JPS6288981A - Survey radar equipment for underground buried body - Google Patents

Survey radar equipment for underground buried body

Info

Publication number
JPS6288981A
JPS6288981A JP60228776A JP22877685A JPS6288981A JP S6288981 A JPS6288981 A JP S6288981A JP 60228776 A JP60228776 A JP 60228776A JP 22877685 A JP22877685 A JP 22877685A JP S6288981 A JPS6288981 A JP S6288981A
Authority
JP
Japan
Prior art keywords
antenna
wave
electric field
antennas
currents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60228776A
Other languages
Japanese (ja)
Other versions
JPH0664145B2 (en
Inventor
Masumi Okada
岡田 真澄
Kazuo Hiramoto
和夫 平本
Yoshihiro Michiguchi
道口 由博
Masatsugu Nishi
西 政嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Gas Co Ltd
Original Assignee
Hitachi Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP60228776A priority Critical patent/JPH0664145B2/en
Publication of JPS6288981A publication Critical patent/JPS6288981A/en
Publication of JPH0664145B2 publication Critical patent/JPH0664145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To survey the direction of an underground buried body from the relation between the direction of a transmitted electric field and reflected wave intensity by applying two kinds of AC voltages to mutually orthogonal dipole antennas, and varying its amplitude and changing the electromagnetic field direction of a radiant linear polarized wave. CONSTITUTION:Alternating currents 13 and 14 of frequency (f) which are in phase of 180 deg. out of phase with each other are flowed to the two orthogonal half-wave dipole antennas 11 and 12. The amplitudes of the currents 13 and 14 are denoted as I1 and I2. Those antennas 11 and 12 are set so that the plane containing the antennas 11 and 12 is parallel to the ground surface, and a radio wave is radiated into the ground. When the radio wave is radiated from above a buried pipe 7, the electric field E on the ground surface of the buried pipe is almost horizontal. The ratio of the currents I1 and I2 is varied at each point while the antennas 11 and 12 are moved to change the electric field direction of the transmitted ratio wave. The reflected wave intensity in each electric field direction is stored and the buring direction is found automatically from the currents I1 and I2 with which the reflection intensity is maximum, so that the antennas need not be moved over a wide range unlike before.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、4役物探査レーダ装ジ、特に管状埋設物の深
さ、大きさ、埋設方間を探iするに好〕虎な地中埋設物
探査レーダ装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is a four-purpose detection radar installation, particularly suitable for detecting the depth, size, and burial direction of tubular buried objects. This invention relates to a buried object detection radar device.

〔発明の背景〕[Background of the invention]

従来の地中埋設置勿探簡レーダ装置に′/:1:、「地
中レーダシステム」 (4子通信学会論文誌、83/6
 、 VoL J66−B 、 A6 、  p −7
13) カある。
``Ground Radar System'' (4th Child Communication Society Journal, 83/6)
, VoL J66-B, A6, p-7
13) There is power.

この従来例では、埋、役吻探丘レーダ装置では、地上か
らJ1中に向は電波を放射し、検体からの反射波の・噴
出により探fra体の有無を判定し、放射から反射波検
出までの時間により、探亘1J体の深さを求めていた。
In this conventional example, the buried/robust probe radar device emits radio waves from the ground into J1, determines the presence or absence of the probe by the ejection of reflected waves from the sample, and detects the reflected waves from the radiation. The depth of the probe 1J body was determined by the time taken.

従来の埋設吻探催レーダーの+4成を第7図に示す。発
振−61で高周波を発振させ、アンテナ6から電波を池
中に向けて放射する。・d役物7からの反射波を再びア
ンテナ6で受け、受ig k+号金受1S器”(増幅器
)3上通して表示装置5に送る。一方、制御器4では、
発振器1からの送信と反射波受信までの時間差、及び、
電波の伝搬速度から、埋設物の深さを連出し、表示裟+
95上での表示点を決める。また、埋設物の大きさ、及
び、水平方向位置は、アンテナ?水平方向に直、1が的
に移動させながらぼり返し送受信して求めていた。
Figure 7 shows the +4 configuration of the conventional buried proboscis detection radar. A high frequency is oscillated at oscillation-61, and radio waves are radiated from the antenna 6 into the pond. - The reflected wave from the d accessory 7 is received again by the antenna 6 and sent to the display device 5 through the receiver 1S device (amplifier) 3. On the other hand, in the controller 4,
The time difference between transmission from oscillator 1 and reception of the reflected wave, and
Determine the depth of the buried object from the radio wave propagation speed and display it on the display.
Decide the display point on 95. Also, what about the size of the buried object and the horizontal position of the antenna? Directly in the horizontal direction, 1 was moving the target while repeating transmission and reception to find it.

従来の産室を用い、アンテナ全第7図8の一点鎖点上全
移動させ、第7図7の直径30(7)、深さ60(7)
の導管を探査した結果(装丁45の表示)を第8図(b
)に示す。第8図(b)の表示の横軸は一点噴線8に沿
う水平方向位置、縦軸は深さを示している。図から明ら
かなように、導管7の断面位置、大きさは図中10より
得ることができるが、導管7の埋設方間を知ることがで
きない。
Using a conventional birth chamber, the antenna was moved completely above the dot-dash point in Fig. 7, and the diameter was 30 (7) and the depth was 60 (7) in Fig. 7.
The results of exploring the conduit (displayed in binding 45) are shown in Figure 8 (b).
). In the display of FIG. 8(b), the horizontal axis indicates the horizontal position along the one-point jet line 8, and the vertical axis indicates the depth. As is clear from the figure, although the cross-sectional position and size of the conduit 7 can be obtained from 10 in the figure, it is not possible to know how the conduit 7 is buried.

従来の装置で導管の4設方向を得るには、第8図(a)
の各−&、線に(eつで繰り返し送受信し、各破線上の
移動で得た第8図(b)の表示結果を比較して、埋設方
向全判シゼする必要がめる。この場合、埋設方向全精度
良く得るには、第8図(a)8.9の;4彷間隔を小ぜ
くとる必要があり、アンテナの移動、及び、信号処理等
に多くの時間を要する。
In order to obtain the four installation directions of the conduit using a conventional device, Fig. 8(a)
By repeating transmission and reception with (e) on each - & line, and comparing the display results shown in Fig. 8 (b) obtained by moving on each broken line, it is determined that it is necessary to change the entire length of the burial direction. In order to obtain high accuracy in all directions, it is necessary to make the four-turn interval as shown in 8.9 of FIG.

このような、2次元的なアンテナi多動を等制約に行な
う方法として、地表面にアンテナを2次元的に多数配列
し、各アンテナ素子で送受を行なう方法がある。この方
法では、直接の、移動は不要であるが、アンテナ構造が
倦めて複雑になること、また、アンテナ自体が大型化す
る等の問題がある。
As a method of performing such two-dimensional antenna i hyperactivity with equal constraints, there is a method of arranging a large number of antennas two-dimensionally on the ground surface and performing transmission and reception with each antenna element. Although this method does not require direct movement, there are problems such as the antenna structure becoming tired and complicated, and the antenna itself increasing in size.

また、探査物体の位置を高精度で判別する信号処理法と
して、開口合成法が使用されている。これは、電波放射
から反射波受信までの時間から、アンテナと反射体まで
の距離ヲ求め、アンテナの移動に伴う反射体までの?J
の変化に徒づき、反射体の位置全判別する方法である。
Furthermore, an aperture synthesis method is used as a signal processing method for determining the position of an exploration object with high precision. This is calculated by calculating the distance between the antenna and the reflector from the time from the radio wave emission to the reception of the reflected wave, and calculating the distance between the antenna and the reflector as the antenna moves. J
This method determines the entire position of the reflector based on the changes in the reflector.

しかし、この方法においても、埋設管の埋設方向を1J
るには、地表面上で2次元的に、多数の点で送受信する
必要がある。従って、アンテナ移動時間が増加するほか
、開口合成についても多くの処理時間を要する。
However, even in this method, the direction of burying the buried pipe is 1J.
To do this, it is necessary to transmit and receive data two-dimensionally at many points on the earth's surface. Therefore, not only does antenna movement time increase, but also a lot of processing time is required for aperture synthesis.

一方、従来の埋設物探宜レーダーでは、ダイポールアン
テナが1吏用されていた。しかし、夕°イボールアンテ
ナと埋設管軸のなすが0°もしくは90°以外になって
いる場合については、反射波強度が低下し、S/N比が
小さくなる可能性があった。
On the other hand, conventional buried object detection radars use one dipole antenna. However, if the angle between the vertical axis of the ball antenna and the buried pipe axis is other than 0° or 90°, there is a possibility that the reflected wave intensity will decrease and the S/N ratio will decrease.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、管状埋設物の深さ、位置、及び、@膜
方向を探査する場合に、特に、従来、長時間全壁し、繁
雑であった埋設方向探査を、短時間で容易に行なうこと
が可能で、かつ、従来と同じ電磁波出力で高反射波強度
を得ることが可能な埋設物探査レーダ装置を提供するこ
とにある。
The purpose of the present invention is to easily, in a short time, investigate the depth, position, and @membrane direction of a tubular buried object. It is an object of the present invention to provide a buried object detection radar device that can perform a buried object detection radar system and obtain a high reflected wave intensity with the same electromagnetic wave output as the conventional one.

〔発明の概要〕[Summary of the invention]

以下、本発明を原理的な観点から説明する。 Hereinafter, the present invention will be explained from a fundamental point of view.

本発明では、第2図に示すように、直交する2つの半波
長ダイポールアンテナ11.12に使用する。ダイポー
ルアンテナ11.12には、周波数がfで、位相が等し
いか、もしくは180°ずれた交流電流13.14を流
す。電流13,14の咄幅全各々、Il 、 I2とす
る。
In the present invention, as shown in FIG. 2, two half-wavelength dipole antennas 11 and 12 that are perpendicular to each other are used. An alternating current 13.14 having a frequency f and having the same phase or a 180° shift is passed through the dipole antenna 11.12. The entire widths of currents 13 and 14 are assumed to be Il and I2, respectively.

一本の半波長ダイポールアンテナ12からの放射社界圧
は、第3図のようにアンテナ給電部を原点とする球座憔
系(r、 θ、ψ)において、θ方向成分のみ存在し、
その値は、 ここで り:定数 に:波数 工:ダイボールアンテナ電流 と表わせる。即ち、θ依存性のみ有し、ψ依存性はない
。ま、t、 (1)式で、θ→oの時F、o−+oで一
方、θ−90°で最大とな7;)ことがわかる。
The radiation pressure from one half-wave dipole antenna 12 exists only in the θ direction component in the spherical system (r, θ, ψ) with the antenna feeding part as the origin as shown in Fig. 3.
Its value can be expressed as: where: constant: wave number: die ball antenna current. That is, it has only θ dependence and no ψ dependence. Well, t. In equation (1), it can be seen that when θ→o, F is maximum at o-+o, while it is maximum at θ-90°7;).

今、第3図の座標系(γ、θ、ψ)を4えると、アンテ
ナ11からの放射′−界lこは(1)式がそのまま適用
でき、アンテナ1oがらの故It ’rx(、界はEψ
となり、 と表わせる。結局、アンテナ9,1oがらの放吋屯界E
は と表わせる。これは、(3)式のEが直諌蝙波であるこ
とを示して淀り、If と12の比全適切にAぶことに
より、電界の向きを任意の方向に選ぶことができる。
Now, if we add 4 to the coordinate system (γ, θ, ψ) in FIG. The world is Eψ
This can be expressed as . In the end, the broadcasting world E with antennas 9 and 1o
It can be expressed as a pigeon. This shows that E in equation (3) is a direct wave, and by appropriately setting the ratio of If and 12, the direction of the electric field can be selected in any direction.

このア/テナ11.12t、第4図に示すように、アン
テナ11.12を含む平面が地表面に千灯になるように
して、電波を地中に同けて放射する。−膜管7の上部近
傍から電波を放射した場合、埋設管地表面での電界Eは
、(3)式から分るように、はぼ水平方向を向いている
。この時、放射゛電界Eと導管軸がなす角をψ′とする
と、電波の放射電力が一定になるように、即ち、(8)
式の11”+h”t”一定に保ちながら、IlとI2の
比eKえていくことよシ、放射電界Eの向き、つまり、
ψ′を変えていくことができる。
As shown in FIG. 4, this antenna/antenna 11.12t radiates radio waves into the ground so that the plane containing the antenna 11.12 is like a thousand lights on the ground surface. - When radio waves are radiated from near the top of the membrane tube 7, the electric field E on the surface of the buried tube is oriented in the horizontal direction, as can be seen from equation (3). At this time, if the angle between the radiated electric field E and the conduit axis is ψ', then so that the radiated power of the radio wave is constant, that is, (8)
The direction of the radiated electric field E, that is, by increasing the ratio eK of Il and I2 while keeping the equation 11"+h"t constant, is
It is possible to change ψ′.

一般に、反射波強度は、ψ/ == o Oもしくはψ
′;90°で最大となる。ψ′−08で最大となるのは
、埋設管の半径が極めて小さい場合で埋設管径が大きく
なると、ψ′=90°の場合に最大となる。これは、第
4図の゛里膜管7上の点Qと゛ アンテナの水平方向距
離が増加するにつれ、E、。
Generally, the reflected wave intensity is ψ/ == o O or ψ
': Maximum at 90°. The value of ψ'-08 is maximum when the radius of the buried pipe is extremely small, and when the diameter of the buried pipe becomes large, it is maximum when ψ'=90°. This is the difference between point Q on the membrane tube 7 in Fig. 4 and E as the horizontal distance of the antenna increases.

E、いずれも減少するが、その減少勾配はEψの方が大
きいことに起因している。また、反射波強度が入射波電
界Eと埋設管軸の角度ψ′が0の時最大となる場合から
、ψ′=90°で最大となるように変化する時の管半径
Rs bは、波長λ、即ち周波数fにより変化する。ノ
里膜管探査に用いるおよそ300 M Hz以上の周波
数では、上0ピの管半径R1−は後述するようにおよそ
15の以下である。
Both E decrease, but the decreasing slope is due to the fact that Eψ is larger. In addition, the pipe radius Rs b when the reflected wave intensity changes from the maximum when the angle ψ' between the incident wave electric field E and the buried pipe axis is 0 to the maximum when ψ' = 90° is the wavelength It changes depending on λ, that is, the frequency f. At a frequency of about 300 MHz or more used for nostalgic tube exploration, the tube radius R1- of the upper 0 pi is about 15 or less, as will be described later.

そこで、第4図のアンテナ11.12ffi地上で、−
直線上に多動させ、多数の点で送受信を実施する。ただ
し、地上のある一点では、ダイポールアンテナ11.1
2に流す′td自−LII I Izの比を一■から+
■まで変化させ送信電波の也が方向全変化させる。
Therefore, on the ground with antenna 11 and 12ffi in Fig. 4, -
It moves in a straight line and transmits and receives at many points. However, at a certain point on the ground, the dipole antenna 11.1
The ratio of 'td self-LII I Iz flowing to 2 is from 1■ to +
■ Change the direction of the transmitted radio wave completely.

このようにして得たデータから、まず、埋設管の有無、
及び深さ等が、従来と同じ方法で得られる。これらを1
・り用し、埋設管上部の位置Mが分かるから、Mの点で
、直交ダイポールの電流振幅比11:I2と反射波強度
Sの関係を求め、Sが最大となった時のIr:Izから
埋設管理設方向を求める。
From the data obtained in this way, we first determine whether there is a buried pipe or not.
and depth etc. can be obtained using the same conventional methods. 1 of these
・Since the position M of the upper part of the buried pipe is known, find the relationship between the current amplitude ratio 11:I2 of the orthogonal dipole and the reflected wave intensity S at the point M, and find Ir:Iz when S is maximum. Find the burial management installation direction from.

vt来と同・慮の手法で−」えば4設管半径Rがおよそ
50cW1程厩であることが分った場合、反射波強度が
最大となるIl とI2の値から埋設方向が、アンテナ
12と の角度をなす方向であることが分る。
Using the same method as before, for example, if we find that the radius R of the four installation pipes is about 50 cW1, we can determine the direction of burying the antenna 12 from the values of Il and I2 where the reflected wave intensity is maximum. It can be seen that the direction makes an angle with

導管径が、前述の此、hよシ小さい場合は、反射波強度
が最大となるのはψ′=06の場合であり、この時、導
管の埋設方向は、アンテナ12との角度をなす方向であ
る。
When the diameter of the conduit is smaller than h as described above, the reflected wave intensity becomes maximum when ψ'=06, and at this time, the buried direction of the conduit forms an angle with the antenna 12. It is the direction.

反射波強度が最大となるのが、ψ/ −o Oから90
°に変化するRshは、実験あるい、性数′直解析によ
り求めておくことができる。
The reflected wave intensity is maximum at ψ/ −o O to 90
Rsh, which changes with degrees, can be determined by experiment or by direct analysis of the linear number.

第5図に、周波数が300MHzで、ψ′二06、及び
ψ’=90’の場合について、反射波強度の導管径1β
存性を示す。24雷径151μ上では、ψ′=90°で
反射波強度が最大となる。また、周波数が500MH2
の場合についての同様の特性を化6図に示す。、4管径
1ocrr1以上の場合、ψ’=90’で反射波強度が
最大となる。周波数が高くなるにつれ、ψ′=90°で
反射波強度が最大となる管径の下限値R&hが小さくな
っていく。
Figure 5 shows the reflected wave intensity of the conduit diameter 1β for the cases where the frequency is 300 MHz, ψ′206 and ψ′=90′.
Show your existence. On the No. 24 lightning diameter of 151μ, the reflected wave intensity reaches its maximum at ψ′=90°. Also, the frequency is 500MH2
A similar characteristic for the case of is shown in Figure 6. , 4 When the pipe diameter is 1ocrr1 or more, the reflected wave intensity becomes maximum at ψ'=90'. As the frequency becomes higher, the lower limit value R&h of the pipe diameter at which the reflected wave intensity is maximum at ψ'=90° becomes smaller.

以上に基づき、アンテナ11.12a−移動しながら、
各点において、電流I+ とI2の比を変えていき、送
イキ電波の電界方向を変化させる。各電界方向について
反射波強度を記憶しておき、反射波強度が最大となる電
KIt とI2から、埋設方向を自動的に求める。ただ
し、この時、従来の方法により求めた、管半径Rが、R
thより大きいか小さいか、即ちψ′==00で最大と
なるかψ′=90°で最大となるか全自動的にf!Jm
し、埋設方向を求める。
Based on the above, antenna 11.12a - while moving;
At each point, the ratio of the currents I+ and I2 is changed to change the electric field direction of the transmitted radio waves. The reflected wave intensity is memorized for each electric field direction, and the burial direction is automatically determined from the electric field KIt and I2 where the reflected wave intensity is maximum. However, at this time, the pipe radius R determined by the conventional method is R
Fully automatically f! Jm
Then, find the burial direction.

以上により、従来、埋設方向’t−1(]るのに必要で
あった、広範囲のアンテナ移動を行なうことなく自動的
に埋設・M方向ffi =”Oることかできる。
As described above, it is possible to automatically bury the antenna in the M direction ffi = "0" without having to move the antenna over a wide range, which was conventionally necessary to move the antenna in the burying direction 't-1(].

また、従来の埋設物探査レーダ装置では、1本のダイポ
ールアンテナを使用している。この場合埋設管軸とアン
テナの角度が00あるいは90’以外の場合に反射波強
度が低下し、SZN比が小さくなる欠点があったが、本
発明では反射波強度を常に最大にさせながら受信してお
り、上記シ公比の問題は解消できる。
Furthermore, a conventional buried object detection radar device uses one dipole antenna. In this case, when the angle between the buried pipe axis and the antenna is other than 00 or 90', the reflected wave intensity decreases and the SZN ratio decreases, but in the present invention, the reflected wave intensity is always maximized while receiving. Therefore, the problem of the common ratio mentioned above can be solved.

〔発明の′人力f!Iレリ〕[Invention's human power f! I Reli]

第1図は本発明の埋設吻探肴レーダ装置の構成図である
。送信切換器15.16は、発振器17のモノサイクル
パルス19.20’Th送信する機能と、ダイポールア
ンテナ12からの受信波全受信する機能とを有する。別
画l器18は発振器17の発振指令の指示及び振幅指示
、及び受信時間計連装’ii: 26 、波高:′1!
計算装置27、開口合成装置28の計A−タイミング等
の別画1 k行う。
FIG. 1 is a block diagram of a buried proboscis detection radar device of the present invention. The transmission switching devices 15 and 16 have a function of transmitting monocycle pulses 19 and 20'Th of the oscillator 17 and a function of receiving all received waves from the dipole antenna 12. The separate controller 18 instructs the oscillation command and amplitude of the oscillator 17, as well as receiving time meter combination 'ii: 26, wave height: '1!
The calculation device 27 and the aperture synthesis device 28 perform a separate calculation of the total A-timing, etc. 1k.

増巾器21.22は送受切替器15.16の受信出力を
取込み直線増巾する。加算器23ば、増巾器21.22
の出力加算金行う。サンプリング装置24は、加算器2
3の出力のサンフル2行う。
Amplifiers 21 and 22 take in the received output of the transmission/reception switch 15 and 16 and linearly amplify it. Adder 23, amplifiers 21 and 22
Do the output additional money. The sampling device 24 includes an adder 2
Perform sample full 2 of the output of 3.

波形記憶装置25は、波形の記憶、受信時tH]計算装
置26は受信時間の計算、波形記憶装置27は波高値計
算、開口合成処理mfi28は開口合成処理、波形記憶
装置29は波高記1意、最大波高値計′X機30は最大
波高値の計算、埋設方向演其器31は埋設方向の演算、
表示装置M32は表示を行う。動作を説明する。
The waveform storage device 25 stores the waveform, the reception time tH calculation device 26 calculates the reception time, the waveform storage device 27 calculates the wave height value, the aperture synthesis processing mfi28 performs the aperture synthesis processing, and the waveform storage device 29 calculates the wave height record. , the maximum wave height value meter 'X machine 30 calculates the maximum wave height value, the burying direction calculator 31 calculates the burying direction,
The display device M32 performs display. Explain the operation.

アンテナ12による電波の基本周波数fは、500MH
2とする。このアンテナ12は、波長λ(60crrI
)の1/2長で30crnのダイポールを交叉させたク
ロスダイポール形をなす。アンテナ12は、地炎面に対
して水平方向におく。
The fundamental frequency f of the radio waves from the antenna 12 is 500MH
Set it to 2. This antenna 12 has a wavelength λ (60crrI
) has a cross dipole shape with 30 crn dipoles intersecting each other. The antenna 12 is placed horizontally with respect to the earth's flame surface.

送信側は、まず制御器18の信号により、発振器17よ
り、モノサイクルパルス19.20i送信する。モノサ
イクルパルス19.20の波高値aI+  32は、:
1ilJ f卸器18の信号により制御する。
On the transmitting side, first, the oscillator 17 transmits monocycle pulses 19.20i in response to a signal from the controller 18. The peak value aI+32 of monocycle pulse 19.20 is:
It is controlled by the signal from the 1ilJf distributor 18.

このモノサイクルパルス19.20がクロスダイポール
アンテナ12に印加され、地中に゛(波が放射される。
This monocycle pulse 19,20 is applied to the cross dipole antenna 12, and a wave is radiated underground.

受信jlllは、クロスダイポールアンテナ12で受け
た反射波の厄界成分を切換器15.16を介して取込み
それぞれ直線増巾器21.22で増巾した後加算器23
で加算する。
The reception jll takes in the evil field component of the reflected wave received by the cross dipole antenna 12 via a switch 15.16, amplifies it with a linear amplifier 21.22, and then sends it to an adder 23
Add with .

この信号は、サンプリング装置24でサンプリングして
、波形記憶装置25で、1g号の時間変化を記はする。
This signal is sampled by the sampling device 24, and the time change of No. 1g is recorded in the waveform storage device 25.

この記憶した、受1に信号の時間変化波形と、パルス送
信と同時に制御器18から出るタイミングパルスを用い
、計算器26により、送信から反射波受信までの時間t
、(nは送受信位置を示す添字)?1産する。その後、
受信信号の波向liMAaを、波高値計算器27で計算
する。
Using this stored time-varying waveform of the signal at the receiver 1 and the timing pulse output from the controller 18 at the same time as the pulse transmission, the calculator 26 calculates the time t from transmission to reception of the reflected wave.
, (n is a subscript indicating the transmitting/receiving position)? Gives birth to one baby. after that,
The wave height value calculator 27 calculates the wave direction liMAa of the received signal.

反射波受信までの時間t、と、波高値A、は、開口餘成
′四埋装置28に送られる。また、波高値A、は、波高
記:は一装置29に記憶される。
The time t until the reflected wave is received and the peak value A are sent to the aperture forming device 28. Further, the wave height value A is stored in one device 29.

以上の処理を行なった後に、同一送受信点で、送信パル
ス振幅a!+  a 2 i’こついてa 、2 + 
a 22は一定で、aIとa2の比を変えて発振器17
よりパルス全送信する。これは、パラメーターβ’r4
人して、 ただし K:定数(=m) 0≦β≦π と表わすことに対応する。元服器17より、βを変化さ
せるが、βのきざみ幅Δβは、オ・よそ化させて、各β
について、前述の波高値A、全装置29に記憶させる。
After performing the above processing, at the same transmission and reception point, the transmission pulse amplitude a! + a 2 i' a, 2 +
a22 is constant, and by changing the ratio of aI and a2, the oscillator 17
More pulses are transmitted. This is the parameter β'r4
This corresponds to the expression 0≦β≦π, where K: constant (=m). From Genpukuki 17, β is changed, but the step width Δβ of β is
, the above-mentioned peak value A is stored in all devices 29.

開口合成装置装+d28に送られる受信までの時間t、
と、波高値A、は1つの受信位置について、1つのデー
タとする。βを0からπ寸で変化させた後回−送受信泣
ζイで記憶した波高値データの中から、波高!直が最大
となった時のβを・賃1五30で寸法し、送受廿j位置
と共に待11イ30で記憶する。
Time t until reception sent to the aperture synthesis device +d28,
and peak value A are one piece of data for one receiving position. After varying β from 0 to π, select the wave height from the wave height data stored in the previous section. The value β when the directivity is maximum is determined by 1530, and is stored in 30 together with the transmitting/receiving position.

以上のパルス送信、信号処理を、アンテナ12全地表面
で移動させなから繰シ返し行なう。
The above pulse transmission and signal processing are repeated without moving the antenna 12 over the entire ground surface.

アンテナの移りに伴い、記憶装[30には、送受信位置
と、その位置での受信波強度が最大となるβが記憶され
て行く。また、開口合成処理装置28には各受信位置情
報と各受信位置での反射波受信時間t1、及び、波高値
A、が記憶されている。
As the antenna changes, the transmitting/receiving position and β at which the received wave intensity becomes maximum at that position are stored in the storage device [30]. Further, the aperture synthesis processing device 28 stores each reception position information, the reflected wave reception time t1 at each reception position, and the wave height value A.

アンテナ移動が終了すると、その信号を制御器18より
、開口合成処理装置28に送シ、埋設管の深さ、大きさ
寺を計算する。さらに埋設・g半径比と、4膜管上部の
送受信位置を求め、その情報を埋設方向演算器31に送
る。この埋設管上部の位置と、記憶装置内部の送受信位
置、及びそれに対応するβを、計算装[31で選び出す
。埋設方向演算装置内には、本発明の原理で述べた管半
径参照値Rab (f = 500 MHzでめるので
10crn)を記憶しておき、開口脅威処理で得た管半
径RとR+hを比較し、几(Rt hの場合には、アン
テナ12に対し、角度βの方向に埋設されているとの信
号を、表示装置32に送る。
When the antenna movement is completed, the signal is sent from the controller 18 to the aperture synthesis processing device 28, which calculates the depth and size of the buried pipe. Further, the buried/g radius ratio and the transmission/reception position on the upper part of the four-film tube are determined, and the information is sent to the buried direction calculator 31. The position of the upper part of this buried pipe, the transmission/reception position inside the storage device, and the corresponding β are selected by the calculation system [31]. The pipe radius reference value Rab (10 crn since f = 500 MHz) described in the principle of the present invention is stored in the burial direction calculation device, and the pipe radius R obtained by opening threat processing and R+h are compared. However, in the case of Rth, a signal indicating that the antenna 12 is buried in the direction of the angle β is sent to the display device 32.

また、R) R,thのハら曾には、アンテナ12に対
し、β+90°の方向に、用役されていると、表示装(
1“i32に信号を送る。
In addition, when the display device (R) R, th is used in the direction of β+90° with respect to the antenna 12, the display device (
1"Send signal to i32.

以上により、表示装置32には、アンテナの2次元的な
移動による埋設管の深さ、大きさ全示す画像に加えて、
埋設方向金アンテナ米子に対する角度で表示する。
As a result, the display device 32 displays, in addition to an image showing the entire depth and size of the buried pipe due to the two-dimensional movement of the antenna.
Buried direction The gold antenna is displayed in angle with respect to Yonago.

〔発明の効果〕〔Effect of the invention〕

以上、本発明の・既要、及び、拠翔例で示したように、
本発明を使用すると、アンテナ全地表面上で直1i的(
1次元的)に移・妨し、電波を送受信することによシ埋
設物の深さ、大きさだけでなく、方向をも得ることがで
きる。これは、従来の埋設物探査レーダ装置では、上記
の情′#全得るために必要でめった広範囲(2次元的)
のアンテナ移動と送受信を不要とし、探歪時間、労力を
犬嘔に減少させることができる。
As shown above in the examples of the present invention, existing requirements, and support,
Using the present invention, the antenna can be distributed directly over the entire ground surface (
By transmitting and receiving radio waves, it is possible to obtain not only the depth and size of buried objects, but also their direction. This is because conventional buried object detection radar equipment requires a wide range (two-dimensional) to obtain all of the above information.
This eliminates the need for antenna movement and transmission/reception, significantly reducing strain detection time and effort.

また、電波の偏波方向を変化させ、反射彼彊IWの最大
値を探すこと知より、高S/N比を得られる効果がある
Furthermore, by changing the polarization direction of the radio waves and searching for the maximum value of the reflected angle IW, a high S/N ratio can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の芙施例を示す図、第2図は本発明に
旋用するクロスダイポールを示す図、第3図は、座標系
を示す図、14図は、地表面とクロスダイポールの位i
関係を示す図1.君5図、第6図は、反射7B1強度と
管半径の関係を示す図、第7図は、従来の埋設物探丘レ
ーダーの構造を示す図、第8図(a)はアンテナ2移切
位置を示す図、第8図(b)は、vE米の深にレーダー
をJ−i]いた表示結果を示す図である。 1・・・パルス−1tk器、2・・・送受切換器、3・
・・受信器、4・・・副111装置、5・・・表示装置
、6・・・アンテナ、7・・・探丘埋設物、8,9・・
・アンテナ移動位置、10・・・表示埋設物、11.1
2・・・ダイポールアンテナ、13.14・・・アンテ
ナ印加電流、15.16・・・送受切換器、17・・・
パルス発振器、18・・・制御装置、19.20・・・
アンテナ印加パルス、21.22・・・直線増巾器、2
3・・・加算器、24・・・サンプリング装置、25・
・・波形記憶装置、26・・・受信時間計算装置、27
・・・波高値計算装置、28・・・開口合成処理装置、
29・・・波高記憶装置、3o・・・最大波高値計算機
、31・・・埋設方向演算器、32・・・表示装置。
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing a cross dipole used in the present invention, Fig. 3 is a diagram showing a coordinate system, and Fig. 14 is a diagram showing a cross dipole with the ground surface. dipole position i
Figure 1 shows the relationship. Figures 5 and 6 are diagrams showing the relationship between the reflected 7B1 intensity and tube radius, Figure 7 is a diagram showing the structure of a conventional buried object detection radar, and Figure 8 (a) is the antenna 2 transfer position. FIG. 8(b) is a diagram showing the display result when the radar was placed deep in the vE rice. 1...Pulse-1tk device, 2...Transmission/reception switch, 3.
... Receiver, 4... Sub-111 device, 5... Display device, 6... Antenna, 7... Exploration buried object, 8, 9...
・Antenna movement position, 10... Display buried object, 11.1
2...Dipole antenna, 13.14...Antenna applied current, 15.16...Transmission/reception switch, 17...
Pulse oscillator, 18...control device, 19.20...
Antenna applied pulse, 21.22...Linear amplifier, 2
3... Adder, 24... Sampling device, 25.
...Waveform storage device, 26...Reception time calculation device, 27
... Wave height calculation device, 28... Aperture synthesis processing device,
29... Wave height storage device, 3o... Maximum wave height value calculator, 31... Burying direction calculator, 32... Display device.

Claims (1)

【特許請求の範囲】[Claims] 1、地表面に対して平行におかれてなる互いに直交する
ダイポールアンテナを持つアンテナ部と、周波数が同一
で、位相が同一もしくは180°ずれ、振幅がa_1、
a_2である2種類の交流電流I_1、I_2なる2つ
の交流波を各ダイポールアンテナに印加し、各ダイポー
ルアンテナでの直線偏波の電界の合成直線偏波をアンテ
ナ部より放射せしめるようにした印加手段と、該合成直
線偏波の放射波に対する地表面内を含む反射波を受信す
る受信手段とを備えると共に、交流電流I_1、I_2
の振幅a_1、a_2を変化させて放射直線偏波の電界
方向を変化させ、送信電界方向と反射波強度の関係から
地表面内埋設物の方向を探査してなる地中埋設物探査レ
ーダ装置。
1. Antenna section with mutually orthogonal dipole antennas placed parallel to the ground surface, the frequency is the same, the phase is the same or 180° shifted, and the amplitude is a_1,
Application means for applying two types of alternating current waves I_1 and I_2, which are a_2, to each dipole antenna, and causing a composite linearly polarized wave of electric fields of linearly polarized waves in each dipole antenna to be radiated from the antenna part. and receiving means for receiving reflected waves including within the ground surface with respect to the radiation waves of the composite linearly polarized waves, and AC currents I_1 and I_2.
An underground buried object exploration radar device that changes the electric field direction of the radiated linearly polarized wave by changing the amplitudes a_1 and a_2, and searches for the direction of the buried object in the ground surface from the relationship between the transmitted electric field direction and the reflected wave intensity.
JP60228776A 1985-10-16 1985-10-16 Underground buried object exploration radar device Expired - Lifetime JPH0664145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60228776A JPH0664145B2 (en) 1985-10-16 1985-10-16 Underground buried object exploration radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60228776A JPH0664145B2 (en) 1985-10-16 1985-10-16 Underground buried object exploration radar device

Publications (2)

Publication Number Publication Date
JPS6288981A true JPS6288981A (en) 1987-04-23
JPH0664145B2 JPH0664145B2 (en) 1994-08-22

Family

ID=16881663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60228776A Expired - Lifetime JPH0664145B2 (en) 1985-10-16 1985-10-16 Underground buried object exploration radar device

Country Status (1)

Country Link
JP (1) JPH0664145B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168063A (en) * 1984-02-10 1985-08-31 Japan Radio Co Ltd Tubular buried object deciding method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168063A (en) * 1984-02-10 1985-08-31 Japan Radio Co Ltd Tubular buried object deciding method

Also Published As

Publication number Publication date
JPH0664145B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
Scheers Ultra-wideband ground penetrating radar with application to the detection of anti personnel landmines
US20080198063A1 (en) Apparatus and method using continuous-wave radiation for detecting and locating targets hidden behind a surface
US20030132873A1 (en) Method for obtaining underground imagery using a ground-penetrating radar
EP1543353A2 (en) Apparatus and method using continuous -wave radiation for detecting and locating targets hidden behind a surface
EP0240201B1 (en) Method and apparatus for combining waveforms
AU2001271138A1 (en) 3d borehole radar antenna and algorithm, method and apparatus for subsurface surveys
US6583755B2 (en) Method and apparatus for locating a terrestrial transmitter from a satellite
JPS6288981A (en) Survey radar equipment for underground buried body
US2585907A (en) Transmitting and receiving apparatus for electromagnetic prospecting
Wensink et al. MEASURED REFLECTION STRENGTHS OF UNDERWATER PIPES IRRADIATED BY A PULSED HORIZONTAL DIPOLE IN AIR: COMPARISON WITH CONTINUOUS PLANE‐WAVE SCATTERING THEORY1
JP4022352B2 (en) Complex buried object exploration equipment
KR101449957B1 (en) Method and apparatus for image processing in ground penetratiang radar
WO2021077234A1 (en) Underground localization using ground penetrating radar
US4849761A (en) Multi-mode feed system for a monopulse antenna
JPH08201529A (en) Forward monitoring apparatus of shield machine
US5036332A (en) Multi-mode feed system for a monopulse antenna
GB2459218A (en) Underwater signal direction determination
Kuznetsov et al. Local Anomalous Sound Field Zones in Shallow Water: Experiment and Simulation
KR101903880B1 (en) Apparatus and method for detecting buried structure
RU2416108C1 (en) Method for complex target location
JP3207754B2 (en) Multi-transmission underground radar
JP2630568B2 (en) Radar equipment
JPS61264277A (en) Buried material searching device
USRE24489E (en) Method for electromagnetic prospecting
JP2002311133A (en) Apparatus for detection in extension direction of tubular buried object