費電力
が大きくなるほど音響的共鳴現象の発生領域が広くなる
。そこで、前述と同様の方法で、点灯動作時のアーク柱
内の単位体積当りの消費電力と不安定領域の割合をプロ
ットすると第25図に示すようになる。ここで、前記同
様、音響的共鳴現象回避のための限界を、不安定領域の
割合で50%とすると、動作時のアーク柱内の単位体積
当りの消費電力は350W/cn+以下であればよい。
Furthermore, power consumption per unit volume within the arc column during lighting operation will be explained. We prototyped a high-pressure discharge lamp that changes the power consumption per unit volume in the arc column during lighting operation while keeping the shape of the end of the arc tube similar, and performed frequency-modulated high-frequency lighting. The region where acoustic resonance phenomena occur was investigated. The results are shown in FIG. As is clear from the figure, the larger the power consumption per unit volume within the arc column, the wider the area where the acoustic resonance phenomenon occurs. Therefore, when the power consumption per unit volume in the arc column during lighting operation and the ratio of the unstable region are plotted using the same method as described above, the result is shown in FIG. 25. Here, as above, if the limit for avoiding the acoustic resonance phenomenon is set to 50% in terms of the proportion of the unstable region, the power consumption per unit volume in the arc column during operation should be 350 W/cn+ or less. .

なお、実験に用いた発光管の形状は、前記第5図(b)
と同様のものであり、それぞれの寸法は下記の通りであ
る管内径:D、曲面部寸法: L r 2 、電極間距
離:Lpとすると (at: D=18+nm  Lr2=6nv+  L
p−75mmfb): D=15mm  Lr2=6m
m  Lp=55mm(Cl:D=’14mm  Lr
2=6mm  Lp=24mmなお、点灯動作時のアー
ク柱内の単位体積当りの消費電力は第24図(al、(
b)、(C1に対応して、それぞれ109 W/cTA
、180W/cat、382 W/cnlであり、また
、不安定領域の割合はそれぞれ、2%、13%、、10
0%である。
The shape of the arc tube used in the experiment is shown in Figure 5(b) above.
The dimensions are as follows: tube inner diameter: D, curved surface dimension: L r 2 , distance between electrodes: Lp (at: D=18+nm Lr2=6nv+L
p-75mmfb): D=15mm Lr2=6m
m Lp=55mm (Cl:D='14mm Lr
2=6mm Lp=24mm The power consumption per unit volume in the arc column during lighting operation is shown in Figure 24 (al, (
b), (corresponding to C1, respectively 109 W/cTA
, 180 W/cat, and 382 W/cnl, and the percentages of unstable regions are 2%, 13%, and 10, respectively.
It is 0%.

(発明の効果) 本発明は上記のように、管端部形状が電極封止端から発
光管中央部に向かって広がりを持つ曲面部を有するよう
に形成された発光管を持つ高圧放電ランプを、あるいは
電極封止端が発光管中心軸上から外れた所に位置するよ
うに形成された発光管を持つ高圧放電ランプを、周波数
変調方式で高周波点灯することにより、音響的共鳴現象
を回避することが可能となり、アーク柱の湾曲、揺らぎ
、立ち消え、発光管の破壊等が防止でき、安定した点灯
を維持することができる高圧放電灯を提供できた。
(Effects of the Invention) As described above, the present invention provides a high-pressure discharge lamp having an arc tube whose end shape has a curved surface that expands from the electrode-sealed end toward the center of the arc tube. Alternatively, the acoustic resonance phenomenon can be avoided by lighting a high-pressure discharge lamp with an arc tube formed such that the electrode sealed end is located off the center axis of the arc tube using a frequency modulation method. This makes it possible to provide a high-pressure discharge lamp that can prevent arc column curvature, fluctuation, extinguishing, and arc tube destruction, and can maintain stable lighting.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高圧放電ランプを示す正面図、第2図は
本発明に用いる周波数変調点灯装置の一例を示す回路図
、第3図(al、 (blは従来例に係る実験結果を示
す図、第4図+8)〜(0)はそれぞれ本発明に係る実
験結果を示す図、第5図(al、 (b)は上記実験に
用いた発光管の形状、寸法を示す正面図、第6図は上記
実験結果に基づいて作成した曲面部寸法/管内径に対す
る不安定領域の割合を示す図、第7図Ta)は本発明に
係る異なる形状の発光管を示す正面図、第7図(ト))
は同上のA−A’線断面図、第8図は第7図に示す発光
管に係る実験結果を示す図、第9図(al、fblはそ
れぞれ本発明に係る異なる形状の発光管を示す正面図、
第10図は本発明に係る実験結果を示す図、第11図は
従来の小型高圧放電ランプに係る発光管の断面図、第1
2図および第13図はそれぞれ本発明の小型高圧放電ラ
ンプに係る発光管の断面図、第14図(a)、 (bl
は第2の発明に係る実験結果を示す図、第15図(81
〜(C1は上記実験に用いた発光管の形状、寸法を示す
正面図、第16図fa)〜(flは上記実験に用いた発
光管の形状を示す図、第17図および第18図!8+、
 (b)は第2の発明の異なる実施例に係る実験結果を
示す図、第19図および第20図はそれぞれ第2の発明
の小型高圧放電ランプに係る発光管の断面図、第21図
は更に異なる実施例に係る実験結果を示す図、第22図
および第23図はそれぞれ上記実験結果に基づいて作成
した不安定領域の割合を示す図、第24図は更に異なる
実施例に係る実験結果を示す図、第25図上記実験結果
に基づいて作成した不安定領域の割合を示す図である。
Fig. 1 is a front view showing a conventional high-pressure discharge lamp, Fig. 2 is a circuit diagram showing an example of a frequency modulation lighting device used in the present invention, and Fig. 3 (al and bl show experimental results regarding the conventional example). Figures 4+8) to 4(0) are diagrams showing the experimental results of the present invention, respectively. Figures 5(al) and (b) are front views showing the shape and dimensions of the arc tube used in the above experiment, Figure 6 is a diagram showing the ratio of unstable area to curved surface dimension/tube inner diameter created based on the above experimental results, Figure 7 Ta) is a front view showing arc tubes of different shapes according to the present invention, Figure 7 (to))
8 is a cross-sectional view taken along the line A-A' of the same as above, FIG. 8 is a diagram showing the experimental results regarding the arc tube shown in FIG. 7, and FIG. Front view,
FIG. 10 is a diagram showing experimental results related to the present invention, FIG. 11 is a cross-sectional view of an arc tube related to a conventional small high-pressure discharge lamp, and FIG.
2 and 13 are sectional views of the arc tube of the compact high-pressure discharge lamp of the present invention, and FIGS. 14(a) and (bl
is a diagram showing the experimental results related to the second invention, FIG. 15 (81
~(C1 is a front view showing the shape and dimensions of the arc tube used in the above experiment, FIG. 16 fa) ~(fl is a diagram showing the shape of the arc tube used in the above experiment, FIGS. 17 and 18! 8+,
(b) is a diagram showing the experimental results according to different embodiments of the second invention, FIGS. 19 and 20 are respectively cross-sectional views of the arc tube according to the small high-pressure discharge lamp of the second invention, and FIG. Figures 22 and 23 are diagrams showing the experimental results of further different examples, Figures 22 and 23 are diagrams each showing the proportion of unstable regions created based on the above experimental results, and Figure 24 is the experimental results of further different examples. FIG. 25 is a diagram showing the proportion of unstable regions created based on the above experimental results.

Claims (6)

【特許請求の範囲】[Claims] (1)管端部形状が電極封止端から発光管中央部に向か
って広がりを持つ曲面部を有するように形成された発光
管を持つ高圧放電ランプを、周波数変調方式で高周波点
灯したことを特徴とする高圧放電灯。
(1) A high-pressure discharge lamp with an arc tube whose end shape has a curved surface that expands from the electrode-sealed end toward the center of the arc tube is lit at high frequencies using a frequency modulation method. Characteristic high pressure discharge lamp.
(2)前記発光管の曲面部寸法を管内径で除した値が0
以上である特許請求の範囲第1項記載の高圧放電灯。
(2) The value obtained by dividing the curved surface dimension of the arc tube by the tube inner diameter is 0.
The high-pressure discharge lamp according to claim 1, which is the above.
(3)水銀蒸気密度が7.5mg/cm^3以下に維持
される発光管を備えた特許請求の範囲第1項記載の高圧
放電灯。
(3) The high-pressure discharge lamp according to claim 1, comprising an arc tube whose mercury vapor density is maintained at 7.5 mg/cm^3 or less.
(4)アーク柱電界強度が40V/cm以下に維持され
る発光管を備えた特許請求の範囲第1項記載の高圧放電
灯。
(4) The high-pressure discharge lamp according to claim 1, comprising an arc tube whose arc column electric field strength is maintained at 40 V/cm or less.
(5)アーク柱単位体積当りの消費電力が350W/c
m^3以下に維持される発光管を備えた特許請求の範囲
第1項記載の高圧放電灯。
(5) Power consumption per unit volume of arc column is 350W/c
The high-pressure discharge lamp according to claim 1, comprising an arc tube maintained at m^3 or less.
(6)電極封止端が発光管中心軸から外れた所に位置す
るような管端部形状を有するように形成された発光管を
持つ高圧放電ランプを、周波数変調方式で高周波点灯し
たことを特徴とする高圧放電灯。
(6) A high-pressure discharge lamp having an arc tube whose end shape is such that the electrode-sealed end is located off the center axis of the arc tube is operated at high frequency using a frequency modulation method. Characteristic high pressure discharge lamp.
JP60281721A 1985-06-21 1985-12-13 High pressure discharge lamp Expired - Fee Related JPH0630244B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP13633285 1985-06-21
JP60-136332 1985-06-21
JP13633185 1985-06-21
JP60-136331 1985-06-21

Publications (2)

Publication Number Publication Date
JPS6290843A true JPS6290843A (en) 1987-04-25
JPH0630244B2 JPH0630244B2 (en) 1994-04-20

Family

ID=26469954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60281721A Expired - Fee Related JPH0630244B2 (en) 1985-06-21 1985-12-13 High pressure discharge lamp

Country Status (1)

Country Link
JP (1) JPH0630244B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0907305A1 (en) * 1997-09-29 1999-04-07 Matsushita Electric Industrial Co., Ltd. Method and apparatus for operating discharge lamp
CN100433240C (en) * 2003-03-28 2008-11-12 松下电器产业株式会社 Metal vapour discharge lamp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568470A (en) * 1979-06-30 1981-01-28 Pentel Kk Aqueous ink
JPS5923420A (en) * 1982-07-28 1984-02-06 日本電気ホームエレクトロニクス株式会社 Joy stick

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568470A (en) * 1979-06-30 1981-01-28 Pentel Kk Aqueous ink
JPS5923420A (en) * 1982-07-28 1984-02-06 日本電気ホームエレクトロニクス株式会社 Joy stick

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0907305A1 (en) * 1997-09-29 1999-04-07 Matsushita Electric Industrial Co., Ltd. Method and apparatus for operating discharge lamp
US6046548A (en) * 1997-09-29 2000-04-04 Matsushita Electric Industrial Co., Ltd. Method and apparatus for operating discharge lamp
KR100322328B1 (en) * 1997-09-29 2002-06-20 모리시타 요이찌 Lighting method and lighting device of discharge lamp
CN100433240C (en) * 2003-03-28 2008-11-12 松下电器产业株式会社 Metal vapour discharge lamp

Also Published As

Publication number Publication date
JPH0630244B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US6979958B2 (en) High efficacy metal halide lamp with praseodymium and sodium halides in a configured chamber
CN1062237A (en) The startup servicing unit of electrodeless high intensity discharge lamp
JPS6290843A (en) High-pressure discharge lamp
JP3157901B2 (en) Metal halide lamp
JPS61185857A (en) Electrodeless discharge lamp
JPS6297251A (en) High pressure discharge lamp
JPS61294751A (en) High pressure discharge lamp
JPS61165944A (en) High pressure discharge lamp
JPS61142662A (en) High pressure discharge lamp
JP3170963B2 (en) Dielectric barrier discharge lamp
JPH0260048A (en) High luminous intesity discharge lamp starting electrode
JPS62147645A (en) High pressure discharge lamp
JP3341571B2 (en) High pressure discharge lamp
JPS60258843A (en) High pressure discharge lamp
JPS62147647A (en) High pressure discharge lamp
JPH01309250A (en) Discharge lamp
JPS6171541A (en) High pressure electric-discharge lamp
JPS60258844A (en) High pressure discharge lamp
JPH0151879B2 (en)
JPS61124049A (en) High pressure discharge lamp
US20040160182A1 (en) Low-pressure discharge lamp
JP3456420B2 (en) High pressure mercury lamp
JPS61121254A (en) High pressure discharge lamp
JPS60262343A (en) High pressure discharge lamp
JP3102430B2 (en) Dielectric barrier discharge lamp

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees