JPS6289910A - Geodesic lens and its production - Google Patents

Geodesic lens and its production

Info

Publication number
JPS6289910A
JPS6289910A JP23164785A JP23164785A JPS6289910A JP S6289910 A JPS6289910 A JP S6289910A JP 23164785 A JP23164785 A JP 23164785A JP 23164785 A JP23164785 A JP 23164785A JP S6289910 A JPS6289910 A JP S6289910A
Authority
JP
Japan
Prior art keywords
recess
refractive index
optical
lens
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23164785A
Other languages
Japanese (ja)
Inventor
Nobukazu Takado
高堂 宣和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23164785A priority Critical patent/JPS6289910A/en
Publication of JPS6289910A publication Critical patent/JPS6289910A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • G02B6/1245Geodesic lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To correct aberrations by adjusting partially the quantity of ultraviolet rays or light irradiated to a thin film consisting of an arsenic sulfide if the shape of a recess is deviated from a design and aberrations occur in a geodesic lens. CONSTITUTION:If the center of the recess is deeper than the design, the refractive index of an optical waveguide 7 consisting of an arsenic sulfide provided on the recess is raised gradually in the direction vertical to the propagation direction of a guided light according as going away from the optical axis, but is uniform in the propagation direction of the incident guided light. Consequently, since the part along the optical axis in the waveguide in the recess has the lowest equivalent refractive index if the depth of the recess 3 is deeper than the design and the optical path length of the beam propagated is most deviated from the design value, the propagation speed of the beam passing the optical axis is high to cancel the phase difference due to the extension of the optical path length, thus obtaining the geodesic lens having no aberrations.

Description

【発明の詳細な説明】 (産業上の利用分野) 不発明は平面導波光を面内において集束させる機能を有
するジオデシックレンズおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a geodesic lens having a function of focusing planar guided light in a plane, and a method for manufacturing the same.

(従来の技術) 一般に、コヒーレントな光学処理技術は、並列処理がで
き、扁速であるという特徴があるため、コリレーション
などのような信号処理装置への応用に適している。この
信号処理装fi1を実現するために、光学カラスや光学
結晶などti板とし、この表面に基板よりも屈折率の尚
い層を設け、この高屈折率、nにエネルギーを集中させ
て伝搬する平面導波光の波面やエネルギー伝搬方向を1
fflJ#する光回路が、最近さかんに研究されている
0このような平面光回路に用いられる平面レンズは、結
像作用や7一リエ変換作用の慟ざと持ち、平面光回路を
4我する重責な部品である0このような平面レンズとし
ては、ジオデシ、クレンズ、ルネプルグレンズ、グレー
ティングレンズ、平面7レネルレンズ等のレンズが知ら
れている0 ジオデフツクレンズは、光導波路中にくぼみ(凹部)を
形成してこの部分をレンズ部としているため、くぼみを
所望の形状に加工することによシ大ロ径、短焦点つまシ
F数の小さなレンズの作成が可能となる。また不貞的に
色収差がなく、また焦点距離が導波モードの次数によら
ない利点がある。従来、誘電体基板上にくぼみを設け、
このくぼみに光導波路を形成するジオデシックレンズの
例が、雑誌「アイ・イー・イー・イー・トランザクショ
ン拳オン・コンボーネンン・ハイブリッド・アンド・マ
ニファクチャリング・テクノロジー(IEEE Tll
、ANSACTIONS ONCOMPONENTS。
(Prior Art) In general, coherent optical processing technology is characterized by being capable of parallel processing and being fast, and is therefore suitable for application to signal processing devices such as correlation. In order to realize this signal processing device fi1, a Ti plate such as an optical glass or an optical crystal is used, a layer with a refractive index lower than that of the substrate is provided on the surface, and energy is concentrated on this high refractive index, n, and propagated. The wavefront and energy propagation direction of planar waveguide light are 1
Recently, optical circuits that perform fflJ# have been actively researched.The planar lens used in such a planar optical circuit has an imaging function and a 7-layer conversion function, and has a heavy responsibility of controlling the planar optical circuit. 0 As such planar lenses, there are known lenses such as Geodeci, Cleanse, Lunepul lens, Grating lens, Planar 7 Lenell lens, etc. Since this portion is used as a lens portion, it is possible to create a lens with a large diameter, a short focal length, and a small F number by processing the recess into a desired shape. Further, it has the advantage that there is no chromatic aberration, and the focal length does not depend on the order of the waveguide mode. Conventionally, a recess is provided on a dielectric substrate,
An example of a geodesic lens that forms an optical waveguide in this recess is published in the magazine ``IEE Transaction Fist on Hybrid and Manufacturing Technology (IEEE Tll
, ANSACTIONS ONCOMPONENTS.

HYBRIDS、AND  MANUFACTURIN
GTECHNOLOGY)J 、VOL  CHMT−
5,No 、2゜6月1982年、205〜209ペー
ジに掲載の論文に述べられている。
HYBRIDS, AND MANUFACTURIN
GTECHNOLOGY)J, VOL CHMT-
5, No. 2, June 1982, pages 205-209.

第3図(a)、 (b)はこの従来のジオデフツクレン
ズの構造を示す平面図と析面図である。このジオデシッ
クレンズは、リチウムナイオベイト基板1の表面にダイ
ヤモンドのバイトを用いてくぼみ3を切削し、この切削
部を研摩した後、リテワムナイオペイト基板1のくぼみ
も含めた全面にチタン膜を設け、このチタンg を熱拡
散することによって光導波、@8とジオデシックレンズ
部4が形成される0 このジオデシックレンズでは、平行に入射した4波光5
がフェル7の原理にしたがって光′16艮が最短になる
曲面の測地、鍼に旧って伝搬するので、この入射導波光
5が通過するレンズの位置によってその光路長が変化し
、入射導波光5は果菜作用?受は集束点6に集光される
0 (発明が解決しようとする問題点) このようなジオデシ、クレンメは、収差のないレンズを
実現するためには口径が数aX@中心の深さが1趨程度
のレンズの場合、1〜5μmの梢度でくばみの形状を加
工する必要がある0従ってジオデシックレンズにはくぼ
みの形状が少してでも設計咀から外れると収差を生じて
しまう欠点がある0 本発明の目的は、このような従来のジオデシックレンズ
の欠点を除去し、くぼみの形状が設計通りに加工できな
くとも、収差のないレンズ?得ることができるジオデシ
ックレンズとその製造方法?提共することにある。
FIGS. 3(a) and 3(b) are a plan view and an analytical view showing the structure of this conventional geodefault lens. This geodesic lens is made by cutting a depression 3 on the surface of a lithium niobate substrate 1 using a diamond cutting tool, polishing the cut portion, and then applying a titanium film to the entire surface of the lithium niobate substrate 1, including the depression. , the optical waveguide @8 and the geodesic lens part 4 are formed by thermally diffusing this titanium g.
According to Fell's principle, the light beam 5 propagates along the geodetic axis of the curved surface where it is the shortest, so the optical path length changes depending on the position of the lens through which the incident guided wave light 5 passes. Is 5 a fruit and vegetable effect? 0 (Problem to be solved by the invention) In order to realize an aberration-free lens, the aperture must be several ax @ the depth at the center must be 1 In the case of a lens with a diameter of 1 to 5 μm, it is necessary to process the shape of the recess with a depth of 1 to 5 μm.Therefore, geodesic lenses have the disadvantage that if the shape of the recess deviates even slightly from the design, aberrations will occur. 0 The purpose of the present invention is to eliminate such drawbacks of conventional geodesic lenses, and to create a lens that is free from aberrations even if the shape of the depression cannot be processed as designed. What geodesic lenses can you get and how to make them? It is about sharing.

(問題点′T:解決するための手段) 第1の本発明の4aXは、誘電体基板上部を形成し、こ
の四部をも含めた誘電体基板表面上に光導波路を設けた
ジオデシ、クレンメにおいて、前記凹部に設けた前記光
導波路の屈折率分布は、導波光の伝搬方向と垂直方向に
光軸から離れるに従って徐々に変化され、かつ導波光の
伝韮力向に均一としたこと?特徴とする。
(Problem 'T: Means for Solving) The 4aX of the first invention is a geodecisive or cleansing device in which an upper part of a dielectric substrate is formed and an optical waveguide is provided on the surface of the dielectric substrate including this four parts. , the refractive index distribution of the optical waveguide provided in the recess is gradually changed as it moves away from the optical axis in a direction perpendicular to the propagation direction of the guided light, and is uniform in the direction of the propagation force of the guided light? Features.

第2の本発明の構成は、誘電体基板表面上に凹部を設け
、この凹部に光i波路を形)戎するジオデシックレンズ
の製造方法において、屈折率が811記訪寛体基板より
も高くかつこの屈折率が電子ビームや光の照射によシ増
加する感光性材料を、前記凹部を言む前記誘電体基板の
表面上に膜厚が同一となるように設けて前記光纏波路金
形成し、前記凹部への電子ビームまたは光の照射源は、
導波光の伝搬方向と垂直方向に光軸から離れるに従って
徐々vC/A化妊せ、かつ導波光の伝搬方向に均一とな
るように制御されることを時機とする0(作 用) 本発明の構造によって、力ロエしたくぼみの形状が設計
と異なったために生じた収差全補正でさるように、くぼ
みの部分の光導波路に次のような屈折4分/f5を持た
せている0すなわち、くぼみの中心が設計よりも菌くな
った場せには、導波光の伝搬方向と垂直な方向に元軸か
ら離れるに従って徐々に尚くなる屈折率分布をとり、く
ぼみの中心が設計よりも浅くなった場合には、4波光の
伝搬方向と垂直な方向に光軸から離れるに従って徐々に
低くなる屈折率分布をとることにより、収差の補正が可
能となるようにしている。
The second structure of the present invention is a method for manufacturing a geodesic lens in which a recess is provided on the surface of a dielectric substrate and an optical i-wavepath is formed in the recess, the refractive index being higher than that of the visiting body substrate No. 811 and A photosensitive material whose refractive index increases upon irradiation with an electron beam or light is provided on the surface of the dielectric substrate, which corresponds to the recess, so that the film thickness is the same, thereby forming the optical waveguide. , the electron beam or light irradiation source to the recessed portion is
The effect of the present invention is to gradually increase vC/A as it moves away from the optical axis in a direction perpendicular to the propagation direction of the guided light, and to be controlled so that it becomes uniform in the propagation direction of the guided light. Due to the structure, the optical waveguide in the hollow part has the following refraction 4/f5, which is 0, that is, the hollow If the center of the recess becomes more compact than designed, the refractive index distribution will gradually become worse as it moves away from the original axis in the direction perpendicular to the propagation direction of the guided light, and the center of the recess will become shallower than designed. In this case, aberrations can be corrected by creating a refractive index distribution that gradually decreases as it moves away from the optical axis in a direction perpendicular to the propagation direction of the four-wave light.

(実施例) 以下本発明について図面を参照して詳細に説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図(a)、 (b)は本発明の一実施例を示す平面
図と断面図である。このジオデクツクレンズは、リチウ
ムナイオベイト基板10表面にくぼみ部3を設け、これ
?ジオデシックレンズ部4とし、このくぼみ3以外の基
板1の表面には屈折率が均一な硫化ヒ素の光導波路2を
設け、基板lの表面上のくぼみ30部分には屈折率が部
分的に異なる硫化ヒ素の光導波路7を設けている。この
くぼみの上に設けた硫化ヒ累の光導波路7は、くぼみの
中心が設計よりも深くなった場合には、導波光の伝搬方
向と垂直な方向に光軸から離れるに従って、屈折率が除
々に高くなる分布をとり、入射導波光の伝搬方向には一
様な屈折率分布を持つ。
FIGS. 1(a) and 1(b) are a plan view and a sectional view showing an embodiment of the present invention. This Geodex Cleanse has a depression 3 on the surface of the lithium niobate substrate 10. A geodesic lens portion 4 is provided, and an optical waveguide 2 made of arsenic sulfide with a uniform refractive index is provided on the surface of the substrate 1 other than the recess 3, and an optical waveguide 2 made of arsenic sulfide with a uniform refractive index is provided on the surface of the substrate l. An optical waveguide 7 made of arsenic is provided. If the center of the sulfide atom optical waveguide 7 provided above this depression is deeper than designed, the refractive index will gradually decrease as it moves away from the optical axis in the direction perpendicular to the propagation direction of the guided light. The refractive index has a uniform distribution in the propagation direction of the incident guided light.

従って、くぼみ3の深さが設計よりも深くなり、元@を
伝搬するビームの光路長が最も設計値から長くずれるよ
うな場合に、不実施例ではくぼみ内の導波路で光軸にそ
)だ部分が最も等価屈折率が小さいため光軸を通るビー
ムの伝鍜速度が速く、光路長の増大による位相差全灯ち
消し、収差のないジオデシックレンズが実現できる0 この原8!によれば、くぼみの中心が設計よりも浅くな
った場合には、くぼみの部分の導波路が導波光の伝搬方
向と垂直な方向に光軸から離れるに従って除々に少くな
る屈折率分布をとることにより収差を補正できる。
Therefore, in the case where the depth of the recess 3 becomes deeper than the design and the optical path length of the beam propagating through the source deviates from the design value by the longest, in the non-example, the waveguide inside the recess aligns with the optical axis. This part has the smallest equivalent refractive index, so the propagation speed of the beam passing through the optical axis is fast, and by increasing the optical path length, all phase differences can be eliminated, making it possible to create a geodesic lens with no aberrations0 Konohara 8! According to , if the center of the depression is shallower than designed, the waveguide in the depression will adopt a refractive index distribution that gradually decreases as it moves away from the optical axis in a direction perpendicular to the propagation direction of the guided light. Aberrations can be corrected by

第2図+a)〜+C)は不実施例の構造を実現するため
のジオデクツクレンズの製造方法を工程順に示す断面図
、第2図(d)は第2図(C)のA−A’断面図である
Figure 2 +a) to +C) are cross-sectional views showing the manufacturing method of Geodex Cleansing in the order of steps to realize the structure of the non-example, and Figure 2(d) is A-A in Figure 2(C). 'This is a cross-sectional view.

まず、第2図(a)において、リチクムナイオベイト基
板10表面にダイヤモンドのバイトを用いくぼみ3を切
削し、この切削後研摩全行90次に、第2図(b)に示
すよ5IC,!、lテクムナイオベイト基板1の表面に
硫化ヒ素を蒸看し、膜厚一定の硫化ヒ素の光導波路2.
7を形成する。次に、紫外縁の透過率が、第2図(+J
に示すよ5に入射導波光の伝搬方向に均一で、第2図[
d)に示すように入射導波光の伝搬方向と垂直な刀同に
光軸部分で最小で元軸から離れるに従って大きくなって
いく分布を持った露光用マスク10を通して、くぼみの
上に設けた硫化ヒ素の光導波路7に紫外線11を照射す
る。このようにして第1図に示したジオデク。
First, in FIG. 2(a), a depression 3 is cut on the surface of the lyticum niobate substrate 10 using a diamond cutting tool, and after this cutting, the entire row 90 is polished.Next, as shown in FIG. ! , arsenic sulfide is vaporized on the surface of a techniobate substrate 1 to form an optical waveguide 2 of arsenic sulfide with a constant film thickness.
form 7. Next, the transmittance at the ultraviolet edge is shown in Figure 2 (+J
As shown in Figure 5, the incident guided light is uniform in the propagation direction, and as shown in Figure 2 [
As shown in d), the sulfurization film provided above the recess is passed through the exposure mask 10, which has a distribution that is minimum at the optical axis portion and increases as the distance from the original axis increases, perpendicular to the propagation direction of the incident guided wave light. The arsenic optical waveguide 7 is irradiated with ultraviolet light 11. The geodeck thus shown in Figure 1.

クレンメを完成することができる。You can complete Kremme.

(発明の効果) 本発明の構造によれば、くぼみの形状が旬キー書設計か
ら外れて、ジオデシックレンズに収差が発生した場合に
、硫化ヒ素のN膜に照射する紫外線または光の照射世を
部分的に調整することによシ、その収差を補正すること
ができる。
(Effects of the Invention) According to the structure of the present invention, when the shape of the recess deviates from the key design and aberrations occur in the geodesic lens, the irradiation period of ultraviolet rays or light irradiated to the N film of arsenic sulfide can be reduced. By making partial adjustments, the aberration can be corrected.

本実施例の具体ヅ」として、口径と焦点距離がそれぞれ
3.21nllLと3. Q urrnのジオデシック
レンズのくぼみを形成し、形状の設計からのずれがくぼ
みの中心で最大で、かつ中心が20μm設計よυも深く
なった時、膜厚が0.4μmで均一で硫化ヒ素金くぼみ
の部分に設けて、これに前述の透過率分布?待った露光
用マスクを通して波長400nmの紫外線を、最大の照
射麓として5.sJZ渭2照射する。
Specifically, the aperture and focal length of this embodiment are 3.21nllL and 3.21nllL, respectively. When forming a depression for Qurrn's geodesic lens, and the deviation from the shape design was greatest at the center of the depression, and the center was 20μm deeper than the design, the film thickness was uniform at 0.4μm, and the film thickness was 0.4μm and arsenic gold sulfide. Is it provided in the hollow part and has the above-mentioned transmittance distribution? 5. Apply ultraviolet rays with a wavelength of 400 nm through the waiting exposure mask at the maximum irradiation point. sJZ Wei2 irradiation.

このように紫外縁を照射することにより、He−Neレ
ーザー光のTEモードに対して光軸にそった部分の硫化
ヒ素の屈折率は、2.46のままで、光軸から最も離れ
たくぼみの端の部分では2.48となり、くぼみの形状
のずれによる光路長のずれが打ち消され、収差の低減が
可能となる。
By irradiating the ultraviolet edge in this way, the refractive index of arsenic sulfide along the optical axis remains 2.46 for the TE mode of the He-Ne laser beam, and the refractive index of arsenic sulfide in the portion farthest from the optical axis remains 2.46. The value becomes 2.48 at the end portion of , which cancels out the deviation in optical path length due to the deviation in the shape of the recess, making it possible to reduce aberrations.

このように本発明によれば、くぼみの加工梢龍に左右さ
れずに低収差のジオデクツクレンズを実現できる。
As described above, according to the present invention, it is possible to realize a geodex lens with low aberrations without being affected by the machining process of the depressions.

【図面の簡単な説明】[Brief explanation of drawings]

第工図ta)、 tblは本発明によるジオデクツクレ
ンズの一犬施例を示す平面図およびその断面図、第2図
(a)〜(d)は第1図のジオデクツクレンズの製造方
法?工程順に示す断面図、第3図fan、 tb)は従
来のジオデシックレンズを示す平面図およびその断面図
である。 1・・・・・・リチウムナイオベイト恭板、2.7・・
・・・硫化ヒ素の光導波路、3・・・・・・くぼみ部、
4・・・・・・ジオデシックレンズ部、5・・・・・・
入射導波光、6・・・・・・入射導波光の集束点、8・
・・・・・光導波路、10・・・・・・露光用マスク、
11・・・・・・紫外線。 代理人 弁理士  内 原   :童、、1′\ン 梁 l 図
The construction drawings ta) and tbl are a plan view and a sectional view showing an example of the geodex lens according to the present invention, and FIGS. Method? The cross-sectional views shown in the order of steps, FIG. 3 (fan, tb), are a plan view and a cross-sectional view of a conventional geodesic lens. 1...Lithium Niobait plate, 2.7...
... Arsenic sulfide optical waveguide, 3... Hollow part,
4...Geodesic lens section, 5...
Incoming guided wave light, 6...Focusing point of incident guided wave light, 8.
...Optical waveguide, 10...Exposure mask,
11... Ultraviolet rays. Agent Patent Attorney Uchihara: Do, 1'\n Liang l Figure

Claims (2)

【特許請求の範囲】[Claims] (1)誘電体基板の表面に凹部を形成し、この凹部をも
含めた誘電体基板表面上に光導波路を設けたジオデシッ
クレンズにおいて、前記凹部に設けた光導波路の屈折率
分布は、導波光の伝搬方向と垂直な方向に光軸からの距
離に従って徐々に変化され、前記導波光の伝搬方向に均
一としたことを特徴とするジオデシックレンズ。
(1) In a geodesic lens in which a recess is formed on the surface of a dielectric substrate and an optical waveguide is provided on the surface of the dielectric substrate including the recess, the refractive index distribution of the optical waveguide provided in the recess is A geodesic lens characterized in that the waveguide light is gradually changed according to the distance from the optical axis in a direction perpendicular to the propagation direction of the guided light, and is made uniform in the propagation direction of the guided light.
(2)誘電体基板表面上に凹部を設け、この凹部に光導
波路を形成するジオデシックレンズの製造方法において
、屈折率が前記誘電体基板よりも高くかつこの屈折率が
電子ビームや光の照射により増加する感光性材料を、前
記凹部を含む前記誘電体基板の表面上に膜厚が均一とな
るように設けて前記光導波路を形成し、前記凹部への電
子ビームまたは光の照射量は、導波光の伝搬方向と垂直
方向に光軸からの距離に従って徐々に変化させ、かつ前
記導波光の伝搬方向に均一となるように制御されること
を特徴とするジオデシックレンズの製造方法。
(2) In a method for manufacturing a geodesic lens in which a recess is provided on the surface of a dielectric substrate and an optical waveguide is formed in the recess, the refractive index is higher than that of the dielectric substrate, and the refractive index is lowered by electron beam or light irradiation. The optical waveguide is formed by providing an increasing amount of photosensitive material on the surface of the dielectric substrate including the recess so that the film thickness is uniform, and the amount of electron beam or light irradiated to the recess is set to A method for manufacturing a geodesic lens, characterized in that the waveguide light is controlled to gradually change in a direction perpendicular to the propagation direction according to the distance from the optical axis, and to be uniform in the propagation direction of the guided light.
JP23164785A 1985-10-16 1985-10-16 Geodesic lens and its production Pending JPS6289910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23164785A JPS6289910A (en) 1985-10-16 1985-10-16 Geodesic lens and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23164785A JPS6289910A (en) 1985-10-16 1985-10-16 Geodesic lens and its production

Publications (1)

Publication Number Publication Date
JPS6289910A true JPS6289910A (en) 1987-04-24

Family

ID=16926773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23164785A Pending JPS6289910A (en) 1985-10-16 1985-10-16 Geodesic lens and its production

Country Status (1)

Country Link
JP (1) JPS6289910A (en)

Similar Documents

Publication Publication Date Title
JP3438140B2 (en) Optical signal processing circuit and method of manufacturing the same
US4445759A (en) Integrated Fresnel lens and its production process
JPH0642291B2 (en) Integrated optical head
US4611883A (en) Two-dimensional optics element for correcting aberrations
US20040120676A1 (en) Method for manufacturing optical waveguide using laser writing method and optical waveguide manufactured by using the same
JPS6060042B2 (en) Method and device for creating a grating in an optical waveguide
US11796740B2 (en) Optical device
JPS6289910A (en) Geodesic lens and its production
JPS6180108A (en) Geodesic lens
JPS5821211A (en) Thin film lens of integrated optical structure
JPS61180206A (en) Geodesic lens and production thereof
JPS6289911A (en) Geodesic lens
JPS6177808A (en) Production of geodesic lens
JPS61221707A (en) Geodesic lens
JPS5810721B2 (en) Manufacturing method of thin film optical device
JPS61221708A (en) Production of geodesic lens
JPS6033531A (en) Optical waveguide lens
Douglass Complex devices fabricated using femtosecond laser direct write
JPS62295005A (en) Optical waveguide circuit
JPS60202402A (en) Fresnel lens
GB2096344A (en) Apparatus for changing the direction of waves guided along an interface
JPS61180205A (en) Plane fresnel lens and its production
JPS635310A (en) Production of optical connecting circuit
JPS62297806A (en) Production of waveguide type plane optical circuit
JPS61282801A (en) Geodesic lens