JPS628961B2 - - Google Patents

Info

Publication number
JPS628961B2
JPS628961B2 JP4067576A JP4067576A JPS628961B2 JP S628961 B2 JPS628961 B2 JP S628961B2 JP 4067576 A JP4067576 A JP 4067576A JP 4067576 A JP4067576 A JP 4067576A JP S628961 B2 JPS628961 B2 JP S628961B2
Authority
JP
Japan
Prior art keywords
cavity resonator
cylindrical
cylindrical cavity
linear expansion
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4067576A
Other languages
Japanese (ja)
Other versions
JPS52123853A (en
Inventor
Eiji Kaji
Kazumi Machida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4067576A priority Critical patent/JPS52123853A/en
Publication of JPS52123853A publication Critical patent/JPS52123853A/en
Publication of JPS628961B2 publication Critical patent/JPS628961B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B9/00Generation of oscillations using transit-time effects
    • H03B9/12Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices
    • H03B9/14Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance
    • H03B9/145Generation of oscillations using transit-time effects using solid state devices, e.g. Gunn-effect devices and elements comprising distributed inductance and capacitance the frequency being determined by a cavity resonator, e.g. a hollow waveguide cavity or a coaxial cavity

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 この発明は温度変化に対して高い周波数安定度
を有する発振装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oscillation device having high frequency stability against temperature changes.

通信機等の分野においては、固体発振素子を用
いた発振装置が使用されており、その1例とし
て、簡単な空胴共振器の中に固体発振素子を装着
して構成された発振装置(以下、原発振器と称
す)があるが、この原発振器では温度変化に対し
て必要な周波数安定度を得ることは不可能であ
る。
Oscillation devices using solid-state oscillation elements are used in fields such as communication equipment, and one example is an oscillation device (hereinafter referred to as oscillation device) constructed by mounting a solid-state oscillation element in a simple cavity resonator. , called the original oscillator), but it is impossible to obtain the necessary frequency stability against temperature changes with this original oscillator.

そのため従来の発振装置では、原発振器に、線
膨張係数の良好なスーパーインバー等を材料とし
た高Q円筒空胴共振器を第1図〜第4図に示すよ
うな構造に結合し、温度変化に対して必要な周波
数安定度を得るようにしていた。ここで第1図は
BRF装荷形、第2図は反射空胴形、第3図は帯
域反射形、第4図は通過形の各発振装置を示し、
〓〓〓
図において、1は原発振器、2は固体発振素子、
3は良好な線膨張係数を有する材料で作られた高
Q円筒空胴共振器、4は変成器、5は出力端、6
は結合孔、7は無反射終端器、8は安定化抵抗で
ある。
Therefore, in conventional oscillator devices, a high-Q cylindrical cavity resonator made of material such as Super Invar with a good coefficient of linear expansion is coupled to the original oscillator in a structure shown in Figures 1 to 4, and the temperature changes. The aim was to obtain the necessary frequency stability for the Here, Figure 1 is
BRF loading type, Figure 2 shows the reflective cavity type, Figure 3 shows the band reflection type, and Figure 4 shows the pass type oscillator.
〓〓〓
In the figure, 1 is the original oscillator, 2 is the solid-state oscillator,
3 is a high-Q cylindrical cavity resonator made of a material with a good linear expansion coefficient, 4 is a transformer, 5 is an output end, 6
7 is a coupling hole, 7 is a non-reflection terminator, and 8 is a stabilizing resistor.

上記円筒空胴共振器3は第5図に示すような構
成をしており、原発振器1に結合孔6で結合さ
れ、TE111円筒モードで共振する。ここで第5図
において、同図bは同図aのB−B線断面図であ
り、L1は共振器3の空胴の長さ、Rは半径を示
す。
The cylindrical cavity resonator 3 has a configuration as shown in FIG. 5, is coupled to the original oscillator 1 through a coupling hole 6, and resonates in the TE 111 cylindrical mode. In FIG. 5, b is a sectional view taken along the line B--B in FIG. 5a, where L1 is the length of the cavity of the resonator 3, and R is the radius.

しかしながら、第1図〜第4図に示す従来の発
振装置では、下記(a)(b)が原因となり、−2×
10-6/℃〜−2.5×10-6/℃以下の周波数安定度
を実現するのが困難であるという問題があり、こ
のため固体発振素子の応用分野がせばめられてい
るのが現状である。
However, in the conventional oscillator shown in FIGS. 1 to 4, the following causes (a) and (b) occur, and -2×
There is a problem in that it is difficult to achieve frequency stability of 10 -6 /℃ to −2.5× 10 -6 /℃ or less, and as a result, the application fields of solid-state oscillators are currently limited. .

(a) 高Q円筒空胴共振器3はその内部Q
(Quality factor)が有限であるため、発振装
置に原発振器1の温度変化による周波数変動分
が−1×10-6/℃〜−1.5×10-6/℃残留す
る。
(a) High Q cylindrical cavity resonator 3 has an internal Q
Since the (Quality factor) is finite, a frequency variation of -1×10 -6 /° C to -1.5×10 -6 /°C due to a temperature change of the original oscillator 1 remains in the oscillation device.

(b) 円筒空胴共振器3の材料としては通常スーパ
ーインバーが使用されるが、加工時における
種々の原因による歪を考慮すると、その線膨張
係数は1×10-6/℃程度であるため、円筒空胴
共振器3の共振周波数の安定度を−1×10-6
℃以下とすることができない。
(b) Super Invar is normally used as the material for the cylindrical cavity resonator 3, but its linear expansion coefficient is approximately 1 × 10 -6 /°C, considering the distortion caused by various causes during processing. , the stability of the resonant frequency of the cylindrical cavity resonator 3 is -1×10 -6 /
The temperature cannot be lower than ℃.

例えば、TE111空胴共振器を使用した従来の
BRF装荷形発振装置(第1図参照)では、その
安定度S1は(1)式のようになる。
For example, the conventional
In the BRF-loaded oscillator (see Figure 1), its stability S 1 is expressed by equation (1).

S1=1/f・∂f/∂T≒K11/f・∂f/∂T+1/f・∂f/∂f・∂f
∂T………(1) (1)式において、右辺第1項は、原発振器1の温
度変動による発振装置の周波数安定度であり、こ
れは(2)式で示される値となる。ここでK1は高Q
円筒空胴共振器3による圧縮係数を示す。
S 1 =1/f 3・∂f 3 /∂T≒K 1 1/f 3・∂f 1 /∂T+1/f 3・∂f 3 /∂f 2・∂f 2 /
∂T (1) In equation (1), the first term on the right side is the frequency stability of the oscillator due to temperature fluctuations of the original oscillator 1, and this is the value shown in equation (2). Here K 1 is high Q
The compression coefficient by the cylindrical cavity resonator 3 is shown.

K1・1/f・∂f/∂T=−1×10-6/℃〜−1.5×10-6/℃ ………(2) また(1)式において、右辺第2項は、使用してい
る円筒空胴共振器3の温度変動に対する安定度
で、これは空胴材料の線膨張係数をαとすると、
(3)式となる。
K 1・1/f 3・∂f 1 /∂T=−1×10 −6 /℃~−1.5×10 −6 /℃……(2) Also, in equation (1), the second term on the right side is , is the stability against temperature fluctuations of the cylindrical cavity resonator 3 used, which is given by α, the coefficient of linear expansion of the cavity material.
Equation (3) is obtained.

1/f・∂f/∂f・∂f/∂T≒−α/
℃………(3) そして安定度S1は(4)式で表わされる。
1/f 3・∂f 3 /∂f 2・∂f 2 /∂T≒−α/
℃...(3) And the stability S 1 is expressed by equation (4).

S1=−(1×10-6/℃〜1.5×10-6/℃)−α
………(4) 従つて空胴共振器3の材料として線膨張係数の
良好なスーパーインバー(α=1×10-6)を使用
したとしても、安定度はS1=−2×10-6/℃〜−
2.5×10-6/℃となり、上述のように−2×
10-6/℃以下の安定度を実現することが困難であ
る。
S 1 =-(1× 10-6 /℃~ 1.5×10-6 /℃)−α
......(4) Therefore, even if Super Invar (α=1×10 -6 ) with a good coefficient of linear expansion is used as the material for the cavity resonator 3, the stability will be S 1 =-2×10 - 6 /℃~-
2.5×10 -6 /℃, and as mentioned above, −2×
It is difficult to achieve stability below 10 -6 /℃.

この発明は以上のような従来の問題点に鑑みて
なされたもので、温度変化に対して高い周波数安
定度を有する発振装置を提供するものである。
The present invention has been made in view of the above-mentioned conventional problems, and provides an oscillation device having high frequency stability against temperature changes.

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第6図及び第7図は本発明の一実施例による発
振装置を示す。図において、第1図と同一符号は
同一または相当部分を示し、9はTE111円筒空胴
共振器で、その詳細な構造を第7図に示す。円筒
空胴共振器9は原発振器1、即ち固体発振素子2
を有する空胴共振器に結合孔6で結合され、該共
振器9の一端部には空胴内に所定寸法ΔL突出し
該空胴内面との間に所定寸法ΔRの間隙を有する
円筒突起10が設けられている。この円筒突起1
0は円筒空胴共振器9の線膨張係数αより大きな
正の線膨張係数βの材料を用いて形成されてい
る。またf1は原発振器1の周波数、f2は円筒空胴
共振器9の共振周波数、f3は発振装置の発振周波
数を示す。
6 and 7 show an oscillation device according to an embodiment of the present invention. In the figure, the same reference numerals as in FIG. 1 indicate the same or corresponding parts, and 9 is a TE 111 cylindrical cavity resonator, the detailed structure of which is shown in FIG. 7. The cylindrical cavity resonator 9 is the original oscillator 1, that is, the solid-state oscillation element 2
A cylindrical protrusion 10 is connected to a cavity resonator having a structure through a coupling hole 6, and at one end of the resonator 9, a cylindrical protrusion 10 projects into the cavity by a predetermined dimension ΔL and has a gap of a predetermined dimension ΔR between it and the inner surface of the cavity. It is provided. This cylindrical protrusion 1
0 is formed using a material having a positive linear expansion coefficient β larger than the linear expansion coefficient α of the cylindrical cavity resonator 9. Further, f 1 indicates the frequency of the original oscillator 1, f 2 indicates the resonance frequency of the cylindrical cavity resonator 9, and f 3 indicates the oscillation frequency of the oscillation device.

また第7図において、同図bは同図aのB−B
線断面図であり、L2は空胴共振器9の空胴の長
さを示し、これは長さΔL、間隔ΔRの円筒突起
10による共振周波数の低下分を補正した長さと
してあり、そのため第5図に示すTE111円筒空胴
共振器3の空胴の長さL1より若干短い。Rは空
胴共振器9の半径を示す。
In addition, in Figure 7, b is B-B in figure a.
It is a line cross-sectional view, and L2 indicates the length of the cavity of the cavity resonator 9, which is a length corrected for the decrease in the resonance frequency due to the cylindrical protrusion 10 having a length ΔL and a spacing ΔR. It is slightly shorter than the cavity length L 1 of the TE 111 cylindrical cavity resonator 3 shown in FIG. R indicates the radius of the cavity resonator 9.

次に作用効果について説明する。 Next, the effects will be explained.

第6図に示す発振装置の温度周波数安定度S2
一般に(5)式で表わすことができる。
The temperature frequency stability S2 of the oscillation device shown in FIG. 6 can generally be expressed by equation (5).

〓〓〓
S2=K1・1/f・∂f/∂T+1/f・∂f/∂f・∂f/∂T+A+B ………(5) (5)式において、右辺第1項は(1)式第1項と同じ
であり、同第2項は空胴部分の温度周波数安定度
で、(1)式第2項とほぼ同じ−αである。
〓〓〓
S 2 =K 1・1/f 3・∂f 1 /∂T+1/f 3・∂f 3 /∂f 2・∂f 2 /∂T+A+B ………(5) In equation (5), the first The term is the same as the first term in equation (1), and the second term is the temperature frequency stability of the cavity portion, which is −α, which is almost the same as the second term in equation (1).

また(5)式において、右辺第3項Aは突起10が
温度変化により軸方向に伸縮した場合に生じる空
胴共振器9の周波数変動分で、これは突起10を
円筒状とすると、ほぼ(6)式のように表わされる。
In equation (5), the third term A on the right side is the frequency fluctuation of the cavity resonator 9 that occurs when the protrusion 10 expands and contracts in the axial direction due to temperature changes.If the protrusion 10 is cylindrical, this is approximately ( 6) It is expressed as follows.

A≒+1/2L ・C/2・1/f〓・ΔL/L
・β………(6) 但し、Cは光速、βは突起10の材料の膨張係
数である。
A≒+1/2L 2 2・C 2 /2・1/f〓・ΔL/L 2
・β……(6) However, C is the speed of light, and β is the expansion coefficient of the material of the protrusion 10.

また(5)式において、右辺第4項Bは、突起10
が温度変化により径方向に伸縮した場合に生じる
空胴共振器9の周波数変動分で、これはほぼ(7)式
のように表わされる。
In addition, in equation (5), the fourth term B on the right side is the protrusion 10
This is the frequency variation of the cavity resonator 9 that occurs when the cavity resonator 9 expands and contracts in the radial direction due to temperature changes, and this is approximately expressed as equation (7).

B≒K2R(β−α) ………(7) ここで、K2はΔR及びΔLの関数で、第8図
のように変化する。
B≒K 2 R (β−α) (7) Here, K 2 is a function of ΔR and ΔL and changes as shown in FIG.

上記第3項Aについては、これをTE011空胴共
振器等で利用することが提案されているが(電子
通信学会マイクロ波研究会資料 資料番号MW70
−1(1970−04)参照)、所定安定度を得るため
にはΔLを大きくしなければならず、大形化、重
量化するために、実際には利用されることが少な
い。
Regarding item 3 A above, it has been proposed to use this in the TE 011 cavity resonator, etc. (IEICE Microwave Study Group Material, Material No. MW70)
1 (1970-04)), in order to obtain a predetermined stability, ΔL must be increased, which increases the size and weight, so it is rarely used in practice.

これに対し、第6図に示す装置では、TE111
胴共振器9を使用し、ΔRなる間隙を設けてお
り、これにより突起10の径方向の温度変化に起
因する空胴共振器9の周波数変動を作り出し、周
波数の安定化を図つている。
On the other hand, in the device shown in FIG. 6, a TE 111 cavity resonator 9 is used and a gap of ΔR is provided. It creates frequency fluctuations and attempts to stabilize the frequency.

そして(5)式で示す周波数安定度S2は(8)式のよう
になる。
Then, the frequency stability S 2 shown in equation (5) becomes as shown in equation (8).

S2=(−1.5×10-6/℃〜−1×10-6/℃)−α+1/2L ・C/2・ΔL/Lβ+K2R(β−α)………(8
) この(8)式より分かるように、第1項及び第2項
は負で、第3項及び第4項は正であるので、突起
10の材料の線膨張係数β、ΔR及びΔLを十分
適切に選ぶことにより、非常に高安定な発振装置
を実現できることがわかる。
S 2 = (-1.5×10 -6 /℃ ~ -1×10 -6 /℃) −α+1/2L 2 2・C 2 /2・ΔL/L 2 β+K 2 R (β−α)……( 8
) As can be seen from equation (8), the first and second terms are negative, and the third and fourth terms are positive, so the linear expansion coefficients β, ΔR, and ΔL of the material of the protrusion 10 are It can be seen that by making an appropriate selection, an extremely stable oscillation device can be realized.

数値例を下記に示す。 Numerical examples are shown below.

α:スーパーインバー、1×10-6/℃ β:黄銅、17×10-6/℃ f3:6GHz帯 ΔL/L=0.15 S2=(−1.5×10-6)−1×10-6+1.0×10-6+1.7×10-6=+0.2×10-6/℃ このように本装置では、従来装置よりも約10倍
の安定度を得ることができる。またΔL/Lをさらに 適切化して0温度安定度が実現できることがわか
る。
α: Super invar, 1×10 -6 /℃ β: Brass, 17×10 -6 /℃ f 3 : 6GHz band ΔL/L 2 = 0.15 S 2 = (−1.5×10 −6 ) −1×10 − 6 +1.0×10 -6 +1.7×10 -6 = +0.2×10 -6 /°C In this way, this device can achieve about 10 times more stability than conventional devices. It is also seen that 0 temperature stability can be achieved by further optimizing ΔL/L 2 .

なお空胴材料の線膨張係数がα=1×10-6/℃
であるのに対し、突起材料の線膨張係数がβ=17
×10-6/℃であり、両者の線膨張係数が大きく異
なることから、温度変化によつて円筒突起10と
空胴共振器9との接合部分で歪変形が生じ、上述
のような作用が得られないのではないかという疑
問が生じる。しかるに歪が生じないような接合方
法は、従来より、生産上の技術として種々知られ
ており、本装置においてそのような接合方法を採
用すればよいことは当然のことである。ここで歪
が生じないような接合方法の1例としては第9図
に示されるものがあり、これは、空胴共振器9の
端部に段部9a及びねじ部9bを形成し、円筒突
起10にフランジ部10aを形成し、円筒突起1
0のフランジ部10aを上記段部9aに当接さ
せ、該円筒突起10をその背面からねじ部材11
で押圧保持するようにしたものである。また本件
発明者の実験によれば、単に上述のような円筒突
起10のフランジ部10aを空胴共振器9の端面
に微小ねじで複数箇所ねじ止めするという接合方
法によつても、温度変化に対して高い周波数安定
度が得られることが確認されている。
Note that the linear expansion coefficient of the cavity material is α=1×10 -6 /℃
On the other hand, the coefficient of linear expansion of the protrusion material is β = 17
×10 -6 /°C, and since the linear expansion coefficients of the two are greatly different, strain deformation occurs at the joint between the cylindrical protrusion 10 and the cavity resonator 9 due to temperature changes, and the above-mentioned effect occurs. The question arises whether it is not possible to obtain it. However, various bonding methods that do not cause distortion are conventionally known as production techniques, and it goes without saying that such bonding methods may be employed in the present apparatus. An example of a bonding method that does not cause distortion is shown in FIG. A flange portion 10a is formed on 10, and a cylindrical projection 1
The flange portion 10a of No. 0 is brought into contact with the step portion 9a, and the cylindrical projection 10 is inserted into the screw member 11 from the back side.
It is designed to be held under pressure. Furthermore, according to experiments conducted by the inventor of the present invention, even by simply screwing the flange portion 10a of the cylindrical protrusion 10 to the end face of the cavity resonator 9 at multiple locations with microscrews as described above, it is possible to resist temperature changes. It has been confirmed that high frequency stability can be obtained.

また、得たい安定度が従来程度(−2×10-6
℃)であれば、加工性のよい鉄を空胴材料とし、
また突起10の材料を亜鉛とすれば下記のように
実現できる。
In addition, the desired stability is about the same as before (-2×10 -6 /
℃), use iron with good workability as the cavity material,
Further, if the material of the protrusion 10 is zinc, the following can be realized.

α:鉄、11×10-6/℃ β:亜鉛、32×10-6/℃ 〓〓〓
ΔL/L≒0.35 S2≒(−1.5×10-6〜−1×10-6)−11×10-6+4×10-6+6×10-6=2.5×10-6/℃ 〜−2×10-6/℃ また本発明の原理は、TE111モードで共振する
円筒空胴共振器9に限定らず、共振器端部の“ふ
ち”部分に電流分布を有する他のモードの円筒空
胴共振器についても同様に適用できる。
α: Iron, 11×10 -6 /℃ β: Zinc, 32×10 -6 /℃ 〓〓〓
ΔL/L 2 ≒0.35 S 2 ≒ (-1.5×10 -6 ~-1×10 -6 ) −11×10 -6 +4×10 -6 +6×10 -6 =2.5×10 -6 /℃ ~- 2×10 -6 /℃ The principle of the present invention is not limited to the cylindrical cavity resonator 9 that resonates in the TE 111 mode, but can be applied to other mode cylindrical cavities that have a current distribution in the "edge" portion at the end of the resonator. The same applies to cavity resonators.

なお、実施例として第6図に示すBRF装荷形
発振装置について述べたが、本発明は他の発振装
置に応用しても同様な効果が得られる。また、突
起10を円筒空胴共振器9の一方の端部にのみ設
けた場合について述べたが、両端部に設けても同
様の効果を得ることができる。
Although the BRF-loaded oscillator shown in FIG. 6 has been described as an embodiment, similar effects can be obtained even when the present invention is applied to other oscillators. Further, although the case has been described in which the protrusion 10 is provided only at one end of the cylindrical cavity resonator 9, the same effect can be obtained even if the protrusion 10 is provided at both ends.

以上のように、この発明によれば、TE111円筒
空胴共振器の端部に空胴内面と所定の間隙を有
し、空胴内に突出する上記共振器より線膨張係数
の大きい、かつ正の線膨張係数を有する材料から
なる突起を設けるようにしたので、温度変化に対
して高い周波数安定度を有する発振装置を得るこ
とができる。
As described above, according to the present invention, the end of the TE 111 cylindrical cavity resonator has a predetermined gap with the inner surface of the cavity, and has a coefficient of linear expansion larger than that of the resonator that protrudes into the cavity. Since the protrusion is made of a material having a positive linear expansion coefficient, an oscillation device having high frequency stability against temperature changes can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はそれぞれ従来の発振装置を示
す概略図、第5図a,bは第1図の一部を詳細に
説明するための概略斜視図及び概略断面図、第6
図はこの発明の一実施例による発振装置を示す概
略図、第7図a,bは第6図の一部を詳細に説明
するための概略斜視図及び概略断面図、第8図は
この発明の一実施例を説明するための特性図、第
9図は円筒突起と空胴共振器との接合方法の1例
を示す図である。 図において、2は固体発振素子、6は結合孔、
9は円筒空胴共振器、10は突起である。なお図
中同一符号は同一又は相当部分を示す。 〓〓〓
1 to 4 are schematic diagrams showing conventional oscillation devices, FIGS. 5a and 5b are schematic perspective views and schematic sectional views for explaining a part of FIG. 1 in detail, and
The figure is a schematic diagram showing an oscillation device according to an embodiment of the present invention, FIGS. 7a and 7b are a schematic perspective view and a schematic sectional view for explaining a part of FIG. 6 in detail, and FIG. FIG. 9 is a characteristic diagram for explaining one embodiment of the present invention, and is a diagram showing an example of a method of joining a cylindrical protrusion and a cavity resonator. In the figure, 2 is a solid-state oscillation element, 6 is a coupling hole,
9 is a cylindrical cavity resonator, and 10 is a protrusion. Note that the same reference numerals in the figures indicate the same or equivalent parts. 〓〓〓

Claims (1)

【特許請求の範囲】 1 固体発振素子を有する空胴共振器と、該空胴
共振器に結合孔で結合されたTE111円筒空胴共振
器と、該円筒空胴共振器材料の線膨張係数αより
大きな正の線膨張係数βの材料を用いて形成さ
れ、上記円筒空洞共振器の端部に該空胴内に寸法
△L突出して設けられ該空胴の内面との間に間隙
△Rを有する円筒突起とを備え、下記式 K1・1/f・∂f/∂T+1/f・∂f/∂f
・∂f/∂T≒A+B 但し K1・1/f・∂f/∂T =−1×10-6/℃〜−1.5×10-6/℃ 1/f・∂f/∂f・∂f/∂T≒−α/℃ A≒1/2L ・C/2・1/f ・△L/L
・β β≒K2R(β−α) K1:円筒空胴共振器による圧縮係数 f1:空胴共振器の周波数 f2:円筒空胴共振器の共振周波数 f3:発振装置の発振周波数 T:温度 L2:円筒空胴共振器の空胴の長さ C:光速 R:円筒空胴共振器の半径 K2:ΔR及びΔLの関数 で表される右辺と左辺の絶対値がほぼ等しくなる
ように、上記線膨張係数α、β、寸法ΔL及び間
隙ΔRを選定したことを特徴とする発振装置。
[Claims] 1. A cavity resonator having a solid-state oscillation element, a TE 111 cylindrical cavity resonator coupled to the cavity resonator through a coupling hole, and a linear expansion coefficient of the cylindrical cavity resonator material. It is formed using a material with a positive coefficient of linear expansion β larger than α, and is provided at the end of the cylindrical cavity resonator so as to project into the cavity by a dimension ΔL, with a gap ΔR between it and the inner surface of the cavity. and a cylindrical protrusion having the following formula K 1・1/f 3・∂f 1 /∂T+1/f 3・∂f 3 /∂f
2・∂f 2 /∂T≒A+B However, K 1・1/f 3・∂f 1 /∂T = −1×10 -6 /℃~−1.5×10 -6 /℃ 1/f 3・∂f 3 /∂f 2・∂f 2 /∂T≒−α/℃ A≒1/2L 2 2・C 2 /2・1/f 3 2・△L/L 2
・β β≒K 2 R (β−α) K 1 : Compression coefficient by cylindrical cavity resonator f 1 : Frequency of cavity resonator f 2 : Resonant frequency of cylindrical cavity resonator f 3 : Oscillation of oscillator Frequency T: Temperature L 2 : Length of the cavity of the cylindrical cavity resonator C: Speed of light R: Radius of the cylindrical cavity resonator K 2 : The absolute values of the right and left sides expressed by the functions of ΔR and ΔL are approximately An oscillation device characterized in that the linear expansion coefficients α and β, the dimension ΔL, and the gap ΔR are selected so as to be equal.
JP4067576A 1976-04-09 1976-04-09 Oscillator Granted JPS52123853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4067576A JPS52123853A (en) 1976-04-09 1976-04-09 Oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4067576A JPS52123853A (en) 1976-04-09 1976-04-09 Oscillator

Publications (2)

Publication Number Publication Date
JPS52123853A JPS52123853A (en) 1977-10-18
JPS628961B2 true JPS628961B2 (en) 1987-02-25

Family

ID=12587093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4067576A Granted JPS52123853A (en) 1976-04-09 1976-04-09 Oscillator

Country Status (1)

Country Link
JP (1) JPS52123853A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287067U (en) * 1985-11-22 1987-06-03
JPS6340366U (en) * 1986-09-03 1988-03-16

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409305B2 (en) * 2009-12-01 2014-02-05 三菱電機株式会社 Cavity resonator, high frequency filter and high frequency oscillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287067U (en) * 1985-11-22 1987-06-03
JPS6340366U (en) * 1986-09-03 1988-03-16

Also Published As

Publication number Publication date
JPS52123853A (en) 1977-10-18

Similar Documents

Publication Publication Date Title
US4307352A (en) Micro-strip oscillator with dielectric resonator
US4447753A (en) Miniature GT-cut quartz resonator
US6057748A (en) Methods of tuning and temperature compensating a variable topography electromagnetic wave device
JPH02306701A (en) Filter equipped with dielectric resonator
US5118980A (en) Piezoelectric vibration component
US5059853A (en) Longitudinal quartz crystal resonator
JPS628961B2 (en)
US4540909A (en) Tuning fork type quartz crystal resonator with variable width base
JP3017746B2 (en) Crystal oscillator
US4455502A (en) Rectangular piezoelectric resonator with offset slot
US4945324A (en) Thin film ferromagnetic resonance tuned filter
JPS6322727B2 (en)
JP3542886B2 (en) Temperature compensated crystal oscillator
JPS5829653B2 (en) piezoelectric resonator
JPH01291480A (en) Semiconductor laser with external resonator
JPS61159803A (en) Transmission line coupler for antenna
JPS625530B2 (en)
JPH0870232A (en) Surface acoustic wave element and oscillat0r
JP2822647B2 (en) Energy confined thickness shear oscillator
JPS6218964Y2 (en)
JPH0274909A (en) Optical waveguide
JPS6120164B2 (en)
JPS6029213Y2 (en) Semi-coaxial resonator controlled oscillator
JPH0145124Y2 (en)
JPS6216006Y2 (en)