JPS6288080A - Measuring instrument for approximate number of moving object - Google Patents

Measuring instrument for approximate number of moving object

Info

Publication number
JPS6288080A
JPS6288080A JP22785185A JP22785185A JPS6288080A JP S6288080 A JPS6288080 A JP S6288080A JP 22785185 A JP22785185 A JP 22785185A JP 22785185 A JP22785185 A JP 22785185A JP S6288080 A JPS6288080 A JP S6288080A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
signal
measured
data
difference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22785185A
Other languages
Japanese (ja)
Inventor
Tadao Nakai
中井 直男
Yuzo Sotani
曽谷 雄三
Masami Ogi
小木 正美
Shoji Wada
和田 昭二
Akira Kobayashi
彬 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A S T SOKEN KK
Original Assignee
A S T SOKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A S T SOKEN KK filed Critical A S T SOKEN KK
Priority to JP22785185A priority Critical patent/JPS6288080A/en
Publication of JPS6288080A publication Critical patent/JPS6288080A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain a simplified measurement with a small-scaled and simple constitution by measuring the round number of an object to be measured calculating its own correlation function value based upon a signal from a photoelectric transducing device that is a special filter detector. CONSTITUTION:A photoelectric transducing device 8 is equipped with a photoelectric transducer 7 line-connected in a positive and a reversed directions electrically. The outputs of the photoelectric transducers 7 are inputted to a difference signal output circuit 4, then a signal that represents the difference of an absolute value of each level being outputted. The difference signal is inputted to an arithmetic part 16 through an A/D converter 15, and its own correlation function against the pattern of prescribed time length of the difference signal is calculated. A data processing part 20 calculates and outputs a data regarding the round number of an object 3 to be measured from its own correlation function value responding to the output from the arithmetic part 16.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は運動する物体の概数測定装置に関−するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an approximate measurement device for a moving object.

(従来の技術) 例えば、エレベータの前の人の混み具合、特定の領域内
に集まる人の数などを電気的に倹、Bt、&い場合が多
々生じる。このように、運動する物体の概数を測定する
には、被測定領域をテレビカメラで写し出し、その画像
をコンピュータを用いて処理する方法が従来公知である
(Prior Art) For example, there are many cases where it is difficult to electrically measure the crowding of people in front of an elevator, the number of people gathered in a particular area, etc. As described above, in order to measure the approximate number of moving objects, a method is conventionally known in which the area to be measured is photographed with a television camera and the image is processed using a computer.

(発明が解決しようとする問題点) しかし、コンピュータを用いた画像処理装置では、その
解析のだめのアルゴリズムが極めて複雑であり、したが
って、そのために使用するコンピュータも処理速度が速
い大型のコンビ−1−タアなければならず、装置のコス
トが極めて晶くなる一トに、装置の物理的規模も大きく
なり、取扱い上においても種々の不具合を生じることに
なるという問題点を有している。
(Problem to be Solved by the Invention) However, in image processing apparatuses using computers, the algorithms used for analysis are extremely complex, and therefore the computers used for this purpose are large-sized combinations with high processing speeds. This poses a problem in that not only does the cost of the device become extremely high, but also the physical scale of the device becomes large, leading to various problems in handling.

本発明の目的は、大型のコンピュータを必要とせず、小
規模な装置で運動する物体の概数の測定を非接触状態で
行なうことができる概数測定装置を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to provide an approximate number measuring device that can measure the approximate number of a moving object in a non-contact manner using a small-scale device without requiring a large-sized computer.

(問題点を解決するための手段) 上記問題点を解決するための本発明の内容は、電気的に
正方向及び逆方向に結線された光電変換素子が平面上で
所要のパターンに配置されて成り正方向光電変換素子の
出力和を示す第1信号と逆方向光電変換素子の出力和を
示す第2信号とを出力する光電変換装置と、所要の被測
定体の像を上記光電変換装置上に結像させる光学装置と
、上記第1及び第2信号に応答し上記第1及び第2信号
の各レベルの絶対値の差に応じた差信号を出力する差信
号出力回路と、該差信号に基づいて該差信号の所定時間
長さのパターンに対する自己相関関数値を計算する演算
部と、該演算部からの出力に応答しその自己相関関数値
から上記被測定体の概数に関するデータを演算出力する
データ処理部とを備えた点にある。
(Means for Solving the Problems) The content of the present invention for solving the above problems is that photoelectric conversion elements electrically connected in the forward and reverse directions are arranged in a required pattern on a plane. a photoelectric conversion device that outputs a first signal indicating the sum of outputs of the forward photoelectric conversion elements and a second signal indicating the sum of outputs of the reverse photoelectric conversion elements; and a photoelectric conversion device that outputs an image of a desired object to be measured on the photoelectric conversion device. a difference signal output circuit that responds to the first and second signals and outputs a difference signal according to the difference in absolute value of each level of the first and second signals; a calculation unit that calculates an autocorrelation function value for a pattern of a predetermined time length of the difference signal based on the calculation unit; and a calculation unit that responds to the output from the calculation unit and calculates data regarding the approximate number of the objects to be measured from the autocorrelation function value. The present invention also includes a data processing section for outputting data.

(作 用) 被測定体が運動している場合、差信号のレベルは正負に
変動しておシ、差信号のレベル変化パターンの自己相関
関数値は、被測定体の数が増えるほど大きくなる傾向を
示す。データ処理部では、演算部で計算された自己相関
関数値に基づき、被測定体の概数が演算され、この演算
結果が測定値となる。
(Function) When the object to be measured is moving, the level of the difference signal fluctuates between positive and negative, and the autocorrelation function value of the level change pattern of the difference signal increases as the number of objects to be measured increases. Show trends. In the data processing section, an approximate number of the object to be measured is calculated based on the autocorrelation function value calculated by the calculation section, and the result of this calculation becomes the measured value.

(実施例) 第1図には、本発明による概数測定装置の一実施例を示
すブロック図が示されている。概数測定装置1は、予め
定められた測定領域2内にある複数の運動する被測定体
3の概数を電気的に測定するための装置であり、レンズ
4を備えた筐体5として構成される光学装置6内に光電
変換装置7を配設して成る光電センサ8を有している。
(Embodiment) FIG. 1 shows a block diagram showing an embodiment of the approximate number measuring device according to the present invention. The approximate number measuring device 1 is a device for electrically measuring the approximate number of a plurality of moving objects 3 within a predetermined measurement area 2, and is configured as a housing 5 equipped with a lens 4. The photoelectric sensor 8 includes a photoelectric conversion device 7 disposed within an optical device 6.

光電変換装置7は光電変換板9を含み、その光電変換面
9aは第2図に示されるように縦横多数の区画に区切ら
れておシ、各区画にはフォトダイオードから成る光電変
換素子10がそれぞれ設けられておシ、互いに斜めに位
置する光電変換素子10同志の出力が第3図に示される
ように逆向きに加え合せられ、それぞれの出力端子io
a。
The photoelectric conversion device 7 includes a photoelectric conversion plate 9, and its photoelectric conversion surface 9a is divided into a large number of vertical and horizontal sections as shown in FIG. 2, and each section has a photoelectric conversion element 10 consisting of a photodiode. The outputs of the photoelectric conversion elements 10 provided diagonally to each other are added together in opposite directions as shown in FIG.
a.

10bが差動的に結線されている。端子10cは各光電
変換素子10の共通接続線11に接続されている端子で
あシ、端子10a−100間及び10b−100間には
負荷抵抗器12.13がそれぞれ接続されている。した
がって、負荷抵抗器12には共通接続a10に対して正
方向に接続された光電変換素子からの各出力電流が流入
し、これにより正方向光電変換素子の出力の和に応じた
レベルの第1信号v1が負荷抵抗器12の両端に発生す
る。一方、負荷抵抗器13には共通接続線10に対して
負方向に接続された光電変換素子からの各出力電流が流
入し、これによシ負方向光電変換素子の出力の和に応じ
たレベルの第2信号v2が負荷抵抗器13の両端に発生
する。
10b are differentially connected. The terminal 10c is a terminal connected to the common connection line 11 of each photoelectric conversion element 10, and load resistors 12 and 13 are connected between the terminals 10a and 100 and between the terminals 10b and 100, respectively. Therefore, each output current from the photoelectric conversion elements connected in the positive direction with respect to the common connection a10 flows into the load resistor 12, thereby causing the first level to rise according to the sum of the outputs of the positive direction photoelectric conversion elements. A signal v1 is developed across load resistor 12. On the other hand, each output current from the photoelectric conversion elements connected in the negative direction with respect to the common connection line 10 flows into the load resistor 13, which causes a level corresponding to the sum of the outputs of the negative direction photoelectric conversion elements. A second signal v2 of is generated across the load resistor 13.

すでに知られているように、この光電変換板9は、その
光電変換面9aに一様に光が当っている場合、又は静止
パターンが光電変換面9mに投影されている場合には第
1信号Vlと第2信号v2との各レベルの絶対値はほぼ
等しくなシ、光電変換面9&に投影されたパターンが変
化する場合には正のレベルの信号として取り出される第
1信号V、と負のレベルの信号として取シ出される第2
信号V、との和はその変化に関連して正負に変化する。
As is already known, when the photoelectric conversion plate 9 is uniformly illuminated with light on its photoelectric conversion surface 9a or when a stationary pattern is projected onto the photoelectric conversion surface 9m, the photoelectric conversion plate 9 receives the first signal. The absolute values of each level of Vl and the second signal v2 are almost equal, and when the pattern projected on the photoelectric conversion surface 9 & changes, the first signal V is taken out as a positive level signal, and the negative The second signal is extracted as a level signal.
The sum with the signal V changes to positive or negative in relation to the change.

第1図に戻ると、第1信号V菫と第2信号v2との各レ
ベルの絶対値の差に応じた信号を得るため、第1信号v
1と第2信号v2とは差動増幅回路として構成されてい
る差信号出力回路14のアース端子Gと十入力端子14
aとの間及びアース端子Gと一入力端子14bとの間に
それぞれ印加されておシ、差信号出力回路14からは第
1信号v1と第2信号V、との各レベルの絶対値の差に
応じたレベルを有する差信号v3が出力される。
Returning to FIG. 1, in order to obtain a signal corresponding to the difference in the absolute value of each level between the first signal V violet and the second signal v2, the first signal v
1 and the second signal v2 are the ground terminal G and the input terminal 14 of the difference signal output circuit 14 configured as a differential amplifier circuit.
a and between the ground terminal G and the one input terminal 14b, and the difference signal output circuit 14 outputs the difference in the absolute value of each level between the first signal v1 and the second signal V. A difference signal v3 having a level corresponding to is output.

第3図には被測定体3の移動により生じた差信号v3の
レベル変化の一例が示されている。差信号v3はアナロ
グ−ディジタル変換器(IVD)15に入力され、ここ
で差信号v3は相応するディジタル出力データDに変換
される。
FIG. 3 shows an example of a level change in the difference signal v3 caused by the movement of the object 3 to be measured. The difference signal v3 is input to an analog-to-digital converter (IVD) 15, where the difference signal v3 is converted into the corresponding digital output data D.

被測定体3の移動状態に応じて差信号V3のレベルが正
負に変化し且つその変化パターンの様子を数値的に示す
その自己相関関数の値が被測定体3の個数と密接な相関
関係を有するという点に着目してその概数を測定するた
め、差信号v3に相応したディジタル出力データDは演
算部】6に入力され、ここでディジタル出力データDに
基づく自己相関関数値の計算が行なわれる。ここで実行
される自己相関関数値の計算は、差信号のレベルパター
ンについて実行され、この計算は所定の時間間隔で繰り
返し実行される。
The level of the difference signal V3 changes between positive and negative depending on the moving state of the objects 3 to be measured, and the value of the autocorrelation function that numerically indicates the state of the change pattern has a close correlation with the number of objects 3 to be measured. In order to measure the approximate number by paying attention to the point that the difference signal v3 is present, the digital output data D corresponding to the difference signal v3 is inputted to the calculation unit ]6, where the autocorrelation function value is calculated based on the digital output data D. . The autocorrelation function value calculation performed here is performed on the level pattern of the difference signal, and this calculation is repeatedly performed at predetermined time intervals.

演算部工6における計算結果を示す関数値データFDは
、関数値データFDを被測定体の概数値を示す概数デー
タNDに変換するだめのデータ処理部20に入力される
。データ処理部20は、関数値データFDが入力されて
いるデータ変換部21と、データ変換部21において関
数値データFDをその時の被測定体の概数を示す概数デ
ータに変換するために必要な基準データRDをゲータ変
換部21に与えるためのメモリ部22とから成っている
。光電センサ8によって測定すべき測定領域2に光電セ
ンサ8が設置されたときに、この測定領域2内において
予め判っている数の破i4+1宇体又はそれに類似のも
のを運動させて被測定体の数と関数値データFDの内容
との間の関係を示すデータを得、このようKして得られ
たデータが基準データRDとしてメモリ部22に入力装
置31から入力されて、ストアされている。
The function value data FD indicating the calculation result in the calculation section 6 is input to the data processing section 20 which converts the function value data FD into approximate number data ND indicating the approximate value of the object to be measured. The data processing section 20 includes a data conversion section 21 into which the function value data FD is input, and standards necessary for the data conversion section 21 to convert the function value data FD into approximate number data indicating the approximate number of objects to be measured at that time. and a memory section 22 for supplying the data RD to the gator conversion section 21. When the photoelectric sensor 8 is installed in the measurement area 2 to be measured by the photoelectric sensor 8, a predetermined number of broken i4+1 bodies or similar objects are moved within this measurement area 2 to measure the object to be measured. Data indicating the relationship between the number and the contents of the function value data FD is obtained, and the data obtained by performing the K process is inputted from the input device 31 to the memory section 22 as the reference data RD and stored therein.

上記説明から判るように、データ変換部21において実
行されるデータ変換処理のために必要力基準データRD
は、光電センサ8の種類、設置状態、被測定体のね類等
により大きく変るイ)のであるから、測定の条件が変る
毎にメモリ部22にストアすべき基準データRDのとり
直しをする必要がある。このため、本装置では、データ
を表示するための表示装置32は、スイッチ33によっ
て、関数値データFD又はデータ変換部21からの概。
As can be seen from the above description, the required force reference data RD for the data conversion process executed in the data conversion unit 21
(a) varies greatly depending on the type of photoelectric sensor 8, the installation condition, the type of object to be measured, etc. Therefore, it is necessary to readjust the reference data RD to be stored in the memory section 22 every time the measurement conditions change. There is. Therefore, in this device, the display device 32 for displaying data is operated by the switch 33 to display the function value data FD or the outline from the data converter 21.

数データNDのいずれか一方を選択的に入力することが
できる構成となっている。上述の基準データRDを得る
場合には、スイッチ33を点線で示されるように切り換
えておき、測定領域2内において予め判っている数の被
測定体3が運動しているときの関数値データFDの値を
表示装置32によって容易に読み取ることができる構成
となっている。
The configuration is such that either one of the numerical data ND can be selectively input. When obtaining the above-mentioned reference data RD, the switch 33 is switched as shown by the dotted line, and the function value data FD is obtained when a predetermined number of objects 3 to be measured are moving within the measurement region 2. The configuration is such that the value of can be easily read by the display device 32.

関数値データMF’はデータ変換部21において、メモ
リ部22からの基準データRDを参照して、その時々の
被測定体3の概数を示す概数データNDに変換される。
The function value data MF' is converted by the data converter 21 into approximate number data ND indicating the approximate number of the object to be measured 3 at the time, with reference to the reference data RD from the memory section 22.

概数データNDはスイッチ33を介して表示装@、32
に供給され、被測定体3のその時々の概数が表示装置3
2によって表示される。
Approximate number data ND is displayed on display @, 32 via switch 33.
is supplied to the display device 3, and the approximate number of the object to be measured 3 at each time is displayed on the display device 3.
Displayed by 2.

次に、第1図に示した装置の作動について説明する。先
ず、光電センサ8の設置が終了したならば、スイッチ3
3を点線で示されるように切り換え、測定領域2内で予
め判っている数の被測定体3又はこれに類似のものを運
動させ、この結果得られた関数値データFDの内容を表
示装置32によ#)読み取る。この操作を、被測定体の
数を変えて何回か行ない、この結果得られた被測定体の
数と関数値データFDとの間の関係を示すデータを基準
データRDとして、メモリ部23に入力装置31から予
め入力しておく。
Next, the operation of the apparatus shown in FIG. 1 will be explained. First, once the installation of the photoelectric sensor 8 is completed, switch 3
3 as shown by the dotted line, move a predetermined number of objects 3 to be measured or something similar within the measurement area 2, and display the contents of the resulting function value data FD on the display device 32. #) Read. This operation is performed several times by changing the number of objects to be measured, and the data indicating the relationship between the number of objects to be measured and the function value data FD obtained as a result is stored in the memory section 23 as reference data RD. It is input in advance from the input device 31.

このようにして測定準備が完了したならば、スイッチ3
3を実線で示されるように切り換え、概数データNDの
内容が表示装置32によって表示される状態とする。こ
の状態において、測定領域2内で被測定体3が移動する
と、その数に応じた値を有する関数値データFDがデー
タ変換部21に入力され、ここで予め得られた基準デー
タRDを利用して被測定体のその時々の概数を示す概数
データNDに変換される。概数データNDはスイッチ3
3を介して表示装置32に入力され、被測定体3のその
時々の複数を直接表示することができる。
After completing the measurement preparation in this way, switch 3
3 as shown by the solid line, and the contents of the approximate number data ND are displayed on the display device 32. In this state, when the object to be measured 3 moves within the measurement area 2, the function value data FD having a value corresponding to the number of objects to be measured 3 is inputted to the data conversion section 21, where the reference data RD obtained in advance is used. It is converted into approximate number data ND indicating the approximate number of the object to be measured at any given time. Approximate number data ND is switch 3
3 to the display device 32, and can directly display a plurality of objects to be measured 3 at any given time.

上記実施例では、光電変換板9として、第2図に示すよ
うに、正方向に接続される光電変換素子(+で示す)と
負方向に接続される光電変換素子(−で示す)とが縦横
に交互に配列される構成のものを用いたが、光電変換板
9として、光電変換素子を+1.0.−1の荷重をかけ
てランダムに配置した2次元M系列型のものを使用して
もよいことは上記説明から容易に理解されるところであ
る。
In the above embodiment, as shown in FIG. 2, the photoelectric conversion plate 9 includes photoelectric conversion elements connected in the positive direction (indicated by +) and photoelectric conversion elements connected in the negative direction (indicated by -). Although a photoelectric conversion plate 9 having a configuration in which the photoelectric conversion elements are arranged alternately in the vertical and horizontal directions was used, the photoelectric conversion elements were arranged at +1.0. It is easily understood from the above description that a two-dimensional M-sequence type in which a load of −1 is applied and randomly arranged may be used.

この構成によれば、センサからの出力信号を処理するた
めの演算は、自己相関関数値の演算及びデータ変換のだ
めの簡単な演算で済むので、コンピュータを使用すると
しても極めて小規模なもので済み、装置も小型とするこ
とができる。
According to this configuration, the calculations for processing the output signal from the sensor are as simple as calculating the autocorrelation function value and data conversion, so even if a computer is used, it can be done on a very small scale. , the device can also be made smaller.

なお、本装置において使用される光電センサは、測定領
域2の画像データを取シ出すものではないので、特に被
検出体が人物の場合、そのプライバシーを侵害する虞れ
が全くなく、この点においてテレビカメラからの映像を
用いて画像処理する従来のものに比べて格段に優れてい
る。
Furthermore, since the photoelectric sensor used in this device does not extract the image data of the measurement area 2, there is no risk of infringing on the privacy of a person, especially when the object to be detected is a person. This is significantly superior to conventional methods that process images using images from television cameras.

(効 果) 本発明によれば、上述の如く、空間フィルタ検出器であ
る光電変換装置からの信号に基づいた自己相関関数値の
計算を行なうことによシ被測定体の概数を測定する構成
であるから、ハードウェアの構成が小規模な簡単なもの
で済み、複雑なアルゴリズムを必要とすることなしに被
測定体の概数を簡便に測定することができる。また、セ
ンサからの出力は映像信号ではないので、人のプライバ
シーが保護されなければならないような場所においても
全く問題なく使用できるという優れた効果も有している
(Effects) According to the present invention, as described above, the approximate number of objects to be measured is measured by calculating the autocorrelation function value based on the signal from the photoelectric conversion device, which is a spatial filter detector. Therefore, the hardware configuration can be small and simple, and the approximate number of objects to be measured can be easily measured without requiring complicated algorithms. Furthermore, since the output from the sensor is not a video signal, it has the excellent effect of being able to be used without any problems even in places where people's privacy must be protected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による概数測定装置の一実施例を示すブ
ロック図、第2図は第1図に示す光電変換板の光電変換
面の説明図、第3図は第1図に示す光電変換装置の回路
図、第4図は差信号の波形の一例を示す波形図である。 1・・・概数測定装置、2・・・測定領域、3・・・被
測定体、6・・・光学装置、7・・・光電変換装置、9
・・・光電変換板、10・・・光電変換素子、14・・
・差信号出力回路、16・・・演算部、20・・・デー
タ処理部、vl・・・第1信号、■鵞・・・第2信号、
v3・・・差信号。
FIG. 1 is a block diagram showing an embodiment of the approximate number measuring device according to the present invention, FIG. 2 is an explanatory diagram of the photoelectric conversion surface of the photoelectric conversion plate shown in FIG. 1, and FIG. 3 is the photoelectric conversion shown in FIG. 1. The circuit diagram of the device, FIG. 4, is a waveform diagram showing an example of the waveform of the difference signal. DESCRIPTION OF SYMBOLS 1... Approximate number measuring device, 2... Measurement area, 3... Measured object, 6... Optical device, 7... Photoelectric conversion device, 9
...Photoelectric conversion plate, 10...Photoelectric conversion element, 14...
- Difference signal output circuit, 16... calculation section, 20... data processing section, vl... first signal, ■ goose... second signal,
v3...Difference signal.

Claims (1)

【特許請求の範囲】[Claims] 1、電気的に正方向及び逆方向に結線された光電変換素
子が平面上で所要のパターンに配置されて成り正方向光
電変換素子の出力和を示す第1信号と逆方向光電変換素
子の出力和を示す第2信号とを出力する光電変換装置と
、所要の被測定体の像を上記光電変換装置上に結像させ
る光学装置と、上記第1及び第2信号に応答し上記第1
及び第2信号の各レベルの絶対値の差に応じた差信号を
出力する差信号出力回路と、該差信号に基づいて該差信
号の所定時間長さのパターンに対する自己相関関数値を
計算する演算部と、該演算部からの出力に応答しその自
己相関関数値から上記被測定体の概数に関するデータを
演算出力するデータ処理部とを備えて成ることを特徴と
する運動する物体の概数測定装置。
1. Photoelectric conversion elements electrically connected in the forward direction and reverse direction are arranged in a required pattern on a plane, and a first signal indicating the sum of outputs of the forward direction photoelectric conversion elements and the output of the reverse direction photoelectric conversion elements a photoelectric conversion device that outputs a second signal indicating the sum; an optical device that forms an image of a desired object on the photoelectric conversion device;
and a difference signal output circuit that outputs a difference signal according to the difference in the absolute value of each level of the second signal, and calculates an autocorrelation function value for a pattern of a predetermined time length of the difference signal based on the difference signal. Approximate measurement of a moving object, comprising: a calculation section; and a data processing section that responds to the output from the calculation section and calculates and outputs data regarding the approximate number of the object to be measured from the autocorrelation function value. Device.
JP22785185A 1985-10-15 1985-10-15 Measuring instrument for approximate number of moving object Pending JPS6288080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22785185A JPS6288080A (en) 1985-10-15 1985-10-15 Measuring instrument for approximate number of moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22785185A JPS6288080A (en) 1985-10-15 1985-10-15 Measuring instrument for approximate number of moving object

Publications (1)

Publication Number Publication Date
JPS6288080A true JPS6288080A (en) 1987-04-22

Family

ID=16867365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22785185A Pending JPS6288080A (en) 1985-10-15 1985-10-15 Measuring instrument for approximate number of moving object

Country Status (1)

Country Link
JP (1) JPS6288080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262397A (en) * 2009-04-30 2010-11-18 Nippon Telegr & Teleph Corp <Ntt> Method, device, and program for measuring number of object, recording medium recorded with the program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010262397A (en) * 2009-04-30 2010-11-18 Nippon Telegr & Teleph Corp <Ntt> Method, device, and program for measuring number of object, recording medium recorded with the program

Similar Documents

Publication Publication Date Title
JP3634845B2 (en) Temperature display device and temperature monitoring system
US4819197A (en) Peak detector and imaging system
JPS6288080A (en) Measuring instrument for approximate number of moving object
JPH07110216A (en) Method and instrument for measuring vertical and lateral movement of speckle pattern utilizing laser light
EP1676238B1 (en) A method for measuring dimensions by means of a digital camera
JPS58196412A (en) Distance measuring device
JPS6287803A (en) Apparatus for measuring size of moving matter
JPS6287862A (en) Apparatus for measuring mobility of moving matter
US5317523A (en) Integrated reflective image sensor
US3726997A (en) Optical processing system
US5107336A (en) Image reading apparatus for determining a distance between an image of a subject photographed by a camera and the center of an image field
JP3021269B2 (en) Vehicle detection device
JPH0412805B2 (en)
JPS621203B2 (en)
JP3100144B2 (en) Image processing method and image processing apparatus
JP3201902B2 (en) Target angle measuring device
JP2765285B2 (en) Displacement gauge
JPH04351928A (en) Light beam diameter measurement device
JPS62110110A (en) Range finder for infrared image
JP2668015B2 (en) Measurement method of object surface state by tactile movement
KR20000017208A (en) Distance measurement calculating apparatus and distance measurement calculating method using the same
SU634312A1 (en) Arrangement for normalization of image at image recognition
JPH04258712A (en) Image pick-up device
WO1991004458A1 (en) Passive-optoelectronic rangefinding
JPH03195916A (en) Measuring apparatus for distance