JPS6289376A - Laser amplifier - Google Patents

Laser amplifier

Info

Publication number
JPS6289376A
JPS6289376A JP23019785A JP23019785A JPS6289376A JP S6289376 A JPS6289376 A JP S6289376A JP 23019785 A JP23019785 A JP 23019785A JP 23019785 A JP23019785 A JP 23019785A JP S6289376 A JPS6289376 A JP S6289376A
Authority
JP
Japan
Prior art keywords
laser beam
laser
medium
flat
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23019785A
Other languages
Japanese (ja)
Inventor
Tomonori Nishimura
知典 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23019785A priority Critical patent/JPS6289376A/en
Publication of JPS6289376A publication Critical patent/JPS6289376A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0615Shape of end-face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08095Zig-zag travelling beam through the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2333Double-pass amplifiers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To contrive the improvement in amplification effect without using a particular optical part by using a laser medium of larger refractive index than that of a peripheral medium and which has a pair of flat parts facing in parallel with each other and a vertical part connecting the ends of one side of said pair of flat parts, in its cross-sectional shape. CONSTITUTION:A laser medium 1 is made of glass, rubby, YAG or etc. which is shaped into a prism. It has a pair of parallel flat planes 11 and 12 and a vertical plane 13 connecting the ends of one side of said planes, and the other side end is privided with a wedge-form projection 14, whose vertex is located at a position where the interval between the flat planes 11 and 12 is bisected and oblique planes 14a and 14b cross orthogonally. When a laser beam 2 is projected vertically on an incident edge plane 14a, the beam is projected on the flat plane at an incident angle of 45, so that the beam is totally reflected. Also on the vertical part 13, the beam is totally reflected and a laser beam 3 is emitted from the emission edge plane 14b in a right- angled direction with the incident direction of the laser beam 2. A length of propaga tion path by a single total reflection is about 1.4 times that in the case of straight advance, so that the length of propagation path can be increased and an amplification effect is exceedingly improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ発振器からのレーザ光を増幅する作用
を有するレーザ増幅器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a laser amplifier that has the function of amplifying laser light from a laser oscillator.

(従来の技術) 従来のレーザ増幅器としては、例えば第3図および第4
図に示すものが知られている。
(Prior art) Conventional laser amplifiers include, for example, those shown in FIGS. 3 and 4.
The one shown in the figure is known.

第3図に示すものは、ガラス、ルビー、Y A G等か
らなる棒状のレーザ媒質31と、このレーザ媒質31を
励起状態にするクセノンランプ等の励起光源32とを備
え、励起状態にあるレーザ媒質31内をレーザビームが
長手方向に沿って1回通過するようにしたもので、図中
右側端面に垂直入射したレーザビーム33は図中左側端
面から増幅されたレーザビーム34として出射される。
The device shown in FIG. 3 includes a rod-shaped laser medium 31 made of glass, ruby, YAG, etc., and an excitation light source 32 such as a xenon lamp that excites this laser medium 31. The laser beam passes through the medium 31 once along the longitudinal direction, and the laser beam 33 that is perpendicularly incident on the right end face in the figure is emitted as an amplified laser beam 34 from the left end face in the figure.

また、第4図に示ずものは、前記構成に加えて、ビーム
スプリッタ41と、1/4波長板42と、反射鏡43と
を備え、励起状態にあるレーザ媒質31内をレーザビー
ムが長手方向に沿って往復するようにし、これにより増
幅効果の向−Lを図ろうとするものである。
In addition to the above configuration, the device not shown in FIG. 4 is equipped with a beam splitter 41, a quarter-wave plate 42, and a reflecting mirror 43, so that the laser beam can travel longitudinally within the laser medium 31 in an excited state. This is intended to increase the amplification effect in the direction -L by reciprocating along the direction.

即ち、入射レーザビーム44はその偏光方向が紙面に垂
直な直IJI偏先のもので、これがビームスプリッタ4
1を介して励起状態にあるレーザ媒質31に入射通過し
、1/4波長板42および反射鏡43により偏光方向を
90° (紙面に平行な方向)回転させられた後にもう
一度レーザ媒質31を通過し、ビームスプリッタ41で
反射してレーザビーム45が分離出射される。
That is, the incident laser beam 44 has a polarization direction perpendicular to the plane of the paper, and is polarized by the beam splitter 4.
1, passes through the laser medium 31 in an excited state, rotates the polarization direction by 90 degrees (parallel to the plane of the paper) by a quarter-wave plate 42 and a reflecting mirror 43, and then passes through the laser medium 31 once again. Then, it is reflected by the beam splitter 41 and a laser beam 45 is separated and emitted.

(発明が解決しようとする問題点) しかしながら、上述した如き従来のレーザ増幅器には次
のような問題点がある。即ち、第3図に示す従来装置で
は、増幅効果がレーザビームをレーザ媒質中に1回通過
させることにより得られるものであるが、レーザ媒質の
励起状態を高め大きな増幅効果を得るために励起光源の
出力を増加させることにも破壊や寿命等による制限があ
るので、このレーザ増幅器1台で実現できる増幅効果に
は限界がある。従って、この種のレーザ増幅器でさらに
大きな増幅効果を得ようとする場合には、励起光源と共
にレーザ媒質の寸法を大きくするか、又は、次段に同様
な増幅器を設置する必要があり、レーザ装置全体の寸法
が大きくなると共に、コストアップになる。
(Problems to be Solved by the Invention) However, the conventional laser amplifier as described above has the following problems. That is, in the conventional device shown in FIG. 3, the amplification effect is obtained by passing the laser beam through the laser medium once, but in order to increase the excitation state of the laser medium and obtain a large amplification effect, the excitation light source is Since there are limits to increasing the output of the laser due to damage, lifespan, etc., there is a limit to the amplification effect that can be achieved with one laser amplifier. Therefore, in order to obtain an even greater amplification effect with this type of laser amplifier, it is necessary to increase the dimensions of the laser medium together with the excitation light source, or to install a similar amplifier in the next stage. As the overall size becomes larger, the cost also increases.

また、第4図に示す従来装置では、レーザビームがレー
ザ媒質中を往復するため、励起光源の発光のタイミング
を制御することにより、第3図に示した従来装置よりも
大きな増幅効果を得ることができる。しかし、この場合
には、1/4波長板。
In addition, in the conventional device shown in FIG. 4, since the laser beam reciprocates in the laser medium, by controlling the timing of emission of the excitation light source, a greater amplification effect can be obtained than in the conventional device shown in FIG. 3. I can do it. However, in this case, a quarter wave plate.

反射鏡およびビームスプリッタ等が必要であり、これら
は一般に高価である。
Reflectors, beam splitters, etc. are required, and these are generally expensive.

また、これらの光学部品によるレーザビームの損失が発
生し、さらにはこれらの光学部品のレーザビームによる
損傷の配慮が必要になる等取扱いが面倒であるという問
題点があった。本発明の目的は、特別な光学部品を使用
せずにレーザ媒質内をレーザビームが往復できるように
することにより、増幅効果の向−にを図ることにある。
Further, there are problems in that the laser beam is lost due to these optical components, and furthermore, it is necessary to take care to prevent damage to these optical components due to the laser beam, making handling difficult. An object of the present invention is to improve the amplification effect by enabling a laser beam to travel back and forth within a laser medium without using special optical components.

(問題点を解決するための手段) 上記目的を達成するために、本発明は次の構成を有する
。即ち本発明のレーザ増幅器は、入射レーザビームを増
幅i〜て出射するレーザ媒質を備えるレーザ増幅器にお
いて; 前記レーザ媒質は、屈折率が周辺媒質の屈折率
よりも大きいものであって、その断面形状が平行に対向
する一対の平坦部と該一対の平坦部の一側端を連接する
垂直部とを少なくとも有するものからなり; かつ前記
一対の平坦部の他側端側から該レーザ媒質内に導入され
る入射レーザビームは該レーザ媒質と周辺媒質との境界
面で全反射しながら該レーザ媒質内を伝搬往復し、出射
レーザビームは入射レーザビームの導入方向とは異なる
方向に該他側端側から出射するようになされていること
; を特徴とする。
(Means for solving the problems) In order to achieve the above object, the present invention has the following configuration. That is, the laser amplifier of the present invention includes a laser medium that amplifies an incident laser beam and emits the laser beam; has at least a pair of flat parts facing in parallel and a vertical part connecting one end of the pair of flat parts; and introduced into the laser medium from the other end of the pair of flat parts. The incident laser beam propagates and reciprocates within the laser medium while being totally reflected at the interface between the laser medium and the surrounding medium, and the output laser beam is directed toward the other end in a direction different from the direction in which the incident laser beam is introduced. It is characterized by being configured to emit light from.

(作 用) 次に、以−ヒの如く構成した本発明に係るレーザ増幅器
の作用を説明する。
(Function) Next, the function of the laser amplifier according to the present invention configured as described below will be explained.

レーザ媒質は、屈折率が周辺媒質の屈折率よりも大きい
ので、レーザ媒質内においてレーザ媒質と周辺媒質との
境界面における入射角を適宜なものとすることによりレ
ーザビームを全反射させ得ることは周知の通りである。
Since the refractive index of the laser medium is larger than that of the surrounding medium, it is possible to completely reflect the laser beam by setting an appropriate angle of incidence at the interface between the laser medium and the surrounding medium within the laser medium. As is well known.

つまり、一対の平坦部の他側端側からレーザ媒質内に導
入される入射レーザビームは前記全反射を生ずる所要の
入射角をもって導入される。
That is, the incident laser beam introduced into the laser medium from the other end of the pair of flat parts is introduced at a required angle of incidence that causes the total reflection.

その結果、レーザ媒質内においては、一対の平坦部と垂
直部によりレーザビームが全反射を繰り返しなからレー
ザ媒質内を伝搬往復し、他側端側から出射する。このと
き、他側端側から出射するレーザビームの出射方向は入
射レーザビームの導入方向とは異なる方向となっている
As a result, within the laser medium, the laser beam is repeatedly totally reflected by the pair of flat portions and vertical portions, propagates back and forth within the laser medium, and is emitted from the other end. At this time, the direction in which the laser beam is emitted from the other end is different from the direction in which the incident laser beam is introduced.

これは入射レーザビームの入射角および平坦部のレーザ
ビーム伝搬方向の長さ等を適宜に設定することによりな
される。
This is done by appropriately setting the incident angle of the incident laser beam, the length of the flat portion in the laser beam propagation direction, and the like.

このように、本発明によれば、レーザ媒質内でレーザビ
ームを往復通過させる手段としてレーザ媒質と周辺媒質
との屈折率差に基づく全反射を利用するようにしたもの
で、往復させるための光学部品を不要にできる。また、
レーザビームの入射角度等を適宜なものとすることによ
りレーザビームの出射方向を入射方向と異なる方向とす
ることができるので、入出射ビームを分離するための光
学部品も不要である。従って、レーザ増幅器の原価低減
が図れる。さらに、レーザビームは全反射を繰り返しな
がら往復伝搬するのであるがら、単に直進通過して往復
する従来例に比べ伝搬路長を長くすることができ、その
分だけ増幅効果の向上を図ることができる。
As described above, according to the present invention, total reflection based on the difference in refractive index between the laser medium and the surrounding medium is used as a means for making the laser beam pass back and forth within the laser medium. Parts can be made unnecessary. Also,
By appropriately setting the incident angle of the laser beam, the output direction of the laser beam can be made different from the input direction, so there is no need for optical components for separating the input and output beams. Therefore, the cost of the laser amplifier can be reduced. Furthermore, since the laser beam propagates back and forth while repeating total reflection, the propagation path length can be made longer than in the conventional case where the laser beam simply passes straight and goes back and forth, and the amplification effect can be improved accordingly. .

(実 施 例) 以下、本発明の実施例を図面を参照して説明する。第1
図および第2図は本発明の一実施例に係るレーザ媒質の
外観およびレーザビームの伝搬態様を示す。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1st
The figure and FIG. 2 show the appearance of a laser medium and the propagation mode of a laser beam according to an embodiment of the present invention.

このレーザ媒質1はカラス、ルビー、YAG等を角棒状
に形成したもので、一対の平行な平坦面11、同12と
、平坦面11.同12の一側端を連接する垂直面13と
を有するとともに、該平坦面11.同12の他側端には
楔状の凸部14が突設しである。この凸部14はその頂
点が両平坦面11、.12間を二等分する位置にあり、
がっ両斜面]、4.a、1.4bが直交する如く形成し
である。
This laser medium 1 is formed of crow, ruby, YAG, etc. into a rectangular rod shape, and has a pair of parallel flat surfaces 11 and 12, and a flat surface 11. and a vertical surface 13 connecting one side end of the flat surface 11. A wedge-shaped convex portion 14 projects from the other end of the same 12. This convex portion 14 has its apex on both flat surfaces 11, . It is located at a position that bisects 12 rooms,
ga double slope], 4. It is formed so that a and 1.4b are perpendicular to each other.

なお、斜面]、 4 aはレーザビーム2の入射端面、
斜面141〕はレーザビーム3の出射端面である。
Incidentally, slope], 4 a is the incident end face of the laser beam 2,
The slope 141] is the output end face of the laser beam 3.

また、このレーザ媒質1は屈折率が例えば約1.4のも
のからなり、周辺媒質4は例えば空気媒質(屈折率は約
1)で、レーザ媒質1を冷却する冷却媒体でもある。
Further, the laser medium 1 has a refractive index of about 1.4, for example, and the peripheral medium 4 is, for example, an air medium (having a refractive index of about 1), which also serves as a cooling medium for cooling the laser medium 1.

なお、レーザ媒質1の励起は従来と同様であるので図示
省略した。
Note that the excitation of the laser medium 1 is the same as the conventional one, so it is not shown.

以上の構成において、レーザビーム2が入射端面14a
に垂直入射すると、平坦面12では45度の入射角で入
射するので全反射し、反射レーザビームは次の平坦面1
3でも45度の入射角で入射するので全反射する。以後
同様にレーザビームは平坦面12.同13間で全反射を
繰り返しなから一側端側に向けて伝撤し垂直面13に到
達する。そして、垂直面13でもレーザビームは45度
の入射角で入射するので全反射し、今度は他側端側に向
けて平坦面12.同13間で全反射を繰り返しながら伝
搬し、平坦面12で全反射したレーザビームが出射端面
]、 4. bに垂直に入射する。
In the above configuration, the laser beam 2
When the laser beam is perpendicularly incident on the flat surface 12, it is totally reflected because it is incident on the flat surface 12 at an angle of incidence of 45 degrees.
3, it is incident at an angle of incidence of 45 degrees, so it is totally reflected. Thereafter, similarly, the laser beam is applied to the flat surface 12. After repeating total reflection between the same 13 points, it moves toward one end and reaches the vertical surface 13. Since the laser beam also enters the vertical surface 13 at an incident angle of 45 degrees, it is totally reflected, and this time it is directed toward the other end of the flat surface 12. 4. The laser beam propagates while repeating total reflection between the two surfaces 13 and is totally reflected by the flat surface 12 to the output end surface.], 4. incident perpendicularly to b.

その結果、出射端面141)からはレーザビーム3がレ
ーザビーム2の入射方向と直角な方向に出射される。
As a result, the laser beam 3 is emitted from the emission end face 141) in a direction perpendicular to the direction of incidence of the laser beam 2.

以上のように、平坦面11−1同12および垂直面13
における媒質境界面で全反射させることにより、レーザ
ビームをレーザ媒質1内を伝搬往復させ、かつ出射レー
ザビーム3を入射レーザビーム2の入射方向とは異なる
方向に取り出すことができる。また、以上の説明から明
らかなように、1回の全反射による伝搬路長は直進する
場合の約1.4倍となるので、第4図に示した従来装置
に比してレーザ媒質1内の伝搬路長を大きくすることが
でき、増幅効果が大幅に向」二する。
As mentioned above, the flat surface 11-1 12 and the vertical surface 13
By totally reflecting the laser beam at the medium boundary surface, the laser beam can propagate back and forth within the laser medium 1, and the output laser beam 3 can be taken out in a direction different from the direction of incidence of the input laser beam 2. Furthermore, as is clear from the above explanation, the propagation path length due to one total reflection is approximately 1.4 times that of the propagation path length when going straight, so compared to the conventional device shown in FIG. The propagation path length can be increased, and the amplification effect can be greatly improved.

なお、上記実施例では、レーザ媒質1の他側端面に入射
端面]、 4 aと出射端面14bとを各別に設けたが
、この発明はこれに限定されるものではなく、他側端面
ば垂直面にして入射レーザビームの入射角度を適宜設定
するようにしてもよい。
In the above embodiment, the input end surface], 4a and the output end surface 14b are separately provided on the other end surface of the laser medium 1, but the present invention is not limited to this, and the other end surface is vertical. Alternatively, the angle of incidence of the incident laser beam may be set appropriately.

また、レーザ媒質1は角柱状によらずとも、例えば円柱
状等任意の形状のものが使用できることは勿論である。
Further, it goes without saying that the laser medium 1 does not have to be prismatic, but can have any shape, such as a cylindrical shape.

(効 果) 以上詳述したように、本発明によれば、レーザ媒質内で
レーザビームを往復通過させる手段としてレーザ媒質と
周辺媒質との屈折率差に基づく全反射を利用するように
したので、往復させるための光学部品を不要にできる。
(Effects) As detailed above, according to the present invention, total reflection based on the difference in refractive index between the laser medium and the surrounding medium is used as a means for passing the laser beam back and forth within the laser medium. , it is possible to eliminate the need for optical components for reciprocation.

また、レーザビームの入射角度等を適宜なものとするこ
とによ□リレーザビームの出射方向を入射方向と異なる
方向とすることができるので、入出射ビームを分離する
ための光学部品も不要となる。
In addition, by setting the incident angle of the laser beam appropriately, the output direction of the laser beam can be made different from the input direction, so there is no need for optical components to separate the input and output beams. Become.

従って、レーザ増幅器の原価低減を図ることができ、さ
らに、レーザビームは全反射を繰り返しながら往復伝搬
するので、単にrM進通過して往復する従来例に比べ伝
搬路長を長くすることができ、増幅効果の向上を図るこ
とができる。
Therefore, it is possible to reduce the cost of the laser amplifier, and furthermore, since the laser beam propagates back and forth while repeating total reflection, the propagation path length can be increased compared to the conventional example where the laser beam simply passes through the rM direction and goes back and forth. It is possible to improve the amplification effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るレーザ媒質の外観およ
びレーザビームの伝搬態様を示す図、第2図は第1図中
の右側面図、第3図および第4図は従来のレーザ増幅器
の構成を示す図である。 1・・・・・・レーザ媒質、2・・・・・・入射レーザ
ビーム、3・・・・・出射レーザビーム、 4・・・・
・・周辺媒質、11−、i2・・・・・・平坦面、 1
3・・・・・・垂直面、14a・・・・・・入射端面、
 14b・・・・・・出射端面。 代理人 弁理士  八 幡  義 博 4(川辺イ贋) 2(入側ルーヂじ−ム) レーサ゛ビームの伝某熊轟 第1図 レーサ゛ビームの入皿射端イ1軸1j面図第2図
FIG. 1 is a diagram showing the appearance of a laser medium and the propagation mode of a laser beam according to an embodiment of the present invention, FIG. 2 is a right side view in FIG. 1, and FIGS. 3 and 4 are diagrams showing a conventional laser FIG. 3 is a diagram showing the configuration of an amplifier. 1...Laser medium, 2...Incoming laser beam, 3...Outgoing laser beam, 4...
... Peripheral medium, 11-, i2... Flat surface, 1
3...Vertical surface, 14a...Incidence end surface,
14b...Emission end surface. Agent Patent attorney Yoshihiro Yahata 4 (Kawabe impersonation) 2 (Enter side Lujim) Laser beam legend of a certain Todoro Kuma Figure 1 Laser beam input plate emitting end 1 axis 1 j side view Figure 2

Claims (1)

【特許請求の範囲】[Claims] 入射レーザビームを増幅して出射するレーザ媒質を備え
るレーザ増幅器において;前記レーザ媒質は、屈折率が
周辺媒質の屈折率よりも大きいものであって、その断面
形状が平行に対向する一対の平坦部と該一対の平坦部の
一側端を連接する垂直部とを少なくとも有するものから
なり;かつ前記一対の平坦部の他側端側から該レーザ媒
質内に導入される入射レーザビームは該レーザ媒質と周
辺媒質との境界面で全反射しながら該レーザ媒質内を伝
搬往復し、出射レーザビームは入射レーザビームの導入
方向とは異なる方向に該他側端側から出射するようにな
されていること;を特徴とするレーザ増幅器。
In a laser amplifier comprising a laser medium that amplifies and emits an incident laser beam; the laser medium has a refractive index larger than that of a surrounding medium, and the cross-sectional shape is a pair of flat portions facing each other in parallel. and a vertical portion connecting one end of the pair of flat parts; and the incident laser beam introduced into the laser medium from the other end of the pair of flat parts is connected to the laser medium. The laser beam propagates back and forth within the laser medium while being totally reflected at the interface between the laser beam and the surrounding medium, and the output laser beam is emitted from the other end in a direction different from the direction in which the incident laser beam is introduced. A laser amplifier characterized by;
JP23019785A 1985-10-16 1985-10-16 Laser amplifier Pending JPS6289376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23019785A JPS6289376A (en) 1985-10-16 1985-10-16 Laser amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23019785A JPS6289376A (en) 1985-10-16 1985-10-16 Laser amplifier

Publications (1)

Publication Number Publication Date
JPS6289376A true JPS6289376A (en) 1987-04-23

Family

ID=16904103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23019785A Pending JPS6289376A (en) 1985-10-16 1985-10-16 Laser amplifier

Country Status (1)

Country Link
JP (1) JPS6289376A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482578A (en) * 1987-09-25 1989-03-28 Fuji Electric Co Ltd Rod type solid state laser device
JPH05267828A (en) * 1992-03-18 1993-10-15 Fujitsu Ltd Printed circuit board
JP2007036195A (en) * 2005-06-21 2007-02-08 National Institute Of Information & Communication Technology Laser apparatus using nonlinear optical crystal or solid slab laser rod of multiplex optical path
CN113594840A (en) * 2021-09-30 2021-11-02 四川光天下激光科技有限公司 Seed light optical path structure of multi-pass amplification system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482578A (en) * 1987-09-25 1989-03-28 Fuji Electric Co Ltd Rod type solid state laser device
JPH05267828A (en) * 1992-03-18 1993-10-15 Fujitsu Ltd Printed circuit board
JP2007036195A (en) * 2005-06-21 2007-02-08 National Institute Of Information & Communication Technology Laser apparatus using nonlinear optical crystal or solid slab laser rod of multiplex optical path
CN113594840A (en) * 2021-09-30 2021-11-02 四川光天下激光科技有限公司 Seed light optical path structure of multi-pass amplification system

Similar Documents

Publication Publication Date Title
JP2713745B2 (en) Optically pumped solid-state laser
JPS6193686A (en) Solid state non-planar type internal reflection ring laser
JP2000506319A (en) Strip laser
SE7704887L (en) LASER RESONATOR
US6160934A (en) Hollow lensing duct
US4050035A (en) Self-aligned polarized laser
US4642809A (en) Slab active lasing medium
JPS6289376A (en) Laser amplifier
US7356066B2 (en) Solid state laser
US3435371A (en) Laser mode selection apparatus
JPS6337514B2 (en)
US3609590A (en) Expanded laser beam output
US4996693A (en) Input/output ports for a lasing medium
JP3591360B2 (en) Laser oscillation device
CN115513759B (en) Laser device
JPH09199781A (en) Laser amplifier
JPS6140073A (en) Solid laser oscillator
JPH06268289A (en) Slab laser
JP2005286144A (en) Solid state laser device
JPH04246875A (en) Laser
JP2002510435A (en) Laser with Four-Wave Interaction Phase Conjugate Mirror and Method for Improving by Converting Conventional Laser to Laser with Phase Conjugate Mirror
JPS63233592A (en) Dye cell
JP2003258345A (en) High output laser light generator using slab-type laser medium
JP3883077B2 (en) Solid-state laser device and method of entering laser light into fiber
JPH11346018A (en) Solid slab laser